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Chapter 7: Fourier Series

7.1 The Fourier Basis

The Torus (T): A 27r-periodic function on R may be identified with a function on a circle, or one-dimensional
torus, T = R/(27Z). which we define by identifying points in T that differ by 27n for some n € Z

Inner Product (L%(T)):
()= [ F@ata)io

Fourier Basis: The Fourier basis elements are the functions

Fourier Series: Any function f € L?(T) may be expanded in a Fourier series as
1 oo
)= —— P einx
0= 3 he,

where the equality means convergence of the partial sums of f in the L?-norm, and

~

fo=len, f) = \/%/Tf(m)e_imdx.

Definition 7.1: A family of functions {p,, € C(T)|n € N} is an approximate identity if:
(a) (pn(x) > 0;
(b) Jpen(x)dz =1 for every n € N;

(c) limy, o0 féilwléﬂ on(x)dx =0 for every § > 0.

*Changes from version 1: In Def 7.6, fixed H! to read H* at the appropriate spot; also, typo corrections; Changes from
version 2: more H* typo fixes in Lemma 7.8 and Thm 7.9; Changes from version 3: typo fixes; Changes from v4 to v5: typos
fixed 2016 (extra absolute value in Thm 12.41 part (b), and strict inequality in Def’n 11.38)



Theorem 7.2: If {¢,, € C(T)|n € N} is and approximate identity and f € C(T), then ¢, * f converges
uniformly to f as n — oc.

Theorem 7.3: The trigonometric polynomials are dense in C(T) with respect to the uniform norm.
Proposition 7.4: If f,g € L?(T), then f x g € C(T) and

1] * glloo < [[f1l2]lg]l2-

Theorem 7.5 (Convolution): If f,g € L?(T), then

7.2 Fourier Series of Differentiable Functions

Definition 7.6: The Sobolev space H'(T) consists of all functions

I ;g
f(I):E z fne™™ € L*(T)

n—=—oo

such that
2
< o0.

o0
> 7|
n=-—oo

The weak L2-derivative f’ € L?(T) of f € H*(T) is defined by the L?-convergent Fourier series

oo

flz) = — Z infne™® e L(T).

n=—oo

More generally
HY(T) = {f € L¥(T)

o0 oo
flz) = Z e, Z [n|?*|c,)? < oo},

n—=——oo n—=—oo

for k& > 0.

Definition 7.7: A function f € L?(T) belongs to H!(T) if there is a constant M such that

o

for f € HY(T), then the weak derivative f' of f is the unique element of L?(T) such that

< M|p|lg> for all p € CH(T)

/f'gpdac =— / fo'dx  for all o € CH(T).
T T

Lemma 7.8: Suppose that f € H*(T) for k > 1/2. Let

N

Z f einz
n

SN((E) =
2m
=—N

-

[\



be the Nth partial sum of the Fourier series of f, and define

oo 2
| @] = ( > |n2k|fn|2>
Then there is a constant C}, independent of f, such that

bl

Ck
ISn = Flloo < 7 £

and (Sy) converges uniformly to f as N — oo.

Theorem 7.9: If f € H¥(T) for k > 1/2, then f € C(T). More generally: If f € H*(T¢) and k > j + d/2
then f € CI(T9).



Chapter 8: Bounded Linear Operators on a Hilbert Space

8.1 Orthogonal Projections

Definition 8.1: A projection on a linear space X is a linear map P : X — X such that

P:=r

Theorem 8.2: Let X be a linear space.
(a) If P: X — X is a projection, then X = ranP @ kerP.
(b) If X = M @ N, where M and N are linear subspaces of X, then there is a projection P : X — X with

ranP = M and kerP = N.
Definition 8.3: An orthogonal projection on a Hilbert space H is a linear map P : H — H that satisfies
P?=P, (Px,y) = (x,Py) forall z,ycH.
An orthogonal projection is necessarily bounded.
Proposition 8.4: If P is a nonzero orthogonal projection, then || P|| = 1.
Theorem 8.5: Let H be a Hilbert space.
(a) If P is an orthognal projection on H, then ranP is closed, and
‘H = ranP & kerP

is the orthogonal direct sum of ranP and kerP.

(b) If M is a closed subspace of H, then there is an orthogonal projection P on H with ranP = M and
kerP = M+,

Even and Odd Projections: The space L?(R) is the orthogonal direct sum of the space M of even
functions and the space A of the odd functions. The orthogonal projections P and @ of H onto M and N,
respectively, are given by

f(@) + f(=x)

Pfa) = HEEE

note that I — P = Q.

8.2 The Dual of a Hilbert Space

Linear Functional: A linear functional on a complex Hilbert space H is a linear mapy from H to C. A
linear function ¢ is bounded, or continuous, if there exist a constant M such that

lp(z)] < M||z|| for all z € H.

The norm of a bounded linear function ¢ is

lell = sup [p(z)]-

llzll=1



if y € H, then
py(x) = (v, 7)

is a bounded linear functional on #, with ||, || = |ly||-

Theorem 8.12 (Riesz representation): If ¢ is a bounded linear functional on a Hilbert space H, then
there is a unique vector y € H such that

p(z) = (y,z) forall z,y € H.

8.3 The Adjoint of an Operator
Adjoint Operator: Let A € B(H) then there exist an unique A* € B(H) (known as the adjoint) such that

(x, Ay) = (A*z,y) for all z,y € H.

Left and Right Shift Operators: Suppose that S and T are the right and left shift operators on the
sequence space ¢2(N), defined by

S($1,$2,l‘3,...) = (O,l‘l,l‘g,l‘g,, .. .), T(.’L‘l,xg,]}g, .. ) = (x2,$3,$4,. . )

Then T = S*.
Theorem 8.17: If A: H — H is a bounded linear operator, then

rand = (kerA*)*, kerA = (ranA*)*.

Theorem 8.18: Suppose that A : H — H is a bounded linear operator on a Hilbert space ‘H with closed
range. Then the equation Az = y has a solution for z if and only if y is orthogonal to ker A*.

8.4 Self-Adjoint and Unitary Operators

Definition 8.23: A bounded linear operator A : H — H on a Hilbert space H is self-adjoint if A* = A.
Equivalently, abounded linear operator A on H is self-adjoint if and only if

(z, Ay) = (Azx,y) for all x,y € H.

Nonnegative, Positive/Positive Definite, Coercive: Let A be a self-adjoint operator on a Hilbert space
H. Then A is

e nonnegative if (x, Ax) > 0 for all z € H,
e positive or positive definite if (x, Ax) > 0 for all nonzero x € H,

e coercive if there exists a ¢ > 0 such that (x, Az) > c||z|]? for all x € H.



Lemma 8.26: If A is a bounded self-adjoint operator on a Hilbert space H, then

1Al = o [(z, Az)|.

Corollary 8.27: If A is a bounded self-adjoint operator on a Hilbert space then ||A*A| = ||A]|%>. If A is
self-adjoint, then | A2 = || A?.

Definition 8.28: A linear map U : H, — H2 between real or complex Hilbert spaces H1 and Hs it is said
to be orthogonal or unitary, respectively, if it is invertible and if

Uz, Uy)y, = (x,y), forall z,y e H;.

Two Hilbert spaces H; and Ho are isomorphic as Hilbert spaces if there is a unitary linear map between
them. If U : H — H (i.e H1 = Ha), then U is unitary if and only if U*U = UU* = I.

Example 8.30: If A is a bounded self-adjoint operator, then

eA:ZOE(zA)

is unitary.

8.6 Weak Convergence in a Hilbert Space

Weak Convergence: A sequence (x,,) in a Hilbert space H converges weakly to x € H if

lim (z,,y) = (z,y) forally € H.

n— oo

Theorem 8.39 (Uniform Boundedness): Suppose that
{¢n: X = Cln e N}

is a set of linear functionals on a Banach Space X such that the set of complex numbers {¢,(z)|n € N} is
bounded for each z € X. Then {||¢,| |n € N} is bounded.

Theorem 8.40: Suppose that (z,) is a sequence in a Hilbert space H and D is a dense subset of H. Then
(z,,) converges weakly to z if and only if:

(a) ||zn|| < M for some constant M;
(b) (zn,y) — (z,y) as n — oo for all y € D.

Note: this is extremely useful for showing weak convergence by letting D be a basis for H as in Example
8.41.

Proposition 8.44: If (z,) converges weakly to x, then
lz|| < liminf ||z,
n—oo

If, in addition,
lim [z, = |z

then (z,,) converges strongly to .



Theorem 8.45 (Banach-Alaoglu): The closed unit ball of a Hilbert space is weakly compact.

Definition 8.47: Let f : C' — R be a real-valued function on a convex subset C' of a real or complex linear
space. Then f is conver if

fltr + (1 =t)y) <tf(z)+ (1 —1)f(y)
for all x,y € C and 0 <t < 1. If we have a strict inequality in this equation whenever x # y and 0 < ¢t < 1,

then f is strictly conver.

Theorem 8.48 (Mazur): If (x,) converges weakly to z in a Hilbert space, then there is a sequence (y,)
of finite convex combinations of {x,} such that (y,) converges strongly to x.



Chapter 9: Spectrum of Bounded Linear Operators

9.2 The Spectrum

A Quick Note: A great reference for the spectrum of common operators (such as general multiplication
operators and the shift operators) check out this wonderful pdf. http://www.math.ubc.ca/~feldman/m511/
spectralExamples.pdf

Definition 9.3: The resolvent set of on operator A € B(H), denoted by p(A), is the set of complex numbers
A such that (A—XI) : H — H is one-to-one and onto. The spectrum of A, denoted by o(A), is the complement
of the resolvent set in C, meaning that o(A) = C\p(A)

Definition 9.4: Suppose that A is a bounded linear operator on a Hilbert space H.

(a) The point spectrum of A consists of all A € oA such that A — A is not one-to-one. In this case \ is
called an eigenvalue of A.

(b) The continuous spectrum of A consists of all A € 0 A such that A — Al is one-to-one but not onto, and
ran(A — A1) is dense in H.

(¢) The residual spectrum of A consists of all A\ € 0 A such that A — Al is one-to-one but not onto, and

ran(A — AI) is not dense in H.

Proposition 9.6: If A is a bounded linear operator on a Hilbert space, then the resolvent set p(A) is an
open subset of C that contains the exterior disc {A € C | |\| > ||A||}. The resolvent Ry is an operator-valued
analytic function of A\ defined on p(A).

Proposition 9.7: Let the spectral radius be defined as
r(A) =sup{|\| | A € 6(A)}.
If A is a bounded linear operator, then
T n|l/n
r(4) = lim |77,
If A is self-adjoint, then r(A) = || A]|.

Proposition 9.8: The spectrum of a bounded operator on a Hilbert space is nonempty

The Spectral Theorem for Compact, Self-Adjoint Operators

Lemma 9.9: The eigenvalues of a bounded, self-adjoint operator are real, and the eigenvectors associated
with different eigenvalues are orthogonal.

Invariant Subspace: A linear subspace M of H is called an invariant subspace of a linear operator A on
H if Az € M for all z € M

Lemma 9.11: If A is a bounded, self-adjoint operator on a Hilbert space H and M is an invariant subspace
of A, then M~ is an invariant subspace of A.

Proposition 9.12: If A belongs to the residual spectrum of a bounded operator A on a Hilbert space, then
A is an eigenvalue of A*.

Lemma 9.13 If A is a bounded, self-adjoint operator on a Hilbert space, then the spectrum of A is real and
is contained in the interval [—|| 4], ||A]l]-


http://www.math.ubc.ca/~feldman/m511/spectralExamples.pdf
http://www.math.ubc.ca/~feldman/m511/spectralExamples.pdf

Corollary 9.14: The residual spectrum of a bounded, self-adjoint operator is empty.

Proposition 9.15: A nonzero eigenvalue of a compact, self-adjoint operator has finite multiplicity. A
countably infinite set of nonzero eigenvalues has zero as an accumulation point, and no other accumulation
points.

Theorem 9.16 (Spectral Theorem for Compact, Self-Adjoint Operators): Let A : H — H be
a compact, self-adjoint operator on a Hilbert space H. There is an orthonormal basis of H consisting of
eigenvectors of A. The nonzero eigenvalue of A form a finite or countably infinite set {A;} of real numbers,

and
A= "M\,
k

where Py is the orthogonal projection onto the finite-dimensional eigenspace of eigenvectors with eigenvalues
Ak. If the number of nonzero eigenvalues is countably infinite then the series above converges to A in operator
norm.

9.4 Compact Operators
Theorem 9.17: Let E be a subset of an infinite-dimensional, separable Hilbert space H.

(a) If E is precompact, then for every orthonormal set {e, | n € N} and every € > 0, there is an N such
that

o0

Z l(en, )[? <€ forallwc E.
n=N+1

(b) if E is bounded and there is an orthonormal basis {e,} of H with the property that for every e > 0
there is an N such that the sum in (a) holds, then E is precompact.
Example 9.19: The diagonal operator A : £?(N) — ¢?(N) defined by
A(l’l,IEQ, T3yeeeyTpy.- ) = ()\1171, AQ:EQ, ceey )\nl’n, .. .),

where A, € C is compact if and only if A\, — 0 as n — co. Any compact, normal operator on a separable
Hilbert space is unitarily equivalent to such a diagonal operator. Note: this implies that the identity operator
on a Hilbert space H is compact if and only if H is finite-dimensional.

Definition 9.20: A bounded linear operator A on a separable Hilbert space H is Hilbert-Schmidt if there
is an orthonormal basis {e, | n € N such that

oo
Z | Ae,||? < oco.
n=1

If A is a Hilbert-Schmidt operator, then

Al s =

[e%S)
> [l Aeq|?
n=1

is called the Hilbert-Schmidt norm of A.
Theorem 9.21: A Hilbert-Schmidt operator is compact.

Theorem 9.24: A bounded linear operator on a Hilbert space is compact if and only if it maps weakly
convergent sequences into strongly convergent sequences.



9.5 Functions of Operators

Theorem 9.25 (Spectral Mapping): If A is a compact, self-adjoint operator on a Hilbert space and
f:0(A) — C is continuous, then

o(f(A)) = f(a(A4)).
Here o(f(A)) is the spectrum of f(A), and f(o(A)) is the image of the spectrum of A under f,

F(o(A) = {1 € C | ;1= f(p) for some A € o(A)}.

10



Chapter 11: Distributions and the Fourier Transform

11.1 The Schwartz Space
Multi-Index: A multi-index
a=(ay,...,ap) €2} withZy ={n€Z|n>0}
is an n-tuple of nonnegative integers a; > 0. For multi-indices o, 8 € Z} and z € R", we define
() |af =371 o,
(b) ol = HZ p @il
(c) a+B=(ar+P1,...,an + Bn),
(d) a>pifand only if a; > B; for i =1,...,n,

@ o =(:2)" - (32)"
(£) @ =i, 23,
(8) |zl = Vat + - +af.

Leibnitz Rule: The Leibnitz rule for the derivative of the product of f,g € C*(R") may be written as

r(f= 3 @ D@,

Bty=a

Definition 11.1: The Schwartz space S(R™), or S for short, consists of all functions ¢ € C°°(R™) such that

Pa,s(p) = sup |2°0° o ()]
r€R"™
is finite for every pair of multi-indices o, 8 € Z%. If ¢ € S, then for every d € N and a € Z"} there is a
constant Cy , such that
Cd,a

(1 +[z[?)4/2
Thus an element of S is a smooth function such that the function and all of its derivatives decay faster than
any polynomial as |x| — co. Elements of S are called Schwartz functions, or test functions.

|[0%p(2)| < for all z € R™.

Definition 11.2: Suppose that X is a real or complex linear space. A function p : X — R is a seminorm
on X if it has the following properties:

(a) p(x) >0 for all x € X;
(b) p(z +y) < p(x) +p(y) for all 2,y € X;
(¢) p(Azx) = |A|p(x) for every z € X and X € C.

A seminorm has the same properties as a norm, except that p(z) = 0 does not need to imply z = 0. If a
family of seminorms {p1,...,p,} is finite and seperates points, then

2]l = p1(z) + ... + pu(2)

defines a norm on X

Proposition 11.3: The Schwartz space S with the metrizable topology generated by the countable family
of seminorms

{p(x,B | o, B € Z?—}a

11



where p, g is given by
[pllas = Pas(i0) = sup 20" ()],
TER™

is complete.

Proposition 11.4: For each o € Z7, the partial differentiation operator 0% : & — S is continuous linear
operator on S.

11.2 Tempered Distributions

Tempered Distributions: The topological dual space of S, denoted by 8* or &’, is the space of continuous
linear functionals T : S — C. Elements of S* are called tempered distributions. Since S is a metric space, a
functional T': & — C is continuous if and only if for every convergent sequence ¢,, — ¢ in S, we have

lim T(p,) =T(p).

n—oo

The continuity of a linear functional 7" is implied by an estimate of the form

IT(p)| < Z Ca,p

lal,|8|<d

|#llas

for some d € Z, and constants c, g > 0.

Example 11.5: The fundamental example of a distribution is the delta function. We define 6 : S — C by
evaluation at O:

11.3 Operations on Distributions

Example 11.9: If T' = ¢ is the delta function, then

(f6,0) = (6, fe) = F(0)p(0) = (£(0)d, ¢).
Hence, fé = f(0)J.

Definition 11.10: Suppose that T is a tempered distribution and « is a multi-index. the ath distributional
derivative of T is the tempered distribution 0“7 defined by

(8°T, o) = (=1)lNT, 0%p) for all p € S.

Theorem 11.11: For every T € §* there is a continuous function f : R” — C of polynomial growth and a
multi-index o € Z7} such that T = 0°f.

Example 11.14: The derivative of the one-dimensional delta function d is given by

(0", 0) = =(0,¢') = —=¢'(0).

More generally, the kth distributional derivative of § is given by

(6™, 0) = (=1)*™(0).

12



Example 11.16: For each h € R™, we define the translation operator 7, : S — S by

() = f@— h).
We therefore define the translation 7,7 of a distribution T' by

(ThT,0) = (T, 7_pyp) forall p€S.
For instance, we have 0, = 7,9.
Example 11.17: Let R: S — S be the reflection operator,
Rf(z) = f(-x).
Thus, for T' € §*, we defined the reflection RT € §* by
(RT,¢) = (T,Ryp) forall peS.

Proposition 11.18: For any ¢, v, w € S, we have:
(a) pxtp=1pxo,
(b) (px9)xw=@x*(Yxw),
(¢) Th(e*x¥) = (Thp) x ¢ = @ * (T) for every h € R™.

11.4 The Convergence of Distributions

Convergence in Distribution Space: Let (7,) be a sequence in §*. We say that (7)) converges to
T € §* if and only if
lim (T,,,p) = (T, ) forevery ¢ € S.

n—oo

We denote convergence is the space of distributions by T,, — T as n — oo.

Proposition 11.22: For n € N| let
sin(nx)

on(z) = T

Then o,, — § in S* as n — oo.

Theorem 11.23: The Schwartz space is dense in the space of tempered distributions.

11.5 The Fourier Transform of Test Functions
Definition 11.24: If ¢ € S(R™), then the Fourier transform ¢ : R™ — C is the function defined by

1

o(k) = (271')"/2/ o(x)e”®%dg  for k € R™.

We define the Fourier transform operator F : S — S by Fo = ¢.

Eigenvalues of The Fourier Transform: Knowing that F2¢p = Ry where R is a reflection. It is easy to
see that F4p = ¢ leading to the characteristic equation A\* = 1. It turns out that the eigenvalues of F are

0p(F) = {+1, +i}.

Proposition 11.25: If ¢ € S(R™), then:

13



(a) ¢ € C°(R"), and
%@ = Fl(—iz)el;

(b) k“¢ is bounded for every multi-index a € Z'}, and
(ik)* @ = F[0%p].

The Fourier transform F : S(R™) — S(R™) is a continuous linear map on S(R™).

Proposition 11.27: If p,9 € S and h € R™, then:

@ = e_Zk'h(ﬁ7
-
ell.h Th$,

—

Sp e
px = (2m)" 2%

Definition 11.28: If ¢ € S, then the inverse Fourier transform ¢ is given by
5(r) = — * (k) dk
@(m)*w ne p(k)dk.

We define 7*: S = S by Fro = @.

Proposition 11.29: The map F* is a continuous linear transformation on S, and F* = F~ L.

11.6 The Fourier Transform of Tempered Distributions
Definition 11.30: The Fourier transform of a tempered distribution 7" is the tempered distribution 7' = FT'
defined by

~

(T,) =(T,p) forall peS.

The inverse Fourier transform 7' = F 1T on S* is defined by

(T,) =(T,p) forall peS.
The map F : §* — S* is a continuous, one-to-one transformation of $* onto itself.

Example 11.31: The Fourier transform of the delta function is
B = (0.8) = $(0) = oz [ w@dde = (1)
— = = X )axr = .
Y SO Y SO SD (271_)"/2 50 (27‘(’)7’/2 Y 90
Hence, the Fourier transform of the delta function is

1

d= .
(27)n/2

14



11.7 The Fourier Transform of L!

Convergence of the Fourier Integral: The Fourier integral (Fourier transform on L!-functions)

) = — x)e”F ey
F4) = Gy [ Sla)e

converges if and only if f € L'(R"), meaning that

[ 15@lde < oc.

Theorem 11.34 (Riemann-Lebesgue): If f € L'(R"), then f € Cy(R™), and

@m)"2 ) flloo < I £

Theorem 11.35 (Convolution): If f,g € L}(R"), then f * g € L*(R") and

Frg=(20)"%fq.

11.8 The Fourier Transform of L2

Theorem 11.37 (Plancherel): The Fourier Transform F : L?(R") — L?(R"™) is a unitary map. For every
f,g € L*(R"™), we have

(f.9)=(f.9),

where

and f = Ff. In particular,

/n |f(z)|?dz = / |F (k)2 dk.

Definition 11.38: Let s € R. The Sobolev space H*(R™) consists of all distributions f € &* whose Fourier
transform f : R™ — C is a regular distribution and

/n(1 + k2% f (k) 2dk < oo.

15



Chapter 12: Measure Theory and Function Spaces

12.1 Measures

Definition 12.1: A o-algebra on a set X is a collection of A of subsets of X such that:
(a) 0 e A
(b) If A € A, then A° = X\ A € A;
(c) If {A; | i € N} is a countable family of sets in A, then [J;, A; € A.

A measurable space (X, A) is a set X and a o-algebra A on X. The elements of A are called measurable
sets.

Definition 12.5: A measure p on a set X is a map p: A — [0,00] on a o-algebra A of X, such that:

(a) pu(0)=0;
(b) If {A; | € N} is a countable family of mutually disjoint sets in .4, meaning that A; N A; = () for i # j,

then . .
1 (U Ai) = ZN(AJ
i=1 i=1

A measure is finite if p(X) < oo, and o-finite if there is a countable family {4, € A | i = 1,2,...} of
measurable sets of X such that p(A;) < co and

Example 12.6: Let X be an arbitrary set and A the o-algebra consisting of all subsets of X. The counting
measure v on X is defined by
v(A) = the number of elements of A,

with the convention that if A is an infinite set, then v¥(A) = co. The counting measure is finite if X is a
finite set, and o-finite if X is countable.

Example 12.7: We define the delta measure d,, supported at xg € R™ on the Borel o-algebra R(R™) of R™
by
1 if zg € A,

Oz (A) = {o if g & A.

Theorem 12.10: A subset A of R" is Lebesgue measurable if and only if for every ¢ > 0, there is a closed
set F and an open set G such that F C A C G and AM(G\F) < e. Moreover,

AA) =inf{\(U) | U is open and U D A}
= sup{A\(K) | K is compact and K C A}.

Thus, a Lebesgue measurable set may be approximated from the outside by open sets, and from the inside
by compact sets.

Almost Everywhere A property that holds except on a set of measure zero is said to hold almost everywhere
or a.e. for short.

16



12.2 Measurable Functions

Definition 12.19: Let (X,.A) and (Y,B) be measurable spaces. A measurable function is a mapping
f: X — Y such that
fYB)e A forevery B € B.

Proposition 12.23: Let (X,.A) be a measurable space. A function f : X — R is measurable if and only if
the set {z € X | f(z) < ¢} belongs to A for every ¢ € R. In this proposition, the sets {f(z) < ¢}, {f(x) > ¢},
or {f(x) > ¢}, could be used equally well.

Theorem 12.24: If (f,) is a sequence of measurable functions that converges pointwise to a function f,
then f is measurable. If (X, A, ) is a complete measure space and (f,,) converges pointwise-a.e. to f, then

f is measurable.

Definition 12.25: A function ¢ : X — R on a measurable space (X,.A) is a simple function if there are
measurable sets Aj, As, ..., A, and real numbers ¢y, co,. .., ¢, such that

n
Y= Z CiXA;-
i=1

Here, x4 is the characteristic function of the set A, meaning that

() = 1 ifzxeA,
XA =0 ifz ¢ A

Theorem 12.26: Let f : X — [0, 0o] be a nonnegative, measurable function. There is a monotone increasing
sequence {¢, } of simple function that converges pointwise to f.

12.3 Integration

Definition 12.27: Let f : X — [0, 00] be a nonnegative measurable function on a measure space (X, A, u).
We define

/fd/i:sup{/godﬂ |g0issimpleand<p<f}.
if f: X -Rand f=f, — f_, where f, and f_ are the positive and negative parts of f, the we define

[ ran= [ fudn- [ s-an.

provided that at least one of the integrals on the right had side is finite. If

[151an= [ sudu+ [ 5-dn<oc

then we say that f is integrable or summable. The Lebesgue integral does not assign a value to the integral
of a highly oscillatory function f for which both [ fydp and [ f_du are infinite.

Example 12.29: If §,, is the delta-measure, and f : R” — R is a Borel measurable function, then

/ fdbsy = f(0).

We have f = g a.e. with respect to 0, if and only if f(xq) = g(zo).
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Example 12.30: Let v be the counting measure on the set N of natural numbers defined in Example 12.6.

If f:N— R, then
/fdl/: an;
n=1

where f,, = f(n)

12.4 Convergence Theorems

Theorem 12.33 (Monotone Convergence): Suppose that (f,,) is monotone increasing sequence of non-
negative, measurable functions f, : X — [0, 00] on a measurable space (X, A, p). Let f: X — [0, 00] be the
pointwise limit,

f(z) = lim f,(x).

n—00

Then
lim fnd,u:/fdu.
n—oo

Theorem 12.34 (Fatou): If (f,) is any sequence of nonnegative measurable functions f,, : X — [0, co] on
a measure space (X, A, p), then

n—oo

/(hmlnf fn)du <hm1nf/fndu

Theorem 12.35 (Lebesgue Dominated Convergence): Suppose that (fy,) is a sequence of integrable
functions, f,, : X — R on a measure space (X, A, u) that converge to a pointwise limiting function f : X — R.
If there is an integrable function g : X — [0, 0o] such that

|fn(x)] <g(z) forallz € X andn €N,

then f is integrable and

lim fnd,u:/fdu.
n—oo

12.5 Product Measure and Fubini’s Theorem

Definition 12.38: Let (X, .A) and (Y, B) be measurable spaces. The product o-algebra A® B is the o-algebra
on X x Y that is generated by the collection of sets

{AxB|Ac A BeB}

Theorem 12.39: Suppose that (X, A, u) and (Y,B,v) are o-finite measure spaces. There is a unique
product measure p ® v, defined on A ® B, with the property that for every A € A and B € B

(1 V)(Ax B) = u(A)u(B).

Theorem 12.41 (Fubini): Let (X,A,u) and (Y,B,v) are o-finite measure spaces. Suppose that f :
X xY — Ris an (A ® B)-measurable function.
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(a) The function f is integrable, meaning that

/ Fldu® dv < oo,
XxY

if and only if either of the following iterated integrals is finite:

/X (/Y fx(ll)dl/(y)) du(x),
/y (/X f y(@'dﬂ(@) dv(y).

([ i) aute)
/ ( /. fy(m)du(x)) i)

(b) If f is integrable, then

/ f(z,y)d(s
XxY

(2) © v(y))
/ F(z,y)d(u(z) © v(y))
XxXY

12.6 The L? Spaces

Definition 12.45: Let (X, A, 1) be a measure space and 1 < p < co. The space LP(X, ) is the space
of equivalence classes of measurable functions f : X — C, with respect to the equivalence relation of a.e.-
equality, such that

[ 15 < .

1/p
||f||p(/Xf|”du> .

Theorem 12.46: If (X, A, i) is a measure space and 1 < p < oo, then LP(X) is a Banach space.

The LP-norm of f is defined by

Theorem 12.48: Suppose that (X, A, p) is a measure space and 1 < p < oco. If f € LP(X), then there is a
sequence (¢p,,) of simple functions ¢,, : X — C such that

i [1f — pull, = 0.

Theorem 12.49: If 1 < p < oo, then LP(R") is a separable metric space.

Theorem 12.50: The space C.(R™) of continuous functions with compact support is dense in LP(R™) for
1<p<oo.

Theorem 12.51: If 1 < p < oo, then C°(R"™) is a dense subspace of L?(R™).
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12.7 The Basic Inequalities

Theorem 12.54 (Holder): Let 1 < p,p’ < oo satisfy 1/p+1/p/ = 1. If f € LP(X, ) and g € LP (X, ),
then fg € L'(X, ) and

] / fgdu] < 1o llgll-

Proposition 12.55: Suppose that (X, 1) is a finite measure space, meaning that u(X) < 0o, and 1 < ¢ <
p < oo. Then
LY (X, 1) D LUX, ) D LP(X, 1) D L(X, )

Theorem 12.56 (Minkowski): If 1 < p < oo, and f,g € LP(X, ), then f + g € LP(X, u), and

1 +gllo < I1fllp + llgllp-

Theorem 12.58 (Young): Suppose that 1 < p,q,r < co, satisfy
1 1 1
S =14
P q r

if f € LP(R™) and g € LY(R™), then f*g € L"(R™), and

1 =gl < [1fllpllgllq-

12.8 The Dual Space of L”
Theorem 12.59: If 1 < p < oo, then every ¢ € LP(X)* is of the form

o(f) = /X fgdu

for some g € LP (X), where 1/p + 1/p/ = 1. If u is o-finite the same conclusion holds when p = 1 and
p’ = co. Moreover,

Iellwry = llgll o

Definition 12.60: Suppose that 1 < p < co. A sequence (f,) converges weakly to f in LP, written f, — f,
if

lim /fngdu = /fgd,u for every g € Lp/,

n—

where p’ is the Holder conjugate of p. when p = oo and p’ = 1, the condition above corresponds to weak-*
convergence in L.

Theorem 12.62: Suppose that (f,) is a bounded sequence in LP(X), meaning that there is a constant
M such that [|f,]| < M for every n € N. if 1 < p < oo, then there is a subsequence (f,,) and a function
f e LP(X) with || f|| < M such that f,, — f as k — oo weakly in LP(X).
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Other Useful Things to Remember

Proposition 5.30: Let T: X — Y be a bounded linear map between Banach spaces X,Y. The following

statements are equivalent:
(a) There is a constant ¢ > 0 such that

cllz| < ||Tz|| forall z € X;

(b) T has closed range, and the only solution of the equation Tz =0 is z = 0

Proposition 5.43: Let X, Y, Z be Banach spaces.

(a) If S,T € B(X,Y) are compact, then any linear combination of S and T is compact.

(b) If (T},) is a sequence of compact operator in B(X,Y") converging uniformly to T', then T is compact.
(¢) T € B(X,Y) has finite-dimensional range, Then T is compact.
)

(d) Let S e B(X,Y), T € B(Y,Z). If S is bounded and T is compact, or S is compact and T is bounded,
then T'S € B(X, Z) is compact.
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