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Chapter 7: Fourier Series
7.1 The Fourier Basis
The Torus (T): A 2π-periodic function on Rmay be identified with a function on a circle, or one-dimensional
torus, T = R/(2πZ). which we define by identifying points in T that differ by 2πn for some n ∈ Z

Inner Product (L2(T)):
〈f, g〉 =

∫
T
f(x)g(x)dx

Fourier Basis: The Fourier basis elements are the functions

en(x) = 1√
2π
einx.

Fourier Series: Any function f ∈ L2(T) may be expanded in a Fourier series as

f(x) = 1√
2π

∞∑
n=−∞

f̂ne
inx,

where the equality means convergence of the partial sums of f in the L2-norm, and

f̂n = 〈en, f〉 = 1√
2π

∫
T
f(x)e−inxdx.

Definition 7.1: A family of functions {ϕn ∈ C(T)|n ∈ N} is an approximate identity if:

(a) ϕn(x) ≥ 0;

(b)
∫
T ϕn(x)dx = 1 for every n ∈ N;

(c) limn→∞
∫
δ≤|x|≤π ϕn(x)dx = 0 for every δ > 0.

∗Changes from version 1: In Def 7.6, fixed H1 to read Hk at the appropriate spot; also, typo corrections; Changes from
version 2: more Hk typo fixes in Lemma 7.8 and Thm 7.9; Changes from version 3: typo fixes; Changes from v4 to v5: typos
fixed 2016 (extra absolute value in Thm 12.41 part (b), and strict inequality in Def’n 11.38)

1



Theorem 7.2: If {ϕn ∈ C(T)|n ∈ N} is and approximate identity and f ∈ C(T), then ϕn ∗ f converges
uniformly to f as n→∞.

Theorem 7.3: The trigonometric polynomials are dense in C(T) with respect to the uniform norm.

Proposition 7.4: If f, g ∈ L2(T), then f ∗ g ∈ C(T) and

‖f ∗ g‖∞ ≤ ‖f‖2‖g‖2.

Theorem 7.5 (Convolution): If f, g ∈ L2(T), then

(̂f ∗ g)n =
√

2πf̂nĝn.

7.2 Fourier Series of Differentiable Functions
Definition 7.6: The Sobolev space H1(T) consists of all functions

f(x) = 1√
2π

∞∑
n=−∞

f̂ne
inx ∈ L2(T)

such that
∞∑

n=−∞
n2
∣∣∣f̂n∣∣∣2 <∞.

The weak L2-derivative f ′ ∈ L2(T) of f ∈ H1(T) is defined by the L2-convergent Fourier series

f ′(x) = 1√
2π

∞∑
n=−∞

inf̂ne
inx ∈ L2(T).

More generally

Hk(T) =
{
f ∈ L2(T)

∣∣∣∣∣f(x) =
∞∑

n=−∞
cne

inx,

∞∑
n=−∞

|n|2k|cn|2 <∞

}
,

for k ≥ 0.

Definition 7.7: A function f ∈ L2(T) belongs to H1(T) if there is a constant M such that∣∣∣∣∫
T
fϕ′dx

∣∣∣∣ ≤M‖ϕ‖L2 for all ϕ ∈ C1(T)

for f ∈ H1(T), then the weak derivative f ′ of f is the unique element of L2(T) such that∫
T
f ′ϕdx = −

∫
T
fϕ′dx for all ϕ ∈ C1(T).

Lemma 7.8: Suppose that f ∈ Hk(T) for k > 1/2. Let

SN (x) = 1√
2π

N∑
n=−N

f̂ne
inx
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be the Nth partial sum of the Fourier series of f , and define

∥∥∥f (k)
∥∥∥ =

( ∞∑
n=−∞

|n|2k|f̂n|2
) 1

2

.

Then there is a constant Ck, independent of f , such that

‖SN − f‖∞ ≤
Ck

Nk− 1
2

∥∥∥f (k)
∥∥∥ ,

and (SN ) converges uniformly to f as N →∞.

Theorem 7.9: If f ∈ Hk(T) for k > 1/2, then f ∈ C(T). More generally: If f ∈ Hk(Td) and k > j + d/2
then f ∈ Cj(Td).
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Chapter 8: Bounded Linear Operators on a Hilbert Space
8.1 Orthogonal Projections
Definition 8.1: A projection on a linear space X is a linear map P : X → X such that

P 2 = P.

Theorem 8.2: Let X be a linear space.

(a) If P : X → X is a projection, then X = ranP ⊕ kerP.

(b) If X = M ⊕N , where M and N are linear subspaces of X, then there is a projection P : X → X with
ranP = M and kerP = N .

Definition 8.3: An orthogonal projection on a Hilbert space H is a linear map P : H → H that satisfies

P 2 = P, 〈Px, y〉 = 〈x, Py〉 for all x, y ∈ H.

An orthogonal projection is necessarily bounded.

Proposition 8.4: If P is a nonzero orthogonal projection, then ‖P‖ = 1.

Theorem 8.5: Let H be a Hilbert space.

(a) If P is an orthognal projection on H, then ranP is closed, and

H = ranP ⊕ kerP

is the orthogonal direct sum of ranP and kerP .

(b) If M is a closed subspace of H, then there is an orthogonal projection P on H with ranP = M and
kerP =M⊥.

Even and Odd Projections: The space L2(R) is the orthogonal direct sum of the space M of even
functions and the space N of the odd functions. The orthogonal projections P and Q of H ontoM and N ,
respectively, are given by

Pf(x) = f(x) + f(−x)
2 , Qf(x) = f(x)− f(−x)

2 .

note that I − P = Q.

8.2 The Dual of a Hilbert Space
Linear Functional: A linear functional on a complex Hilbert space H is a linear mapy from H to C. A
linear function ϕ is bounded, or continuous, if there exist a constant M such that

|ϕ(x)| ≤M‖x‖ for all x ∈ H.

The norm of a bounded linear function ϕ is

‖ϕ‖ = sup
‖x‖=1

|ϕ(x)|.
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if y ∈ H, then
ϕy(x) = 〈y, x〉

is a bounded linear functional on H, with ‖ϕy‖ = ‖y‖.

Theorem 8.12 (Riesz representation): If ϕ is a bounded linear functional on a Hilbert space H, then
there is a unique vector y ∈ H such that

ϕ(x) = 〈y, x〉 for all x, y ∈ H.

8.3 The Adjoint of an Operator
Adjoint Operator: Let A ∈ B(H) then there exist an unique A∗ ∈ B(H) (known as the adjoint) such that

〈x,Ay〉 = 〈A∗x, y〉 for all x, y ∈ H.

Left and Right Shift Operators: Suppose that S and T are the right and left shift operators on the
sequence space `2(N), defined by

S(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .), T (x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Then T = S∗.

Theorem 8.17: If A : H → H is a bounded linear operator, then

ranA = (kerA∗)⊥, kerA = (ranA∗)⊥.

Theorem 8.18: Suppose that A : H → H is a bounded linear operator on a Hilbert space H with closed
range. Then the equation Ax = y has a solution for x if and only if y is orthogonal to kerA∗.

8.4 Self-Adjoint and Unitary Operators
Definition 8.23: A bounded linear operator A : H → H on a Hilbert space H is self-adjoint if A∗ = A.
Equivalently, abounded linear operator A on H is self-adjoint if and only if

〈x,Ay〉 = 〈Ax, y〉 for all x, y ∈ H.

Nonnegative, Positive/Positive Definite, Coercive: Let A be a self-adjoint operator on a Hilbert space
H. Then A is

• nonnegative if 〈x,Ax〉 ≥ 0 for all x ∈ H,

• positive or positive definite if 〈x,Ax〉 > 0 for all nonzero x ∈ H,

• coercive if there exists a c > 0 such that 〈x,Ax〉 ≥ c‖x‖2 for all x ∈ H.
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Lemma 8.26: If A is a bounded self-adjoint operator on a Hilbert space H, then

‖A‖ = sup
‖x‖=1

|〈x,Ax〉|.

Corollary 8.27: If A is a bounded self-adjoint operator on a Hilbert space then ‖A∗A‖ = ‖A‖2. If A is
self-adjoint, then ‖A2‖ = ‖A‖2.

Definition 8.28: A linear map U : H1 → H2 between real or complex Hilbert spaces H1 and H2 it is said
to be orthogonal or unitary, respectively, if it is invertible and if

〈Ux,Uy〉H2 = 〈x, y〉H1 for all x, y ∈ H1.

Two Hilbert spaces H1 and H2 are isomorphic as Hilbert spaces if there is a unitary linear map between
them. If U : H → H (i.e H1 = H2), then U is unitary if and only if U∗U = UU∗ = I.

Example 8.30: If A is a bounded self-adjoint operator, then

eiA =
∞∑
n=0

1
n! (iA)n

is unitary.

8.6 Weak Convergence in a Hilbert Space
Weak Convergence: A sequence (xn) in a Hilbert space H converges weakly to x ∈ H if

lim
n→∞

〈xn, y〉 = 〈x, y〉 for all y ∈ H.

Theorem 8.39 (Uniform Boundedness): Suppose that

{ϕn : X → C|n ∈ N}

is a set of linear functionals on a Banach Space X such that the set of complex numbers {ϕn(x)|n ∈ N} is
bounded for each x ∈ X. Then {‖ϕn‖ |n ∈ N} is bounded.

Theorem 8.40: Suppose that (xn) is a sequence in a Hilbert space H and D is a dense subset of H. Then
(xn) converges weakly to x if and only if:

(a) ‖xn‖ ≤M for some constant M ;

(b) 〈xn, y〉 → 〈x, y〉 as n→∞ for all y ∈ D.

Note: this is extremely useful for showing weak convergence by letting D be a basis for H as in Example
8.41.

Proposition 8.44: If (xn) converges weakly to x, then

‖x‖ ≤ lim inf
n→∞

‖xn‖.

If, in addition,
lim
n→∞

‖xn‖ = ‖x‖,

then (xn) converges strongly to x.
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Theorem 8.45 (Banach-Alaoglu): The closed unit ball of a Hilbert space is weakly compact.

Definition 8.47: Let f : C → R be a real-valued function on a convex subset C of a real or complex linear
space. Then f is convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ C and 0 ≤ t ≤ 1. If we have a strict inequality in this equation whenever x 6= y and 0 < t < 1,
then f is strictly convex.

Theorem 8.48 (Mazur): If (xn) converges weakly to x in a Hilbert space, then there is a sequence (yn)
of finite convex combinations of {xn} such that (yn) converges strongly to x.
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Chapter 9: Spectrum of Bounded Linear Operators
9.2 The Spectrum
A Quick Note: A great reference for the spectrum of common operators (such as general multiplication
operators and the shift operators) check out this wonderful pdf. http://www.math.ubc.ca/~feldman/m511/
spectralExamples.pdf

Definition 9.3: The resolvent set of on operator A ∈ B(H), denoted by ρ(A), is the set of complex numbers
λ such that (A−λI) : H → H is one-to-one and onto. The spectrum of A, denoted by σ(A), is the complement
of the resolvent set in C, meaning that σ(A) = C\ρ(A)

Definition 9.4: Suppose that A is a bounded linear operator on a Hilbert space H.

(a) The point spectrum of A consists of all λ ∈ σA such that A − λI is not one-to-one. In this case λ is
called an eigenvalue of A.

(b) The continuous spectrum of A consists of all λ ∈ σA such that A− λI is one-to-one but not onto, and
ran(A− λI) is dense in H.

(c) The residual spectrum of A consists of all λ ∈ σA such that A − λI is one-to-one but not onto, and
ran(A− λI) is not dense in H.

Proposition 9.6: If A is a bounded linear operator on a Hilbert space, then the resolvent set ρ(A) is an
open subset of C that contains the exterior disc {λ ∈ C | |λ| > ‖A‖}. The resolvent Rλ is an operator-valued
analytic function of λ defined on ρ(A).

Proposition 9.7: Let the spectral radius be defined as

r(A) = sup{|λ| | λ ∈ σ(A)}.

If A is a bounded linear operator, then

r(A) = lim
n→∞

‖An‖1/n.

If A is self-adjoint, then r(A) = ‖A‖.

Proposition 9.8: The spectrum of a bounded operator on a Hilbert space is nonempty

The Spectral Theorem for Compact, Self-Adjoint Operators
Lemma 9.9: The eigenvalues of a bounded, self-adjoint operator are real, and the eigenvectors associated
with different eigenvalues are orthogonal.

Invariant Subspace: A linear subspaceM of H is called an invariant subspace of a linear operator A on
H if Ax ∈M for all x ∈M

Lemma 9.11: If A is a bounded, self-adjoint operator on a Hilbert space H andM is an invariant subspace
of A, thenM⊥ is an invariant subspace of A.

Proposition 9.12: If λ belongs to the residual spectrum of a bounded operator A on a Hilbert space, then
λ is an eigenvalue of A∗.

Lemma 9.13 If A is a bounded, self-adjoint operator on a Hilbert space, then the spectrum of A is real and
is contained in the interval [−‖A‖, ‖A‖].
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Corollary 9.14: The residual spectrum of a bounded, self-adjoint operator is empty.

Proposition 9.15: A nonzero eigenvalue of a compact, self-adjoint operator has finite multiplicity. A
countably infinite set of nonzero eigenvalues has zero as an accumulation point, and no other accumulation
points.

Theorem 9.16 (Spectral Theorem for Compact, Self-Adjoint Operators): Let A : H → H be
a compact, self-adjoint operator on a Hilbert space H. There is an orthonormal basis of H consisting of
eigenvectors of A. The nonzero eigenvalue of A form a finite or countably infinite set {λk} of real numbers,
and

A =
∑
k

λkPk,

where Pk is the orthogonal projection onto the finite-dimensional eigenspace of eigenvectors with eigenvalues
λk. If the number of nonzero eigenvalues is countably infinite then the series above converges to A in operator
norm.

9.4 Compact Operators
Theorem 9.17: Let E be a subset of an infinite-dimensional, separable Hilbert space H.

(a) If E is precompact, then for every orthonormal set {en | n ∈ N} and every ε > 0, there is an N such
that

∞∑
n=N+1

|〈en, x〉|2 < ε for all x ∈ E.

(b) if E is bounded and there is an orthonormal basis {en} of H with the property that for every ε > 0
there is an N such that the sum in (a) holds, then E is precompact.

Example 9.19: The diagonal operator A : `2(N)→ `2(N) defined by

A(x1, x2, x3, . . . , xn, . . .) = (λ1x1, λ2x2, . . . , λnxn, . . .),

where λn ∈ C is compact if and only if λn → 0 as n → ∞. Any compact, normal operator on a separable
Hilbert space is unitarily equivalent to such a diagonal operator. Note: this implies that the identity operator
on a Hilbert space H is compact if and only if H is finite-dimensional.

Definition 9.20: A bounded linear operator A on a separable Hilbert space H is Hilbert-Schmidt if there
is an orthonormal basis {en | n ∈ N such that

∞∑
n=1
‖Aen‖2 <∞.

If A is a Hilbert-Schmidt operator, then

‖A‖HS =

√√√√ ∞∑
n=1
‖Aen‖2

is called the Hilbert-Schmidt norm of A.

Theorem 9.21: A Hilbert-Schmidt operator is compact.

Theorem 9.24: A bounded linear operator on a Hilbert space is compact if and only if it maps weakly
convergent sequences into strongly convergent sequences.
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9.5 Functions of Operators
Theorem 9.25 (Spectral Mapping): If A is a compact, self-adjoint operator on a Hilbert space and
f : σ(A)→ C is continuous, then

σ(f(A)) = f(σ(A)).

Here σ(f(A)) is the spectrum of f(A), and f(σ(A)) is the image of the spectrum of A under f ,

f(σ(A)) = {µ ∈ C | µ = f(µ) for some λ ∈ σ(A)}.
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Chapter 11: Distributions and the Fourier Transform
11.1 The Schwartz Space
Multi-Index: A multi-index

α = (α1, . . . , αn) ∈ Zn+ with Z+ = {n ∈ Z | n ≥ 0}

is an n-tuple of nonnegative integers ai ≥ 0. For multi-indices α, β ∈ Zn+ and x ∈ Rn, we define

(a) |α| =
∑n
i=1 αi,

(b) α! =
∏n
i=1 αi!,

(c) α+ β = (α1 + β1, . . . , αn + βn),

(d) α ≥ β if and only if αi ≥ βi for i = 1, . . . , n,

(e) ∂α =
(

∂
∂x1

)α1
· · ·
(

∂
∂xn

)αn

,

(f) xα =
∏n
i=1 x

αi
i ,

(g) |x| =
√
x2

1 + · · ·+ x2
n.

Leibnitz Rule: The Leibnitz rule for the derivative of the product of f, g ∈ Ck(Rn) may be written as

∂α(fg) =
∑

β+γ=α

α!
β!γ! (∂

βf)(∂γg).

Definition 11.1: The Schwartz space S(Rn), or S for short, consists of all functions ϕ ∈ C∞(Rn) such that

pα,β(ϕ) = sup
x∈Rn

|xα∂βϕ(x)|

is finite for every pair of multi-indices α, β ∈ Zn+. If ϕ ∈ S, then for every d ∈ N and α ∈ Zn+ there is a
constant Cd,α such that

|∂αϕ(x)| ≤ Cd,α
(1 + |x|2)d/2 for all x ∈ Rn.

Thus an element of S is a smooth function such that the function and all of its derivatives decay faster than
any polynomial as |x| → ∞. Elements of S are called Schwartz functions, or test functions.

Definition 11.2: Suppose that X is a real or complex linear space. A function p : X → R is a seminorm
on X if it has the following properties:

(a) p(x) ≥ 0 for all x ∈ X;

(b) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X;

(c) p(λx) = |λ|p(x) for every x ∈ X and λ ∈ C.

A seminorm has the same properties as a norm, except that p(x) = 0 does not need to imply x = 0. If a
family of seminorms {p1, . . . , pn} is finite and seperates points, then

‖x‖ = p1(x) + . . .+ pn(x)

defines a norm on X

Proposition 11.3: The Schwartz space S with the metrizable topology generated by the countable family
of seminorms

{pα,β | α, β ∈ Zn+},
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where pα,β is given by
‖ϕ‖α,β = pα,β(ϕ) = sup

x∈Rn

|xα∂βϕ(x)|,

is complete.

Proposition 11.4: For each α ∈ Zn+, the partial differentiation operator ∂α : S → S is continuous linear
operator on S.

11.2 Tempered Distributions
Tempered Distributions: The topological dual space of S, denoted by S∗ or S ′, is the space of continuous
linear functionals T : S → C. Elements of S∗ are called tempered distributions. Since S is a metric space, a
functional T : S → C is continuous if and only if for every convergent sequence ϕn → ϕ in S, we have

lim
n→∞

T (ϕn) = T (ϕ).

The continuity of a linear functional T is implied by an estimate of the form

|T (ϕ)| ≤
∑

|α|,|β|≤d

cα,β‖ϕ‖α,β

for some d ∈ Z+ and constants cα,β ≥ 0.

Example 11.5: The fundamental example of a distribution is the delta function. We define δ : S → C by
evaluation at 0:

δ(ϕ) = ϕ(0).

11.3 Operations on Distributions
Example 11.9: If T = δ is the delta function, then

〈fδ, ϕ〉 = 〈δ, fϕ〉 = f(0)ϕ(0) = 〈f(0)δ, ϕ〉.

Hence, fδ = f(0)δ.

Definition 11.10: Suppose that T is a tempered distribution and α is a multi-index. the αth distributional
derivative of T is the tempered distribution ∂αT defined by

〈∂αT, ϕ〉 = (−1)|α|〈T, ∂αϕ〉 for all ϕ ∈ S.

Theorem 11.11: For every T ∈ S∗ there is a continuous function f : Rn → C of polynomial growth and a
multi-index α ∈ Zn+ such that T = ∂αf .

Example 11.14: The derivative of the one-dimensional delta function δ is given by

〈δ′, ϕ〉 = −〈δ, ϕ′〉 = −ϕ′(0).

More generally, the kth distributional derivative of δ is given by

〈δ(k), ϕ〉 = (−1)kϕ(k)(0).
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Example 11.16: For each h ∈ Rn, we define the translation operator τh : S → S by

τhf(x) = f(x− h).

We therefore define the translation τhT of a distribution T by

〈τhT, ϕ〉 = 〈T, τ−hϕ〉 for all ϕ ∈ S.

For instance, we have δx0 = τx0δ.

Example 11.17: Let R : S → S be the reflection operator,

Rf(x) = f(−x).

Thus, for T ∈ S∗, we defined the reflection RT ∈ S∗ by

〈RT,ϕ〉 = 〈T,Rϕ〉 for all ϕ ∈ S.

Proposition 11.18: For any ϕ,ψ, ω ∈ S, we have:

(a) ϕ ∗ ψ = ψ ∗ ϕ,

(b) (ϕ ∗ ψ) ∗ ω = ϕ ∗ (ψ ∗ ω),

(c) τh(ϕ ∗ ψ) = (τhϕ) ∗ ψ = ϕ ∗ (τhψ) for every h ∈ Rn.

11.4 The Convergence of Distributions
Convergence in Distribution Space: Let (Tn) be a sequence in S∗. We say that (Tn) converges to
T ∈ S∗ if and only if

lim
n→∞

〈Tn, ϕ〉 = 〈T, ϕ〉 for every ϕ ∈ S.

We denote convergence is the space of distributions by Tn ⇀ T as n→∞.

Proposition 11.22: For n ∈ N, let
σn(x) = sin(nx)

πx
.

Then σn ⇀ δ in S∗ as n→∞.

Theorem 11.23: The Schwartz space is dense in the space of tempered distributions.

11.5 The Fourier Transform of Test Functions
Definition 11.24: If ϕ ∈ S(Rn), then the Fourier transform ϕ̂ : Rn → C is the function defined by

ϕ̂(k) = 1
(2π)n/2

∫
Rn

ϕ(x)e−ik·xdx for k ∈ Rn.

We define the Fourier transform operator F : S → S by Fϕ = ϕ̂.

Eigenvalues of The Fourier Transform: Knowing that F2ϕ = Rϕ where R is a reflection. It is easy to
see that F4ϕ = ϕ leading to the characteristic equation λ4 = 1. It turns out that the eigenvalues of F are

σp(F) = {±1,±i}.

Proposition 11.25: If ϕ ∈ S(Rn), then:
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(a) ϕ̂ ∈ C∞(Rn), and
∂αϕ̂ = F [(−ix)αϕ];

(b) kαϕ̂ is bounded for every multi-index α ∈ Zn+, and

(ik)αϕ̂ = F [∂αϕ].

The Fourier transform F : S(Rn)→ S(Rn) is a continuous linear map on S(Rn).

Proposition 11.27: If ϕ,ψ ∈ S and h ∈ Rn, then:

τ̂hϕ = e−ik·hϕ̂,

êix·hϕ = τhϕ̂,

ϕ̂ ∗ ψ = (2π)n/2ϕ̂ψ̂.

Definition 11.28: If ϕ ∈ S, then the inverse Fourier transform ϕ̌ is given by

ϕ̌(x) = 1
(2π)n/2

∫
Rn

eik·xϕ(k)dk.

We define F∗ : S → S by F∗ϕ = ϕ̌.

Proposition 11.29: The map F∗ is a continuous linear transformation on S, and F∗ = F−1.

11.6 The Fourier Transform of Tempered Distributions
Definition 11.30: The Fourier transform of a tempered distribution T is the tempered distribution T̂ = FT
defined by

〈T̂ , ϕ〉 = 〈T, ϕ̂〉 for all ϕ ∈ S.

The inverse Fourier transform Ť = F−1T on S∗ is defined by

〈Ť , ϕ〉 = 〈T, ϕ̌〉 for all ϕ ∈ S.

The map F : S∗ → S∗ is a continuous, one-to-one transformation of S∗ onto itself.

Example 11.31: The Fourier transform of the delta function is

〈δ̂, ϕ〉 = 〈δ, ϕ̂〉 = ϕ̂(0) = 1
(2π)n/2

∫
ϕ(x)dx = 1

(2π)n/2 〈1, ϕ〉.

Hence, the Fourier transform of the delta function is

δ̂ = 1
(2π)n/2 .

14



11.7 The Fourier Transform of L1

Convergence of the Fourier Integral: The Fourier integral (Fourier transform on L1-functions)

f̂(k) = 1
(2π)n/2

∫
Rn

f(x)e−ik·xdx

converges if and only if f ∈ L1(Rn), meaning that∫
Rn

|f(x)|dx <∞.

Theorem 11.34 (Riemann-Lebesgue): If f ∈ L1(Rn), then f̂ ∈ C0(Rn), and

(2π)n/2‖f̂‖∞ ≤ ‖f‖1.

Theorem 11.35 (Convolution): If f, g ∈ L1(Rn), then f ∗ g ∈ L1(Rn) and

f̂ ∗ g = (2π)n/2f̂ ĝ.

11.8 The Fourier Transform of L2

Theorem 11.37 (Plancherel): The Fourier Transform F : L2(Rn)→ L2(Rn) is a unitary map. For every
f, g ∈ L2(Rn), we have

(f̂ , ĝ) = (f, g),

where
(f, g) =

∫
Rn

f(x)g(x)dx

and f̂ = Ff . In particular, ∫
Rn

|f(x)|2dx =
∫
Rn

|f̂(k)|2dk.

Definition 11.38: Let s ∈ R. The Sobolev space Hs(Rn) consists of all distributions f ∈ S∗ whose Fourier
transform f̂ : Rn → C is a regular distribution and∫

Rn

(1 + |k|2)s|f̂(k)|2dk <∞.
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Chapter 12: Measure Theory and Function Spaces
12.1 Measures
Definition 12.1: A σ-algebra on a set X is a collection of A of subsets of X such that:

(a) ∅ ∈ A;

(b) If A ∈ A, then Ac = X\A ∈ A;

(c) If {Ai | i ∈ N} is a countable family of sets in A, then
⋃∞
i=1 Ai ∈ A.

A measurable space (X,A) is a set X and a σ-algebra A on X. The elements of A are called measurable
sets.

Definition 12.5: A measure µ on a set X is a map µ : A → [0,∞] on a σ-algebra A of X, such that:

(a) µ(∅) = 0;

(b) If {Ai | ∈ N} is a countable family of mutually disjoint sets in A, meaning that Ai ∩Aj = ∅ for i 6= j,
then

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

A measure is finite if µ(X) < ∞, and σ-finite if there is a countable family {Ai ∈ A | i = 1, 2, . . .} of
measurable sets of X such that µ(A1) <∞ and

X =
∞⋃
i=1

Ai.

Example 12.6: Let X be an arbitrary set and A the σ-algebra consisting of all subsets of X. The counting
measure ν on X is defined by

ν(A) = the number of elements of A,

with the convention that if A is an infinite set, then ν(A) = ∞. The counting measure is finite if X is a
finite set, and σ-finite if X is countable.

Example 12.7: We define the delta measure δx0 supported at x0 ∈ Rn on the Borel σ-algebra R(Rn) of Rn
by

δx0(A) =
{

1 if x0 ∈ A,
0 if x0 6∈ A.

Theorem 12.10: A subset A of Rn is Lebesgue measurable if and only if for every ε > 0, there is a closed
set F and an open set G such that F ⊂ A ⊂ G and λ(G\F ) < ε. Moreover,

λ(A) = inf{λ(U) | U is open and U ⊃ A}
= sup{λ(K) | K is compact and K ⊂ A}.

Thus, a Lebesgue measurable set may be approximated from the outside by open sets, and from the inside
by compact sets.

Almost Everywhere A property that holds except on a set of measure zero is said to hold almost everywhere
or a.e. for short.
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12.2 Measurable Functions
Definition 12.19: Let (X,A) and (Y,B) be measurable spaces. A measurable function is a mapping
f : X → Y such that

f−1(B) ∈ A for every B ∈ B.

Proposition 12.23: Let (X,A) be a measurable space. A function f : X → R is measurable if and only if
the set {x ∈ X | f(x) < c} belongs to A for every c ∈ R. In this proposition, the sets {f(x) ≤ c}, {f(x) > c},
or {f(x) ≥ c}, could be used equally well.

Theorem 12.24: If (fn) is a sequence of measurable functions that converges pointwise to a function f ,
then f is measurable. If (X,A, µ) is a complete measure space and (fn) converges pointwise-a.e. to f , then
f is measurable.

Definition 12.25: A function ϕ : X → R on a measurable space (X,A) is a simple function if there are
measurable sets A1, A2, . . . , An and real numbers c1, c2, . . . , cn such that

ϕ =
n∑
i=1

ciχAi .

Here, χA is the characteristic function of the set A, meaning that

χA(x) =
{

1 if x ∈ A,
0 if x 6∈ A.

Theorem 12.26: Let f : X → [0,∞] be a nonnegative, measurable function. There is a monotone increasing
sequence {ϕn} of simple function that converges pointwise to f .

12.3 Integration
Definition 12.27: Let f : X → [0,∞] be a nonnegative measurable function on a measure space (X,A, µ).
We define ∫

fdµ = sup
{∫

ϕdµ | ϕ is simple and ϕ ≤ f
}
.

if f : X → R and f = f+ − f−, where f+ and f− are the positive and negative parts of f , the we define∫
fdµ =

∫
f+dµ−

∫
f−dµ,

provided that at least one of the integrals on the right had side is finite. If∫
|f |dµ =

∫
f+dµ+

∫
f−dµ <∞,

then we say that f is integrable or summable. The Lebesgue integral does not assign a value to the integral
of a highly oscillatory function f for which both

∫
f+dµ and

∫
f−dµ are infinite.

Example 12.29: If δx0 is the delta-measure, and f : Rn → R is a Borel measurable function, then∫
fdδx0 = f(x0).

We have f = g a.e. with respect to δx0 if and only if f(x0) = g(x0).

17



Example 12.30: Let ν be the counting measure on the set N of natural numbers defined in Example 12.6.
If f : N→ R, then ∫

fdν =
∞∑
n=1

fn,

where fn = f(n)

12.4 Convergence Theorems
Theorem 12.33 (Monotone Convergence): Suppose that (fn) is monotone increasing sequence of non-
negative, measurable functions fn : X → [0,∞] on a measurable space (X,A, µ). Let f : X → [0,∞] be the
pointwise limit,

f(x) = lim
n→∞

fn(x).

Then
lim
n→∞

∫
fndµ =

∫
fdµ.

Theorem 12.34 (Fatou): If (fn) is any sequence of nonnegative measurable functions fn : X → [0,∞] on
a measure space (X,A, µ), then ∫ (

lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
fndµ.

Theorem 12.35 (Lebesgue Dominated Convergence): Suppose that (fn) is a sequence of integrable
functions, fn : X → R on a measure space (X,A, µ) that converge to a pointwise limiting function f : X → R.
If there is an integrable function g : X → [0,∞] such that

|fn(x)| ≤ g(x) for all x ∈ X and n ∈ N,

then f is integrable and
lim
n→∞

∫
fndµ =

∫
fdµ.

12.5 Product Measure and Fubini’s Theorem
Definition 12.38: Let (X,A) and (Y,B) be measurable spaces. The product σ-algebra A⊗B is the σ-algebra
on X × Y that is generated by the collection of sets

{A×B | A ∈ A, B ∈ B}

Theorem 12.39: Suppose that (X,A, µ) and (Y,B, ν) are σ-finite measure spaces. There is a unique
product measure µ⊗ ν, defined on A⊗ B, with the property that for every A ∈ A and B ∈ B

(µ⊗ ν)(A×B) = µ(A)ν(B).

Theorem 12.41 (Fubini): Let (X,A, µ) and (Y,B, ν) are σ-finite measure spaces. Suppose that f :
X × Y → R is an (A⊗ B)-measurable function.

18



(a) The function f is integrable, meaning that∫
X×Y

|f |dµ⊗ dν <∞,

if and only if either of the following iterated integrals is finite:∫
X

(∫
Y

|fx(y)|dν(y)
)
dµ(x),

∫
Y

(∫
X

|fy(x)|dµ(x)
)
dν(y).

(b) If f is integrable, then∫
X×Y

f(x, y)d(µ(x)⊗ ν(y)) =
∫
X

(∫
Y

fx(y)dν(y)
)
dµ(x),

∫
X×Y

f(x, y)d(µ(x)⊗ ν(y)) =
∫
Y

(∫
X

fy(x)dµ(x)
)
dν(y).

12.6 The Lp Spaces
Definition 12.45: Let (X,A, µ) be a measure space and 1 ≤ p < ∞. The space Lp(X,µ) is the space
of equivalence classes of measurable functions f : X → C, with respect to the equivalence relation of a.e.-
equality, such that ∫

|f |pdµ <∞.

The Lp-norm of f is defined by

‖f‖p =
(∫

X

|f |pdµ
)1/p

.

Theorem 12.46: If (X,A, µ) is a measure space and 1 ≤ p ≤ ∞, then Lp(X) is a Banach space.

Theorem 12.48: Suppose that (X,A, µ) is a measure space and 1 ≤ p ≤ ∞. If f ∈ Lp(X), then there is a
sequence (ϕn) of simple functions ϕn : X → C such that

lim
n→∞

‖f − ϕn‖p = 0.

Theorem 12.49: If 1 ≤ p <∞, then Lp(Rn) is a separable metric space.

Theorem 12.50: The space Cc(Rn) of continuous functions with compact support is dense in Lp(Rn) for
1 ≤ p <∞.

Theorem 12.51: If 1 ≤ p <∞, then C∞c (Rn) is a dense subspace of Lp(Rn).
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12.7 The Basic Inequalities
Theorem 12.54 (Hölder): Let 1 ≤ p, p′ ≤ ∞ satisfy 1/p + 1/p′ = 1. If f ∈ Lp(X,µ) and g ∈ Lp′(X,µ),
then fg ∈ L1(X,µ) and ∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ ‖f‖p‖g‖p′ .

Proposition 12.55: Suppose that (X,µ) is a finite measure space, meaning that µ(X) < ∞, and 1 ≤ q ≤
p ≤ ∞. Then

L1(X,µ) ⊃ Lq(X,µ) ⊃ Lp(X,µ) ⊃ L∞(X,µ)

Theorem 12.56 (Minkowski): If 1 ≤ p ≤ ∞, and f, g ∈ Lp(X,µ), then f + g ∈ Lp(X,µ), and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Theorem 12.58 (Young): Suppose that 1 ≤ p, q, r ≤ ∞, satisfy

1
p

+ 1
q

= 1 + 1
r
.

if f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr(Rn), and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

12.8 The Dual Space of Lp

Theorem 12.59: If 1 < p <∞, then every ϕ ∈ Lp(X)∗ is of the form

ϕ(f) =
∫
X

fg dµ

for some g ∈ Lp
′(X), where 1/p + 1/p′ = 1. If µ is σ-finite the same conclusion holds when p = 1 and

p′ =∞. Moreover,
‖ϕ‖(Lp) = ‖g‖Lp′ .

Definition 12.60: Suppose that 1 ≤ p <∞. A sequence (fn) converges weakly to f in Lp, written fn ⇀ f ,
if

lim
n→∞

∫
fng dµ =

∫
fg dµ for every g ∈ Lp

′
,

where p′ is the Hölder conjugate of p. when p = ∞ and p′ = 1, the condition above corresponds to weak-*
convergence in L∞.

Theorem 12.62: Suppose that (fn) is a bounded sequence in Lp(X), meaning that there is a constant
M such that ‖fn‖ ≤ M for every n ∈ N. if 1 < p < ∞, then there is a subsequence (fnk

) and a function
f ∈ Lp(X) with ‖f‖ ≤M such that fnk

⇀ f as k →∞ weakly in Lp(X).
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Other Useful Things to Remember
Proposition 5.30: Let T : X → Y be a bounded linear map between Banach spaces X,Y . The following
statements are equivalent:

(a) There is a constant c > 0 such that

c‖x‖ ≤ ‖Tx‖ for all x ∈ X;

(b) T has closed range, and the only solution of the equation Tx = 0 is x = 0

Proposition 5.43: Let X, Y , Z be Banach spaces.

(a) If S, T ∈ B(X,Y ) are compact, then any linear combination of S and T is compact.

(b) If (Tn) is a sequence of compact operator in B(X,Y ) converging uniformly to T , then T is compact.

(c) If T ∈ B(X,Y ) has finite-dimensional range, Then T is compact.

(d) Let S ∈ B(X,Y ), T ∈ B(Y, Z). If S is bounded and T is compact, or S is compact and T is bounded,
then TS ∈ B(X,Z) is compact.
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