
Applied Analysis Preliminary Exam Wednesday, August 26, 2020

Time allowed: 3 hours.

3 pages (including this one).

Instructions:

• Work all five problems; each is worth 20 points; please start each problem on a new page.

• Please clearly indicate any work that you do not wish to be graded (e.g., write SCRATCH at
the top of such a page).

• You MUST prove your conclusions or show a counter-example for all problems unless
otherwise noted. In your proofs, you may use any major theorem on the syllabus or discussed
in class, unless you are being asked to prove such a theorem (when in doubt, ask the proctor).

• Write your student number on your exam, not your name.

• Remote participants will be required to take photos or scan their written work which will
be sent to Laura (amgradco@colorado.edu) no later than 10 minutes after the end of the exam
(i.e., by 4:40pm).

Problem 1. [20 = 5 + 15]
Let 5 be a real-valued function.

A. In this question we assume that 5 is a continuously differentiable function, 5 ∈ �1 ([0, 1]).
Prove that

lim
=→∞

=

∫ 1

0
4−=G 5 (G)3G = 5 (0). (1)

B. In this question, we relax our hypothesis and only assume that 5 is continuous, 5 ∈ � ([0, 1]).
Prove that (1) still holds. Hint: use the Weierstrass approximation theorem.

Problem 2. [20]
Prove that the topological dual space of ℓ∞(ℕ) is not isomorphic to ℓ 1(ℕ) under the standard
isomorphism; i.e., show that not all dual elements ! can be written as (for G = (G=)=∈ℕ ∈ ℓ∞)
!(G) = ∑

=∈ℕ G=H= for some H = (H=)=∈ℕ ∈ ℓ 1(ℕ). Hint: Use the Hahn-Banach theorem or one of its
corollaries.

Problem 3. [20 = 5+10+5]
Let - and . be Banach spaces.

A. Let ) : - → . be a bounded linear operator. Prove that ) maps weakly convergent sequence
to weakly convergent sequences, i.e., G= ⇀ G =⇒ )G= ⇀ )G.

B. Let ) : - → . be a compact linear operator. Prove that ) maps weakly convergent sequences to
strongly convergent sequences. Note: You may use the fact that weakly convergent sequences
are bounded (a consequence of the Uniform Boundedness theorem).

C. Conversely, prove that if - is reflexive, then if a bounded linear operator ) : - → . maps
weakly convergent sequences to strongly convergent sequences, then ) must be compact.
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Problem 4. [20 = 4 × 5]
Let �([0, 1]) be the Banach space of complex-valued continuous functions on [0, 1] equipped with
the norm,

‖ 5 ‖∞ = sup
G∈[0,1]

| 5 (G)|. (2)

�([0, 1]) is also a pre-Hilbert subspace of the Hilbert space !2([0, 1]), equipped with the inner
product

〈 5 , 6〉 =
∫
[0,1]

5 (G)6(G)3G, (3)

and the associated norm

‖ 5 ‖2 =

[∫
[0,1]
| 5 (G)|23G

]1/2
. (4)

We consider a subspace � of �([0, 1]); � is also a subspace of !2([0, 1]). We assume that � is closed
in !2([0, 1]) for the topology induced by the ‖ · ‖2 norm, defined by (4).

A. Prove that � is closed in �([0, 1]) for the topology induced by the ‖ · ‖∞ norm, defined by (2).

B. Prove that there exists a constant � > 0 such that

∀ 5 ∈ �, ‖ 5 ‖2 ≤ ‖ 5 ‖∞ ≤ �‖ 5 ‖2. (5)

Hint: use the open mapping theorem.

In what follows we will prove that � has finite dimension, and we will bound dim�. We reason
by contradiction: we assume that the dimension of � is infinite. In this case we can exhibit an
orthonormal basis, (4=)=≥1, of �, equipped with the inner product (3).

C. Let : ≥ 1 be any fixed integer. Prove that for any choice of 1 , . . . , : in ℂwe have,

∀G ∈ [0, 1],
����� :∑
8=1

848(G)
����� ≤ �

(
:∑
8=1
|8 |2

)1/2

. (6)

D. Deduce that

∀G ∈ [0, 1],
:∑
8=1
|48(G)|2 ≤ �2. (7)

E. Conclude that the dimension of � is finite and less than �2.
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Problem 5. [20 = 2 + 2 + 6 + 2 + 2 + 2 + 4]
This problem is decomposed into very elementary questions. If you cannot answer one question, please skip
it and simply assume its result to hold. As often as not the answer to question = is given by the result proved
in question = − 1.

We recall the following set notation. If � and � are two subsets of -, the difference between � and
� is the set of all points of - that belong to � but do not belong to �,

� − � = {G ∈ -; G ∈ � and G ∉ �} . (8)

Let (-, �) be a measurable space. We assume that the measure � is finite. Let != be a sequence
of real-valued measurable functions != : - → ℝ. We assume that the sequence

{
!=

}
converges

almost everywhere to a finite measurable real-valued function ! : - → ℝ. Therefore, by removing
from -, if necessary, a set of measure zero, we may assume – everywhere in this problem – that

∀G ∈ -, !=(G) is finite, and lim
=→∞

!=(G) = !(G).

Let :, < be two positive integers. We define the following measurable set,

�:(<) =
{
G ∈ -; ∀= ≥ :, |!=(G) − !(G)| <

1
<

}
. (9)

A. Prove that �:(< + 1) ⊂ �:(<) ⊂ �:+1(<).

B. Prove that for all positive integers <,

- =

∞⋃
:=1

�:(<). (10)

C. Prove that for all positive integers <,

�(-) = lim
:→∞

�(�:(<)). (11)

Hint: express
⋃∞
:=1 �:(<) as a countable union of measurable mutually disjoint sets, and

observe that the resulting sum of measures is a telescopic series.

D. Let � > 0. Prove that there exists a sequence of integers {:<}<≥1, such that

�(-) − �(�:< (<)) <
�

2< . (12)

E. Let � > 0. We define

.� =

∞⋂
<=1

�:< (<), (13)

where the {:<} is the sequence defined in the previous question. Prove that .� is measurable.

F. Prove that � (- − .�) < �, where the set difference - − .� is defined in (8).

G. Conclude that

∀� > 0, ∃.� , such that � (- − .�) < �, and != converges uniformly to ! on .�. (14)
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Solution 1.
1. Define

�=( 5 ) = =

∫ 1

0
4−=G 5 (G)3G. (15)

Using integration by part,

�=( 5 ) = −4−=G 5 (G)
1

0
+

∫ 1

0
4−=G 5 ′(G)3G. (16)

5 ′(G) is continuous on the compact [0, 1] and therefore ∃ > 0,∀G ∈ [0, 1],
�� 5 ′(G)�� ≤  , and

therefore ����∫ 1

0
4−=G 5 ′(G)3G

���� ≤  ∫ 1

0
4−=G3G =

 (1 − 4−=)
=

−→ 0 as = →∞. (17)

We conclude
lim
=→∞

�=( 5 ) = 5 (0). (18)

2. Let 5 ∈ �([0, 1]), and let � > 0. Because the set of polynomials is dense in �([01, ]) for the
topology associated with the ‖ · ‖∞ norm, there exits a polynomial ?(G), such that

‖ 5 − ?‖∞ < �/3. (19)

Now, ? ∈ �1([0, 1]), and from the previous question we know that

∃#0 , ∀= ≥ #0 ,
���=(?) − ?(0)�� < �/3. (20)

Now, because of (19), we have �� 5 (0) − ?(0)�� < �/3. (21)

Putting everything together, we get for all = ≥ #0,���=( 5 ) − 5 (0)�� ≤ ���=( 5 ) − �=(?)�� + ���=(?) − ?(0)�� + ��?(0) − 5 (0)�� (22)

≤
���=( 5 − ?)�� + 2

3� (23)

≤ ‖ 5 − ?‖∞
∫ 1

0
=4−=G3G + 2

3� (24)

≤ � (25)

We conclude that
lim
=→∞

�=( 5 ) = 5 (0), (26)

as advertised.
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Solution 2.
We’ll write ℓ∞ for ℓ∞(ℕ) (and similarly for ℓ 1), and (ℓ∞)∗ for the topological dual (here, topological
is just in contrast to algebraic dual; both dual spaces are all linear functionals, but the topological
dual also requires them to be continuous, i.e., bounded).

Below are two different proofs.
First proof Let 20 = 20(ℕ) be the subspace of ℓ∞ consisting of convergent sequences; this is

a subspace because of the additive and scaling properties of limits. Then for G ∈ 20, define
)(G) = lim= G= , which is a bounded linear functional. Thus by Hahn-Banach, it can be extended to
some ! ∈ (ℓ∞)∗. This ! cannot be represented by anything in ℓ 1; if we could write !(G) = ∑∞

8=1 G8H8
for some H ∈ ℓ 1, then by using G = 48 = (0, 0, . . . , 0, 1, 0, . . .) (the canonical basis vector) we know
!(48) = 0 since 48 ∈ 20 so we can use the limit definition; yet this implies the 8th element of H is zero,
and this is true for all 8 ∈ ℕ, hence H = 0. Yet this cannot be right, since if we take G = (1, 1, 1, . . .),
then !(G) = 1 yet if !(G) = ∑∞

8=1 G8H8 we get !(G) = 0 since H = 0.
Note that this proof doesn’t show the two spaces cannot be isomorphic, only that they cannot be

isomorphic under the suggested isomorphism.
Second proof (probably less popular, since this corollary of Hahn-Banach isn’t in Hunter-Nachtergaele).

We’ll prove that if - is a normed linear space and -∗ is separable, then - must be separable. This
implies the result, because ℓ 1 is separable, and if it is isomorphic to (ℓ∞)∗, then (ℓ∞)∗ is also separable,
hence we conclude ℓ∞ is separable, but it is well-known that this is not true (e.g., for proof, you can
make a bĳection between ℓ∞ and either the binary expansion of the interval [0, 1] or the powerset
of ℕ).

So to prove our statement, we assume -∗ is separable, and hence the unit sphere ( in -∗ is
separable, so let (!=)=∈ℕ be a countable dense set of (. Since ‖!= ‖ = 1, we can find some G= ∈ -
with ‖G= ‖ = 1 and |!=(G=)| arbitrarily close to ‖!= ‖; in particular, select such an G= such that
|!=(G=)| ≥ 1/2. Let + = span(G1 , G2 , . . .). Then + is separable itself, since the rational span of
(G1 , G2 , . . .) is dense in + (this is a standard argument). Now we must show that + is dense in -,
which would imply - is separable.

Suppose + is not dense in -, so there exists & > 0 and G ∈ - such that there is no G= within
& of G. Now, by a well-known corollary of Hahn-Banach, there exists ! ∈ -∗ with ‖!‖ = 1 and
!(G=) = 0.1 But by density of != in the unit sphere of -∗, we can find some = ∈ ℕ with ‖! − != ‖
arbitrarily small. Yet

(∀= ∈ ℕ) ‖! − != ‖ = sup
‖G′‖=1

|!(G′) − !=(G′)‖ ≥ |!(G=) − !=(G=)| = |!=(G=)| ≥
1
2

which contradicts that ‖! − != ‖ can be arbitrarily small.

1e.g., see Lemma 4.6-7 “Existence of a functional” in Kreyszig’s book: let + be a proper closed subspace of -, and
G ∈ - \+ with & = infE∈+ ‖E − G‖, then ∃! ∈ -∗ with ‖!‖ = 1, !(E) = 0 (∀E ∈ +), and !(G) = &. To see this from the
Hahn-Banach theorem, let +̃ = span(+, G) and define )(E + G) = &, and then extend ) to ! on the whole space by
invoking Hahn-Banach.
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Solution 3.

A. First, we show weak convergence of ()G=), i.e., )G= ⇀ )G. Let # ∈ .∗. Then

lim
=→∞

#()G=) = lim
=→∞
(# ◦ ))(G=) = (# ◦ ))(G) = #()G)

where we used in the second inequality that (# ◦ )) ∈ -∗ because # ∈ .∗ and ) bounded
implies (# ◦ )) is bounded (and also clearly linear), and the third inequality follows from
G= ⇀ G (and the definition of weak convergence).

B. Let ) : - → . be a compact (linear) operator, and (G=) a weakly convergent sequence in -.
We wish to prove ()G=) converges strongly.
Let G= ⇀ G. If ()G=) does converge, we can guess that it will converge to )G, so we will
attempt to prove this.
Now, argue by contradiction: suppose ()G=) does not converge to )G. This means ∃& > 0
such that there is a subsequence (=:)with

(∀: ∈ ℕ) ‖)G=: − )G‖ ≥ &. (27)

Finally, using the hint (that (G=) is bounded), and the compactness, then since G=: is a bounded
sequence, ()G=: )must have a convergent subsequence (i.e., the set {)G=: } is precompact). Let
H denote the limit of this convergent subsequence. But this convergent subsequence (which
we won’t explicitly name, to avoid ugly notation) is still a subsequence of ()G=) and therefore
weakly converges to )G. Since it strongly converges to H, then it also weakly converges to
H. Since limits (weak or strong) are unique, then H = )G [or, one can also deduce this by
saying that if a sequence converges strongly and weakly, it must be to the same limit]. But
this contradicts Eq. (27).

C. We wish to show ) is compact. This means that if � is bounded, then )(�) is precompact
(aka relatively compact).
First, we prove another useful characterization of compact operators (in fact, this is stated in
the Hunter & Nachtergaele book below Definition 5.42 without proof, so students got full
credit for stating this as the “definition” without proving it):

A linear operator ) is compact iff the image of any bounded sequence (G=) has a
convergent subsequence.

One direction of the “iff” is easy and not relevant to our problem. For the other direction
(also very easy, almost a tautology), supposing the image of any bounded sequence (G=) has a
convergent subsequence, we want to show ) is compact. Let � be an bounded set, and let
(H=) ⊂ )(�) be any subsequence in)(�). Wewish to show)(�) is precompact, i.e., show there
is a convergent subsequence of (H=). Since (H=) ⊂ )(�), we can write each H= as H= = )(G=)
for some G= ∈ �. Since � is bounded, then (G=) is bounded. Then by assumption, there is a
convergent subsequence of the image of (G=), hence (H=) has a convergent subsequence.
Back to the problem, we wish to show ) is compact, and we will do so by showing that the
image of any bounded sequence (G=) has a convergent subsequence. If (G=) is a bounded
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sequence, then because - is reflexive, the Banach-Alouglu theorem proves that (G=) is weakly
precompact, meaning that there is aweakly convergent subsequence2. But then the assumption
that ) maps weakly convergent sequences to strongly convergent ones immediately implies
that )(G=) has a convergent subsequence, and this shows that ) is compact.

2More precisely, the Banach-Alouglu theorem says the closed unit ball in a dual space /∗ is weak-* compact; we
identify / = -∗ and use reflexivity (so /∗ = -) to get weak-compactness, and for moving from weak-compactness to
weak-precompactness, we take advantage that the sequential and topological notions of weak closure coincide in a
Banach space, due to the Eberlein-Šmulian theorem, which is not obvious since in general the weak topology is not
metrizable.
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Solution 4.

A. Consider the canonical injection

� : �([0, 1]) → !2([0, 1]) (28)
5 ↦→ 5 (29)

� is continuous,

‖ 5 ‖22 =

∫ 1

0
| 5 (G)|23G ≤ ‖ 5 ‖2∞. (30)

The image of � ⊂ �([0, 1]) by � can be identified with � ⊂ !2([0, 1]), which is closed in
!2([0, 1]). We conclude that � is closed in �([0, 1]) for the topology induced by the ‖ · ‖∞
norm, since it is the pre-image of a closed set (�) by a continuous map (�). Alternatively,
one can prove directly that � contains all its limit points (the actual details of a proof via this
approach are of course basically the same)

B. The restriction of � to �, �� is one-to-one and onto. Furthermore � is continuous (see (30)).
By the open mapping theorem the inverse �−1

�
of �� is continuous, and therefore there exists

� > 0, such that
‖ 5 ‖∞ ≤ �‖ 5 ‖2. (31)

The other inequality is given by (30).

C. Let (1 , . . . , :) ∈ ℂ: , we consider the vector 5 of � whose coordinates in the basis 48(G) are
the {8},

5 (G) =
:∑
8=1

848(G). (32)

Using Parseval, we have

‖ 5 ‖2 =

(
:∑
8=1
|8 |2

)1/2

. (33)

Combining (31) and (33), we conclude that for all G ∈ [0, 1],����� :∑
8=1

848(G)
����� ≤ ‖ 5 ‖∞ ≤ �‖ 5 ‖2 = �

(
:∑
8=1
|8 |2

)1/2

. (34)

D. For the choice 8 = 48(G), (6) yields

∀G ∈ [0, 1],
:∑
8=1
|48(G)|2 ≤ �

(
:∑
8=1
|48(G)|2

)1/2

, (35)

or equivalently

∀G ∈ [0, 1],
:∑
8=1
|48(G)|2 ≤ �2. (36)

E. Integrating (36) over the interval yields the advertised result. The dimension of � is bounded
in terms of �, which measures how tight is the bi-Lipschitz embedding (5).
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Solution 5.

A. If G ∈ �:(< + 1) then
∀= ≥ :, |!=(G) − !(G)| <

1
< + 1 <

1
<
, (37)

thus G ∈ �:(<). Also, if G ∈ �:(<) then

∀= ≥ :, |!=(G) − !(G)| <
1
<

(38)

and therefore
∀= ≥ : + 1, |!=(G) − !(G)| <

1
<

(39)

thus G ∈ �:+1(<).

B. Let < ≥ 1 be an integer. Clearly,
∞⋃
:=1

�:(<) ⊂ -. (40)

Now, consider G ∈ -, because lim=→∞ !=(G) = !(G), we have

∀< ≥ 1, ∃:, ∀= ≥ :, |!=(G) − !(G)| <
1
<

(41)

and thus ∃:, G ∈ �:(<).

C. Because �:−1(<) ⊂ �:(<), we can consider the measurable set

�: = �:(<) − �:−1(<) for : ≥ 2, (42)

with
�1 = �1(<). (43)

The {�:}:≥1 form a countable family of measurable mutually disjoint sets. So

�

(⋃
:≥1

�:

)
=

∑
:≥1

�(�:), (44)

where the sum on the right is bounded by �(-). By definition of �: ,

�(�:) = �(�:(<)) − �(�:−1(<)) and �(�1) = �(�1(<)). (45)

Also, ⋃
:≥1

�: =
⋃
:≥1

�:(<) = - (46)

We conclude from (45) that
∑
:≥1 �(�:) is a telescopic series, and thus

�(-) = �(�1(<)) +
(
�(�2(<)) − �(�1(<))

)
+ . . . = lim

:→∞
�(�:(<)). (47)
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D. Let � > 0 and < ≥ 1. Define � = �/2< . Because the sequence �(�:(<)) is monotonically
increasing and converges to �(-), there exists :� such that

�(-) − �(�:�(<)) ≤ � =
�

2< . (48)

We define the term < of the sequence to be :< = :�. Note that :< implicitly depends on �, as
illustrated in the next question.

E. The set .� =
⋂∞
<=1 �:< (<) is measurable: it is a countable intersection of measurable sets.

F. Now .� ⊂ - and

- − .� = - −
∞⋂
<=1

�:< (<) =
∞⋃
<=1

{
- − �:< (<)

}
. (49)

So

� (- − .�) ≤
∞∑
<=1

�
{
- − �:< (<)

}
, (50)

where the right-hand side converges since �
{
- − �:< (<)

}
= �(-) − �(�:< (<)) ≤ �/2< . We

conclude that

� (- − .�) ≤
∞∑
<=1

�
2< = �. (51)

G. Let � > 0, take .� =
⋂∞
<=1 �:< (<) constructed in question 5. Let G ∈ .�, then

∀< ≥ 1, G ∈ �:< (<), (52)

which means
∀< ≥ 1, ∃:< ,∀= ≥ :< , |!=(G) − !(G)| <

1
<
. (53)

Since the last statement is true for all G ∈ .�, we conclude that

∀< ≥ 1, ∃:< , ∀= ≥ :< , ∀G ∈ .� , |!=(G) − !(G)| <
1
<
. (54)

This statement means that != converges uniformly to ! on .�.

We have proved that if the sequence != converges almost everywhere to ! on -, then it converges
uniformly on a set whose measure is arbitrarily close to that of -.
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