
Applied Analysis Preliminary Exam
9:00-12:00 August 16, 2022

Instructions: You have three hours to complete this exam. Work all five problems; each is worth
20 points. Please start each problem on a new page. Please clearly indicate any work that you do
not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST prove your
conclusions or show a counter-example for all problems unless otherwise noted. In your proofs, you
may use any major theorem on the syllabus or discussed in class, unless you are being asked to
prove such a theorem (when in doubt, ask the proctor). Write your student number on your exam,
not your name.

Problem 1: Metric Spaces

(a) Suppose that (X, dX) and (Y, dY ) are metric spaces. Show that X × Y is a metric space,
with an appropriate metric.

(b) Let A = {(ξ1, ξ2, . . .) : ξj ∈ R} be the space of real sequences and µj > 0. Show that

d(ξ, η) =

∞∑
j=1

µj
|ξj − ηj |

1 + |ξj − ηj |

is a metric on A whenever
∑∞

j=1 µj converges.

(c) Let M ⊂ ℓ∞ be the subspace consisting of all sequences (ξj) with at most finitely many
nonzero terms. Show that M is not complete.

Solution/Hint :

(a) Let Z = X × Y and d(z1, z2) = dX(x1, x2) + dY (y1, y2) We need only show that the new
metric satisfy the three conditions:
(1) (symmetry) This is clear since both dX and dY are symmetric
(2) (positivity) Since dX(x1, x2) ≥ 0 and dY (y1, y2) ≥ 0, then d(z1, z2) ≥ 0. Moreover the

only way this can be zero is if both dX and dY vanish which only happens if x1 = x2
and y2 = y2, thus we have z1 = z2.

(3) (triangle inequality) Let z3 = (x3, y3) ∈ Z, then by the triangle for dX and dY

d(z1, z2) ≤ dX(x1, x3) + dX(x3, x2) + dY (y1, y3) + dY (y3, y2)

≤ (dX(x1, x3) + dY (y1, y3)) + (dX(x3, x2) + dY (y3, y2)) = d(z1, z3) + d(z3, z2)

which is the triangle inequality for d.
Thus (Z, d) is a metric space.

(b) Note that d(ξ, η) is symmetric and positive definite. Note that the function f(t) = t/(1+ t)
is monotone increasing on R+ (e.g., f ′(t) > 0), and f(t) < 1. Thus convergence of the
µ series implies that d(ξ, η) < ∞. To show the triangle inequality, write a = |ξj − ηj | ≤
|ξj − ζj |+ |ζj − ηj | = b+ c, then since a, b, c ≥ 0, f(a) ≤ f(b+ c) so

a

1 + a
≤ b+ c

1 + b+ c
=

b

1 + b+ c
+

c

1 + b+ c
≤ b

1 + b
+

c

1 + c

This is just what we need for the Triangle inequality, since then

|ξj − ηj |
1 + |ξj − ηj |

≤ |ξj − ζj |
1 + |ξj − ζj |

+
|ζj − ηj |

1 + |ζj − ηj |

Multiplication by µj and summing gives the result.
(c) The sequence xn = (1, 12 ,

1
3 , . . .

1
n , 0, 0, . . .) ∈ M for each n ∈ N. Moreover this is a Cauchy

sequence, since

d(xm, xn) =
1

n+ 1

whenever m ≥ n. However, limn→∞ xn /∈ M . Thus M is not complete.



Problem 2: Consider the function f : R2 → R given by

f(x, y) =
xnym

x2 + y2

for (x, y) ̸= (0, 0) and m,n ∈ N. Show that lim(x,y)→(0,0) f(x, y) exists if and only if m+ n > 2.

Solution/Hint : Suppose (xk, yk) ∈ R2 \ {(0, 0)} is a sequence that converges to zero. If m+ n > 2,
then at least one of the values must be at least 2, suppose w.l.o.g. m ≥ 2. Then

|f(xk, yk)| =

∣∣∣∣∣ xnky
m−2
k

1 + (xk/yk)2

∣∣∣∣∣ ≤ |xk|n|yk|m−2.

Now since xk → 0 then xnk → 0, and since m− 2 ≥ 0, then ym−2
k either goes to zero or is identically

1. Thus f(xk, yk) → 0 for all m+ n > 2.
For the converse, suppose now that m+ n < 2. We want to show that the limit does not exist, so
we only have to find some sequence for which it does not converge. Let xk = yk = 1/k. Then

f(1/k, 1/k) =
( 1k )

m+n

2
k2

= 1
2k

2−m−n

but, since m+ n < 2, this is unbounded so the sequence f(xk, yk) does not converge, and thus the
limit does not exist.
Finally if m+ n = 2, then the above sequence is identically 1

2 . But if we modify the sequence, say
xk = 1/k and yk = 0, then we get

f(1/k, 0) = 0

which is obviously zero. Since we get two different values on two sequences, the limit does not
exist.

Problem 3: Let H be an infinite dimensional Hilbert space and K : H → H a compact linear
operator. Prove the following statements.

(a) 0 ∈ σ(K), where σ(K) is the spectrum of K.
(b) Ker(I −K) = {0} iff Range(I −K) = H.
(c) σ(K) = σp(K) ∪ {0}, where σp(K) is the point spectrum of K.

Solution/Hint :

(a) We argue by contradiction, if 0 /∈ σ(K) then K has a continuous inverse K−1 : H → H
and thus I = K ◦K−1. However, the composition of compact operators is compact, which
implies that I has to be compact. This is a contradiction given that in infinite dimensional
spaces the closed unit ball is not compact. Thus, 0 ∈ σ(K).

(b) Let Ker(I−K) = {0} then I−K is one-to-one. Assume that H1 =Range(I−K) ̸= H. Note
that H1 is a closed subspace of H because K is compact. Moreover, as I −K is one-to-one
then H2 = (I −K)H1 ⊂ H1. Continue the construction for all n by defining

Hn = (I −K)nH.

By induction we see that Hn is closed and H ⊃ H1 ⊃ H2 ⊃ . . . . Now, for each n ≥ 1 choose
a vector en ∈ Hn ∩H⊥

n−1 with ∥en∥ = 1. Notice that if m < n then

K(em − en) = −(em −Kem) + (en −Ken) + (em − en) = em + zm

where zm = −(em − Kem) + (en − Ken) − en ∈ Hm+1. Since em ∈ H⊥
m+1, Pythagorias’

Theorem implies that:

∥K(em − en)∥ ≥ ∥em∥ = 1

and the sequence {Ken}n≥1 cannot have a strongly convergent subsequence, contradicting
the compactness of K.



(c) Assume that λ ∈ σ(K) with λ ̸= 0. If Ker(λI−K) = {0}, then by (b) Range(λI−K) = H.
Thus, by the Open Mapping Theorem (λI − K) has a bounded inverse, contradicting the
assumption. We thus conclude that λ ∈ σp(K).

Problem 4: Let f(t) be a complex-valued function defined for t ≥ 0. Its Laplace Transform Lf
is a function defined on s > 0 given by

g(s) = (Lf)(s) =

∫ ∞

0
f(t)e−st dt.

(a) Prove that L is a bounded linear map from L2(R+) → L2(R+);
(b) Prove that

∥L∥ ≤
√
π.

Hint: multiply and divide the integrand by t1/4 to aid in integration.

Solution/Hint : We provide an upper bound on the L2-norm of g using Cauchy-Schwarz inequality:

|g(s)|2 =
(∫ ∞

0
f(t)e−st dt

)2

=

[∫ ∞

0
(f(t)e−

st
2 t1/4)(e−

st
2 t−1/4) dt

]2
≤

∫ ∞

0
|f(t)|2 e−stt1/2 dt

∫ ∞

0
e−stt−1/2 dt.

We can now perform a change of variables, u = st and du = sdt and so∫ ∞

0
e−stt−1/2 dt = s−1/2

∫ ∞

0
e−uu−1/2 du = Cs−1/2.

Now, to compute C we use another change of variables: let u = x2 and du = 2xdx∫ ∞

0
e−uu−1/2 du =

∫ ∞

0

e−x2

x
2x dx = 2

∫ ∞

0
e−x2

=
√
π.

In summary, we have that

|g(s)|2 ≤
√
πs−1/2

∫ ∞

0
|f(t)|2 e−stt1/2 dt

and integrating over s gives:

∥g∥22 =
∫ ∞

0
|g(s)|2 ds ≤

√
π

∫ ∞

0

∫ ∞

0
|f(t)|2 e−stt1/2s−1/2 dt ds.

After interchanging the oder of integration we see that:∫ ∞

0
e−stt1/2s−1/2 ds =

∫ ∞

0
e−uu−1/2 du =

√
π

and so we get that

∥g∥22 ≤ π∥f∥22.

From this we conclude that ∥L∥ ≤
√
π. This proves (a) and (b).

***Please turn over***



Problem 5: Let A : H → H be a compact and symmetric operator defined on a Hilbert space H.
Define the Rayleigh quotient RA(x) as follows:

RA(x) =
(Ax, x)

∥x∥2
.

Denote the positive eigenvalues of A, indexed in decreasing order, by λk with k = 1, 2, . . . , with
corresponding eigenvectors zn. Recall that we can compute

λN = max
x⊥{z1,z2,...,zN−1}

(Ax, x)

∥x∥2
.(1)

and the maximum is achieved by zN .

(a) Prove that

λN = max
SN

(
min
x∈SN

RA(x)

)
where SN is any N -dimensional vector subspace of H.

(b) Prove that

λN = min
SN−1

(
max

x⊥{SN−1}
RA(x)

)
where SN−1 is as in (a).

Solution/Hint :

(a) Since SN is N -dimensional there exists a non-zero element y ∈ SN such that

(y, zk) = 0,

for all k = 1, 2, . . . , N − 1. By (1) we see that RA(y) ≤ λN . Moreover, as y ∈ SN we see
that

min
SN

RA(x) ≤ λN ,

which holds for any N. On the other hand, let SN = span{z1, z2, . . . , zN}. The minimum of
RA on SN , which is reached by the eigenvector zN , is λN , which proves the result.

(b) Given any subspace SN−1 of dimension N − 1, then span{z1, z2, . . . , zN} contains a vector
y perpendicular to SN−1. Moreover, for any y ∈ span{z1, z2, . . . , zN} we have that RA(y) ≥
λN , which implies that for SN−1

max
x⊥SN−1

RA(x) ≥ λN .

On the other hand, if we let SN−1 = span{z1, zn, . . . , zN−1} then by (1) equality holds in
the above inequality, which proves the result.


