APPM 5450 Spring 2015 Applied Analysis 2

Short Study Guide

Stephen Becker. Version 1

May 3, 2015

Intuitions and tricks

Utility and "under-appreciated" theorems

You may recall that some homework assignments made extensive use of these.

- 1. Prop. 5.30 regarding the open-mapping theorem (Thm. 5.23) and its converse
- 2. Corollary 6.15 and its implications, e.g., Theorem 8.17 and the unnumbered equation before Theorem 8.18, e.g., if $A \in \mathcal{B}(\mathcal{H})$,

$$\mathcal{H} = \overline{\operatorname{ran}(A)} \oplus \ker(A^*) \quad \text{and} \quad \mathcal{H} = \overline{\operatorname{ran}(A^*)} \oplus \ker(A)$$

3. Thm. 8.40: weak convergence iff norm is bounded and converges on a dense subset of the dual space.

Tricks/intuition

Showing an operator is **compact**: use the definition (maps bounded sets to precompact sets); or maps weakly-convergent sequences to strongly convergent (and for counter-example for this, use orthonormal sequences), e.g., Thm. 9.24; or is finite-rank or the limit of finite-rank operators. Theorem 9.16 and §9.4 give specific criterion for operators over Banach space, mainly related to being the limit of finite-rank operators. See also Prop. 5.43.

Another good trick for compactness/spectra is viewing the operator in the Fourier domain and converting multiplication/shifts to shifts/multiplication.

Counter-examples: see example 8.43 and example 12.61 for oscillation, concentration and escape to infinity. Also, use the left and right shift operators for a lot of examples. In general, try orthonormal sequences (e.g., in ℓ^2) or sequences of non-overlapping indicator functions (e.g., in L^p).

Basic facts for L spaces: L^p and ℓ^p are Banach for $1 \le p \le \infty$, Hilbert for p = 2, and separable for $1 \le p < \infty$. Theorem 12.51 shows that for $1 \le p < \infty$, C_c^{∞} is dense in L^p . The $L^p(I)$ spaces are nested if I is bounded. Know the dual spaces of L^p and ℓ^p for the cases p = 1, $1 and <math>p = \infty$. Understand the ideas of equivalence classes, ess sup, and sets of zero measure.

Note that $f \in L^p$ iff $f^p \in L^1$.

Fourier transforms: A lot can be inferred just by knowing a few key transform pairs. First, note that the inverse transform \mathcal{F}^{-1} is basically the same as the forward transform, since it is just a reflection, and hence we speak of Fourier transform "pairs" without paying attention to which is "f" and which is \hat{f} . Some good pairs:

- f is a Gaussian, then \hat{f} is Gaussian too, with the opposite type of scaling (e.g., f wide means \hat{f} skinny, and vice-versa).
- f is the indicator function of [-1, 1], \widehat{f} is a sinc. Using Riemann-Lebesgue, this proves sinc $\notin L^1$, and also proves Riemann-Lebesgue does not hold on L^2 .

- $f = \delta$ then \hat{f} is a constant function
- In general, f smooth implies \hat{f} decays quickly, and vice-versa. Note the relation between f' and $(ik)\hat{f}(k)$

The Fourier transform on L^1 or on S is defined using the standard integral. In S^* , it is defined weakly (i.e., in a distributional sense); on L^2 , it is defined using the BLT theorem. We have Riemann-Lebesgue for \mathcal{F} on L^1 but not on L^2 . The Fourier transform maps S to S, and S^* to S^* , and L^2 to L^2 . It does not map L^1 to L^1 , so the inverse Fourier transform on the range of $\mathcal{F}(L^1)$ is defined in a distributional sense.

Fourier series: we use density arguments a lot, e.g., continuous functions are dense in $L(\mathbb{T})$, and trigonometric polynomials are dense in $C(\mathbb{T})$. We use convolutions to smooth functions, and convolutions with approximate identities will converge to the original function. Use Bessel's inequality a lot.

Fundamental things you should know by heart

Theorems

- 1. Bessel's inequality for orthonormal sets (Thm. 6.24), Parseval's equality for orthonormal bases (Thm. 6.26 part(c)), and the generalization of Parseval's (Thm. 6.28 Plancherel's (Thm. 11.37)
- 2. Riesz representation theorem
- 3. Banach-Alouglu (book has three versions: Thm. 5.61 (most general), Thm. 8.45 for Hilbert spaces, Thm. 12.62 for L^p for 1 .
- 4. Spectral theorem (9.16) (after the proof, see paragraph discussing extensions: it also holds for normal operators, not just self-adjoint ones), and corollary 9.14 ($\sigma_r(A) = \emptyset$ if $A = A^*$).
- 5. Hölder and Minkowski
- 6. Sobolev embedding theorem (Thm. 7.9, and see subsequent paragraph for \mathbb{R}^d with d > 1).
- 7. Riemann-Lebesgue
- 8. Monotone and Dominated Convergence Theorem; Fatou's lemma; Fubini's theorem.

Definitions

- 1. Concepts from last semester: (uniform) continuity, compactness, completeness, Banach/Hilbert spaces, dual spaces, Hahn-Banach theorem, strong/weak convergence, uniform vs strong-operator vs weak-operator convergence, weak-* convergence
- 2. Definitions like adjoint, self-adjoint, unitary/orthogonal, positive, coercive, resolvent, spectra, Schwartz space
- 3. Sobolev spaces (Primarily Def. 7.6 and Def. 11.38, but see also Def. 12.66)
- 4. Understand the basics of a σ -algebra, Borel σ -algebra, measurable sets, complete measure space, Lebesgue measure, measurable function, Lebesgue integral. Think of analogies with topology and continuous functions.
- 5. Know the concepts of weak-derivatives and distributional-derivatives, and how we define the Fourier transform of a distribution.