Chapter 7: Fourier Series

7.1 The Fourier Basis

The Torus (T): A 2π-periodic function on \(\mathbb{R} \) may be identified with a function on a circle, or one-dimensional torus, \(T = \mathbb{R}/(2\pi \mathbb{Z}) \). which we define by identifying points in \(T \) that differ by \(2\pi n \) for some \(n \in \mathbb{Z} \).

Inner Product (\(L^2(T) \)):

\[
\langle f, g \rangle = \int_T f(x)g(x)dx
\]

Fourier Basis: The Fourier basis elements are the functions

\[
e_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}.
\]

Fourier Series: Any function \(f \in L^2(T) \) may be expanded in a Fourier series as

\[
f(x) = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \hat{f}_n e^{inx},
\]

where the equality means convergence of the partial sums of \(f \) in the \(L^2 \)-norm, and

\[
\hat{f}_n = \langle e_n, f \rangle = \frac{1}{\sqrt{2\pi}} \int_T f(x)e^{-inx}dx.
\]

Definition 7.1: A family of functions \(\{ \varphi_n \in C(T) | n \in \mathbb{N} \} \) is an approximate identity if:

(a) \(\varphi_n(x) \geq 0 \);

(b) \(\int_T \varphi_n(x)dx = 1 \) for every \(n \in \mathbb{N} \);

(c) \(\lim_{n \to \infty} \int_{|x| \leq \delta} \varphi_n(x)dx = 0 \) for every \(\delta > 0 \).
Theorem 7.2: If \(\{ \varphi_n \in C(T) \mid n \in \mathbb{N} \} \) is an approximate identity and \(f \in C(T) \), then \(\varphi_n \ast f \) converges uniformly to \(f \) as \(n \to \infty \).

Theorem 7.3: The trigonometric polynomials are dense in \(C(T) \) with respect to the uniform norm.

Proposition 7.4: If \(f, g \in L^2(T) \), then \(f \ast g \in C(T) \) and
\[
\|f \ast g\|_\infty \leq \|f\|_2 \|g\|_2.
\]

Theorem 7.5 (Convolution): If \(f, g \in L^2(T) \), then
\[
(\hat{f} \ast \hat{g})_n = \sqrt{2\pi} \hat{f}_n \hat{g}_n.
\]

7.2 Fourier Series of Differentiable Functions

Definition 7.6: The Sobolev space \(H^1(T) \) consists of all functions
\[
f(x) = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} \hat{f}_n e^{inx} \in L^2(T)
\]
such that
\[
\sum_{n=-\infty}^{\infty} n^2 |\hat{f}_n|^2 < \infty.
\]
The weak \(L^2 \)-derivative \(f' \in L^2(T) \) of \(f \in H^1(T) \) is defined by the \(L^2 \)-convergent Fourier series
\[
f'(x) = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} in\hat{f}_n e^{inx} \in L^2(T).
\]
More generally
\[
H^k(T) = \left\{ f \in L^2(T) \mid f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, \sum_{n=-\infty}^{\infty} |n|^{2k} |c_n|^2 < \infty \right\},
\]
for \(k \geq 0 \).

Definition 7.7: A function \(f \in L^2(T) \) belongs to \(H^1(T) \) if there is a constant \(M \) such that
\[
\left| \int_T f' \varphi dx \right| \leq M \| \varphi \|_{L^2} \quad \text{for all } \varphi \in C^1(T)
\]
for \(f \in H^1(T) \), then the weak derivative \(f' \) of \(f \) is the unique element of \(L^2(T) \) such that
\[
\int_T f' \varphi dx = -\int_T f \varphi' dx \quad \text{for all } \varphi \in C^1(T).
\]

Lemma 7.8: Suppose that \(f \in H^k(T) \) for \(k > 1/2 \). Let
\[
S_N(x) = \frac{1}{\sqrt{2\pi}} \sum_{n=-N}^{N} \hat{f}_n e^{inx}
\]
be the Nth partial sum of the Fourier series of f, and define

$$
\| f^{(k)} \| = \left(\sum_{n=-\infty}^{\infty} |n|^{2k} |\hat{f}_n|^2 \right)^{\frac{1}{2}}.
$$

Then there is a constant C_k, independent of f, such that

$$
\| S_N - f \|_\infty \leq \frac{C_k}{N^{k-\frac{1}{2}}} \| f^{(k)} \|,
$$

and (S_N) converges uniformly to f as $N \to \infty$.

Theorem 7.9: If $f \in H^k(\mathbb{T})$ for $k > 1/2$, then $f \in C(\mathbb{T})$. More generally: If $f \in H^k(\mathbb{T}^d)$ and $k > j + d/2$ then $f \in C^j(\mathbb{T}^d)$.
Chapter 8: Bounded Linear Operators on a Hilbert Space

8.1 Orthogonal Projections

Definition 8.1: A projection on a linear space \(X \) is a linear map \(P : X \to X \) such that \(P^2 = P \).

Theorem 8.2: Let \(X \) be a linear space.
(a) If \(P : X \to X \) is a projection, then \(X = \text{ran} \, P \oplus \ker P \).
(b) If \(X = M \oplus N \), where \(M \) and \(N \) are linear subspaces of \(X \), then there is a projection \(P : X \to X \) with \(\text{ran} \, P = M \) and \(\ker P = N \).

Definition 8.3: An orthogonal projection on a Hilbert space \(\mathcal{H} \) is a linear map \(P : \mathcal{H} \to \mathcal{H} \) that satisfies
\[
P^2 = P, \quad \langle Px, y \rangle = \langle x, Py \rangle \quad \text{for all } x, y \in \mathcal{H}.
\]
An orthogonal projection is necessarily bounded.

Proposition 8.4: If \(P \) is a nonzero orthogonal projection, then \(\| P \| = 1 \).

Theorem 8.5: Let \(\mathcal{H} \) be a Hilbert space.
(a) If \(P \) is an orthogonal projection on \(\mathcal{H} \), then \(\text{ran} \, P \) is closed, and
\[
\mathcal{H} = \text{ran} \, P \oplus \ker P
\]
is the orthogonal direct sum of \(\text{ran} \, P \) and \(\ker P \).
(b) If \(M \) is a closed subspace of \(\mathcal{H} \), then there is an orthogonal projection \(P \) on \(\mathcal{H} \) with \(\text{ran} \, P = M \) and \(\ker P = M^\perp \).

Even and Odd Projections: The space \(L^2(\mathbb{R}) \) is the orthogonal direct sum of the space \(M \) of even functions and the space \(N \) of the odd functions. The orthogonal projections \(P \) and \(Q \) of \(\mathcal{H} \) onto \(M \) and \(N \), respectively, are given by
\[
Pf(x) = \frac{f(x) + f(-x)}{2}, \quad Qf(x) = \frac{f(x) - f(-x)}{2}.
\]

note that \(I - P = Q \).

8.2 The Dual of a Hilbert Space

Linear Functional: A linear functional on a complex Hilbert space \(\mathcal{H} \) is a linear map from \(\mathcal{H} \) to \(\mathbb{C} \). A linear function \(\varphi \) is bounded, or continuous, if there exist a constant \(M \) such that
\[
|\varphi(x)| \leq M \| x \| \quad \text{for all } x \in \mathcal{H}.
\]
The norm of a bounded linear function \(\varphi \) is
\[
\| \varphi \| = \sup_{\| x \| = 1} |\varphi(x)|.
\]
if $y \in \mathcal{H}$, then
\[\varphi_y(x) = \langle y, x \rangle \]
is a bounded linear functional on \mathcal{H}, with $\|\varphi_y\| = \|y\|$.

Theorem 8.12 (Riesz representation): If φ is a bounded linear functional on a Hilbert space \mathcal{H}, then there is a unique vector $y \in \mathcal{H}$ such that
\[\varphi(x) = \langle y, x \rangle \quad \text{for all } x, y \in \mathcal{H}. \]

8.3 The Adjoint of an Operator

Adjoint Operator: Let $A \in \mathcal{B}(\mathcal{H})$ then there exist an unique $A^* \in \mathcal{B}(\mathcal{H})$ (known as the adjoint) such that
\[\langle x, Ay \rangle = \langle A^*x, y \rangle \quad \text{for all } x, y \in \mathcal{H}. \]

Left and Right Shift Operators: Suppose that S and T are the right and left shift operators on the sequence space $\ell^2(\mathbb{N})$, defined by
\[S(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots), \quad T(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots). \]
Then $T = S^*$.

Theorem 8.17: If $A : \mathcal{H} \to \mathcal{H}$ is a bounded linear operator, then
\[\overline{\text{ran} A} = (\text{ker} A^*)^\perp, \quad \text{ker} A = (\text{ran} A^*)^\perp. \]

Theorem 8.18: Suppose that $A : \mathcal{H} \to \mathcal{H}$ is a bounded linear operator on a Hilbert space \mathcal{H} with closed range. Then the equation $Ax = y$ has a solution for x if and only if y is orthogonal to $\text{ker} A^*$.

8.4 Self-Adjoint and Unitary Operators

Definition 8.23: A bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is **self-adjoint** if $A^* = A$. Equivalently, a bounded linear operator A on \mathcal{H} is self-adjoint if and only if
\[\langle x, Ay \rangle = \langle Ax, y \rangle \quad \text{for all } x, y \in \mathcal{H}. \]

Nonnegative, Positive/Positive Definite, Coercive: Let A be a self-adjoint operator on a Hilbert space \mathcal{H}. Then A is
- **nonnegative** if $\langle x, Ax \rangle \geq 0$ for all $x \in \mathcal{H}$,
- **positive** or **positive definite** if $\langle x, Ax \rangle > 0$ for all nonzero $x \in \mathcal{H}$,
- **coercive** if there exists a $c > 0$ such that $\langle x, Ax \rangle \geq c\|x\|^2$ for all $x \in \mathcal{H}$.

5
Lemma 8.26: If A is a bounded self-adjoint operator on a Hilbert space \mathcal{H}, then
\[\|A\| = \sup_{\|x\|=1} |\langle x, Ax \rangle|. \]

Corollary 8.27: If A is a bounded self-adjoint operator on a Hilbert space then $\|A^*A\| = \|A\|^2$. If A is self-adjoint, then $\|A^2\| = \|A\|^2$.

Definition 8.28: A linear map $U : \mathcal{H}_1 \rightarrow \mathcal{H}_2$ between real or complex Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 it is said to be orthogonal or unitary, respectively, if it is invertible and if
\[\langle Ux, Uy \rangle_{\mathcal{H}_2} = \langle x, y \rangle_{\mathcal{H}_1} \text{ for all } x, y \in \mathcal{H}_1. \]
Two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 are isomorphic as Hilbert spaces if there is a unitary linear map between them. If $U : \mathcal{H} \rightarrow \mathcal{H}$ (i.e $\mathcal{H}_1 = \mathcal{H}_2$), then U is unitary if and only if $U^*U = UU^* = I$.

Example 8.30: If A is a bounded self-adjoint operator, then
\[e^{iA} = \sum_{n=0}^{\infty} \frac{1}{n!}(iA)^n \]
is unitary.

8.6 Weak Convergence in a Hilbert Space

Weak Convergence: A sequence (x_n) in a Hilbert space \mathcal{H} converges weakly to $x \in \mathcal{H}$ if
\[\lim_{n \to \infty} \langle x_n, y \rangle = \langle x, y \rangle \text{ for all } y \in \mathcal{H}. \]

Theorem 8.39 (Uniform Boundedness): Suppose that
\[\{\varphi_n : X \rightarrow \mathbb{C}|n \in \mathbb{N}\} \]
is a set of linear functionals on a Banach Space X such that the set of complex numbers $\{\varphi_n(x)|n \in \mathbb{N}\}$ is bounded for each $x \in X$. Then $\{\|\varphi_n\| |n \in \mathbb{N}\}$ is bounded.

Theorem 8.40: Suppose that (x_n) is a sequence in a Hilbert space \mathcal{H} and D is a dense subset of \mathcal{H}. Then (x_n) converges weakly to x if and only if:

(a) $\|x_n\| \leq M$ for some constant M;
(b) $\langle x_n, y \rangle \rightarrow \langle x, y \rangle$ as $n \to \infty$ for all $y \in D$.

Note: this is extremely useful for showing weak convergence by letting D be a basis for \mathcal{H} as in Example 8.41.

Proposition 8.44: If (x_n) converges weakly to x, then
\[\|x\| \leq \liminf_{n \to \infty} \|x_n\|. \]
If, in addition,
\[\lim_{n \to \infty} \|x_n\| = \|x\|, \]
then (x_n) converges strongly to x.
Theorem 8.45 (Banach-Alaoglu): The closed unit ball of a Hilbert space is weakly compact.

Definition 8.47: Let $f : C \to \mathbb{R}$ be a real-valued function on a convex subset C of a real or complex linear space. Then f is *convex* if

$$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$$

for all $x, y \in C$ and $0 \leq t \leq 1$. If we have a strict inequality in this equation whenever $x \neq y$ and $0 < t < 1$, then f is *strictly convex*.

Theorem 8.48 (Mazur): If (x_n) converges weakly to x in a Hilbert space, then there is a sequence (y_n) of finite convex combinations of $\{x_n\}$ such that (y_n) converges strongly to x.

Chapter 9: Spectrum of Bounded Linear Operators

9.2 The Spectrum

A Quick Note: A great reference for the spectrum of common operators (such as general multiplication operators and the shift operators) check out this wonderful pdf. http://www.math.ubc.ca/~feldman/m511/spectralExamples.pdf

Definition 9.3: The resolvent set of an operator \(A \in \mathcal{B}(\mathcal{H}) \), denoted by \(\rho(A) \), is the set of complex numbers \(\lambda \) such that \((A - \lambda I) : \mathcal{H} \to \mathcal{H} \) is one-to-one and onto. The spectrum of \(A \), denoted by \(\sigma(A) \), is the complement of the resolvent set in \(\mathbb{C} \), meaning that \(\sigma(A) = \mathbb{C} \setminus \rho(A) \).

Definition 9.4: Suppose that \(A \) is a bounded linear operator on a Hilbert space \(\mathcal{H} \).

(a) The point spectrum of \(A \) consists of all \(\lambda \in \sigma(A) \) such that \(A - \lambda I \) is not one-to-one. In this case \(\lambda \) is called an eigenvalue of \(A \).

(b) The continuous spectrum of \(A \) consists of all \(\lambda \in \sigma(A) \) such that \(A - \lambda I \) is one-to-one but not onto, and \(\text{ran}(A - \lambda I) \) is dense in \(\mathcal{H} \).

(c) The residual spectrum of \(A \) consists of all \(\lambda \in \sigma(A) \) such that \(A - \lambda I \) is one-to-one but not onto, and \(\text{ran}(A - \lambda I) \) is not dense in \(\mathcal{H} \).

Proposition 9.6: If \(A \) is a bounded linear operator on a Hilbert space, then the resolvent set \(\rho(A) \) is an open subset of \(\mathbb{C} \) that contains the exterior disc \(\{ \lambda \in \mathbb{C} \mid |\lambda| > \|A\| \} \). The resolvent \(R_\lambda \) is an operator-valued analytic function of \(\lambda \) defined on \(\rho(A) \).

Proposition 9.7: Let the spectral radius be defined as

\[
r(A) = \sup \{|\lambda| \mid \lambda \in \sigma(A)\}.
\]

If \(A \) is a bounded linear operator, then

\[
r(A) = \lim_{n \to \infty} \|A^n\|^{1/n}.
\]

If \(A \) is self-adjoint, then \(r(A) = \|A\| \).

Proposition 9.8: The spectrum of a bounded operator on a Hilbert space is nonempty.

The Spectral Theorem for Compact, Self-Adjoint Operators

Lemma 9.9: The eigenvalues of a bounded, self-adjoint operator are real, and the eigenvectors associated with different eigenvalues are orthogonal.

Invariant Subspace: A linear subspace \(\mathcal{M} \) of \(\mathcal{H} \) is called an invariant subspace of a linear operator \(A \) on \(\mathcal{H} \) if \(Ax \in \mathcal{M} \) for all \(x \in \mathcal{M} \).

Lemma 9.11: If \(A \) is a bounded, self-adjoint operator on a Hilbert space \(\mathcal{H} \) and \(\mathcal{M} \) is an invariant subspace of \(A \), then \(\mathcal{M}^\perp \) is an invariant subspace of \(A \).

Proposition 9.12: If \(\lambda \) belongs to the residual spectrum of a bounded operator \(A \) on a Hilbert space, then \(\lambda \) is an eigenvalue of \(A^* \).

Lemma 9.13: If \(A \) is a bounded, self-adjoint operator on a Hilbert space, then the spectrum of \(A \) is real and is contained in the interval \([-\|A\|, \|A\|]\).
Corollary 9.14: The residual spectrum of a bounded, self-adjoint operator is empty.

Proposition 9.15: A nonzero eigenvalue of a compact, self-adjoint operator has finite multiplicity. A countably infinite set of nonzero eigenvalues has zero as an accumulation point, and no other accumulation points.

Theorem 9.16 (Spectral Theorem for Compact, Self-Adjoint Operators): Let $A : \mathcal{H} \to \mathcal{H}$ be a compact, self-adjoint operator on a Hilbert space \mathcal{H}. There is an orthonormal basis of \mathcal{H} consisting of eigenvectors of A. The nonzero eigenvalue of A form a finite or countably infinite set $\{\lambda_k\}$ of real numbers, and

$$A = \sum_k \lambda_k P_k,$$

where P_k is the orthogonal projection onto the finite-dimensional eigenspace of eigenvectors with eigenvalues λ_k. If the number of nonzero eigenvalues is countably infinite then the series above converges to A in operator norm.

9.4 Compact Operators

Theorem 9.17: Let E be a subset of an infinite-dimensional, separable Hilbert space \mathcal{H}.

(a) If E is precompact, then for every orthonormal set $\{e_n \mid n \in \mathbb{N}\}$ and every $\epsilon > 0$, there is an N such that

$$\sum_{n=N+1}^{\infty} |\langle e_n, x \rangle|^2 < \epsilon$$

for all $x \in E$.

(b) if E is bounded and there is an orthonormal basis $\{e_n\}$ of \mathcal{H} with the property that for every $\epsilon > 0$ there is an N such that the sum in (a) holds, then E is precompact.

Example 9.19: The diagonal operator $A : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ defined by

$$A(x_1, x_2, x_3, \ldots, x_n, \ldots) = (\lambda_1 x_1, \lambda_2 x_2, \ldots, \lambda_n x_n, \ldots),$$

where $\lambda_n \in \mathbb{C}$ is compact if and only if $\lambda_n \to 0$ as $n \to \infty$. Any compact, normal operator on a separable Hilbert space is unitarily equivalent to such a diagonal operator. Note: this implies that the identity operator on a Hilbert space \mathcal{H} is compact if and only if \mathcal{H} is finite-dimensional.

Definition 9.20: A bounded linear operator A on a separable Hilbert space \mathcal{H} is Hilbert-Schmidt if there is an orthonormal basis $\{e_n \mid n \in \mathbb{N}\}$ such that

$$\sum_{n=1}^{\infty} \|A e_n\|^2 < \infty.$$

If A is a Hilbert-Schmidt operator, then

$$\|A\|_{HS} = \sqrt{\sum_{n=1}^{\infty} \|A e_n\|^2}$$

is called the Hilbert-Schmidt norm of A.

Theorem 9.21: A Hilbert-Schmidt operator is compact.

Theorem 9.24: A bounded linear operator on a Hilbert space is compact if and only if it maps weakly convergent sequences into strongly convergent sequences.
9.5 Functions of Operators

Theorem 9.25 (Spectral Mapping): If A is a compact, self-adjoint operator on a Hilbert space and $f : \sigma(A) \to \mathbb{C}$ is continuous, then

$$\sigma(f(A)) = f(\sigma(A)).$$

Here $\sigma(f(A))$ is the spectrum of $f(A)$, and $f(\sigma(A))$ is the image of the spectrum of A under f,

$$f(\sigma(A)) = \{ \mu \in \mathbb{C} \mid \mu = f(\mu) \text{ for some } \lambda \in \sigma(A) \}.$$
Chapter 11: Distributions and the Fourier Transform

11.1 The Schwartz Space

Multi-Index: A multi-index

\[\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n \quad \text{with} \quad \mathbb{Z}_+ = \{ n \in \mathbb{Z} \mid n \geq 0 \} \]

is an \(n \)-tuple of nonnegative integers \(a_i \geq 0 \). For multi-indices \(\alpha, \beta \in \mathbb{Z}_+^n \) and \(x \in \mathbb{R}^n \), we define

(a) \(|\alpha| = \sum_{i=1}^{n} \alpha_i \),
(b) \(\alpha! = \prod_{i=1}^{n} \alpha_i! \),
(c) \(\alpha + \beta = (\alpha_1 + \beta_1, \ldots, \alpha_n + \beta_n) \),
(d) \(\alpha \geq \beta \) if and only if \(\alpha_i \geq \beta_i \) for \(i = 1, \ldots, n \),
(e) \(\partial^\alpha = \left(\frac{\partial}{\partial x_1} \right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n} \right)^{\alpha_n} \),
(f) \(x^\alpha = \prod_{i=1}^{n} x_i^{\alpha_i} \),
(g) \(|x| = \sqrt{x_1^2 + \cdots + x_n^2} \).

Leibnitz Rule: The Leibnitz rule for the derivative of the product of \(f, g \in C^k(\mathbb{R}^n) \) may be written as

\[\partial^\alpha (fg) = \sum_{\beta + \gamma = \alpha} \frac{\alpha!}{\beta!\gamma!} (\partial^\beta f)(\partial^\gamma g). \]

Definition 11.1: The Schwartz space \(\mathcal{S}(\mathbb{R}^n) \), or \(\mathcal{S} \) for short, consists of all functions \(\varphi \in C^\infty(\mathbb{R}^n) \) such that

\[p_{\alpha,\beta}(\varphi) = \sup_{x \in \mathbb{R}^n} |x^\alpha \partial^\beta \varphi(x)| \]

is finite for every pair of multi-indices \(\alpha, \beta \in \mathbb{Z}_+^n \). If \(\varphi \in \mathcal{S} \), then for every \(d \in \mathbb{N} \) and \(\alpha \in \mathbb{Z}_+^n \) there is a constant \(C_{d,\alpha} \) such that

\[|\partial^\alpha \varphi(x)| \leq \frac{C_{d,\alpha}}{(1 + |x|^2)^{d/2}} \quad \text{for all} \quad x \in \mathbb{R}^n. \]

Thus an element of \(\mathcal{S} \) is a smooth function such that the function and all of its derivatives decay faster than any polynomial as \(|x| \to \infty \). Elements of \(\mathcal{S} \) are called Schwartz functions, or test functions.

Definition 11.2: Suppose that \(X \) is a real or complex linear space. A function \(p : X \to \mathbb{R} \) is a seminorm on \(X \) if it has the following properties:

(a) \(p(x) \geq 0 \) for all \(x \in X \);
(b) \(p(x + y) \leq p(x) + p(y) \) for all \(x, y \in X \);
(c) \(p(\lambda x) = |\lambda| p(x) \) for every \(x \in X \) and \(\lambda \in \mathbb{C} \).

A seminorm has the same properties as a norm, except that \(p(x) = 0 \) does not need to imply \(x = 0 \). If a family of seminorms \(\{p_1, \ldots, p_n\} \) is finite and separates points, then

\[\|x\| = p_1(x) + \cdots + p_n(x) \]

defines a norm on \(X \).

Proposition 11.3: The Schwartz space \(\mathcal{S} \) with the metrizable topology generated by the countable family of seminorms

\[\{p_{\alpha,\beta} \mid \alpha, \beta \in \mathbb{Z}_+^n \}, \]
where \(p_{\alpha,\beta} \) is given by
\[
\| \varphi \|_{\alpha,\beta} = p_{\alpha,\beta}(\varphi) = \sup_{x \in \mathbb{R}^n} |x^\alpha \partial^\beta \varphi(x)|,
\]
is complete.

Proposition 11.4: For each \(\alpha \in \mathbb{Z}_n^+ \), the partial differentiation operator \(\partial^\alpha : S \to S \) is continuous linear operator on \(S \).

11.2 Tempered Distributions

Tempered Distributions: The topological dual space of \(S \), denoted by \(S^* \) or \(S' \), is the space of continuous linear functionals \(T : S \to \mathbb{C} \). Elements of \(S^* \) are called *tempered distributions*. Since \(S \) is a metric space, a functional \(T : S \to \mathbb{C} \) is continuous if and only if for every convergent sequence \(\varphi_n \to \varphi \) in \(S \), we have
\[
\lim_{n \to \infty} T(\varphi_n) = T(\varphi).
\]
The continuity of a linear functional \(T \) is implied by an estimate of the form
\[
|T(\varphi)| \leq \sum_{|\alpha|,|\beta| \leq d} c_{\alpha,\beta} \| \varphi \|_{\alpha,\beta}
\]
for some \(d \in \mathbb{Z}_+ \) and constants \(c_{\alpha,\beta} \geq 0 \).

Example 11.5: The fundamental example of a distribution is the *delta function*. We define \(\delta : S \to \mathbb{C} \) by evaluation at 0:
\[
\delta(\varphi) = \varphi(0).
\]

11.3 Operations on Distributions

Example 11.9: If \(T = \delta \) is the delta function, then
\[
\langle f\delta, \varphi \rangle = \langle \delta, f\varphi \rangle = f(0)\varphi(0) = \langle f(0)\delta, \varphi \rangle.
\]
Hence, \(f\delta = f(0)\delta \).

Definition 11.10: Suppose that \(T \) is a tempered distribution and \(\alpha \) is a multi-index. the \(\alpha \)th *distributional derivative* of \(T \) is the tempered distribution \(\partial^\alpha T \) defined by
\[
\langle \partial^\alpha T, \varphi \rangle = (-1)^{|\alpha|} \langle T, \partial^\alpha \varphi \rangle \quad \text{for all } \varphi \in S.
\]

Theorem 11.11: For every \(T \in S^* \) there is a continuous function \(f : \mathbb{R}^n \to \mathbb{C} \) of polynomial growth and a multi-index \(\alpha \in \mathbb{Z}_n^+ \) such that \(T = \partial^\alpha f \).

Example 11.14: The derivative of the one-dimensional delta function \(\delta \) is given by
\[
\langle \delta', \varphi \rangle = -\langle \delta, \varphi' \rangle = -\varphi'(0).
\]
More generally, the \(k \)th distributional derivative of \(\delta \) is given by
\[
\langle \delta^{(k)}, \varphi \rangle = (-1)^k \varphi^{(k)}(0).
\]
Example 11.16: For each $h \in \mathbb{R}^n$, we define the translation operator $\tau_h : \mathcal{S} \to \mathcal{S}$ by

$$\tau_h f(x) = f(x - h).$$

We therefore define the translation $\tau_h T$ of a distribution T by

$$\langle \tau_h T, \varphi \rangle = \langle T, \tau_{-h} \varphi \rangle \quad \text{for all } \varphi \in \mathcal{S}.$$

For instance, we have $\delta_{x_0} = \tau_{x_0} \delta$.

Example 11.17: Let $R : \mathcal{S} \to \mathcal{S}$ be the reflection operator,

$$Rf(x) = f(-x).$$

Thus, for $T \in \mathcal{S}^*$, we defined the reflection $RT \in \mathcal{S}^*$ by

$$\langle RT, \varphi \rangle = \langle T, R\varphi \rangle \quad \text{for all } \varphi \in \mathcal{S}.$$

Proposition 11.18: For any $\varphi, \psi, \omega \in \mathcal{S}$, we have:

(a) $\varphi * \psi = \psi * \varphi$,
(b) $(\varphi * \psi) * \omega = \varphi * (\psi * \omega)$,
(c) $\tau_h (\varphi * \psi) = (\tau_h \varphi) * \psi = \varphi * (\tau_h \psi)$ for every $h \in \mathbb{R}^n$.

11.4 The Convergence of Distributions

Convergence in Distribution Space: Let (T_n) be a sequence in \mathcal{S}^*. We say that (T_n) converges to $T \in \mathcal{S}^*$ if and only if

$$\lim_{n \to \infty} \langle T_n, \varphi \rangle = \langle T, \varphi \rangle \quad \text{for every } \varphi \in \mathcal{S}.$$

We denote convergence is the space of distributions by $T_n \rightharpoonup T$ as $n \to \infty$.

Proposition 11.22: For $n \in \mathbb{N}$, let

$$\sigma_n(x) = \frac{\sin(nx)}{\pi x}.$$

Then $\sigma_n \rightharpoonup \delta$ in \mathcal{S}^* as $n \to \infty$.

Theorem 11.23: The Schwartz space is dense in the space of tempered distributions.

11.5 The Fourier Transform of Test Functions

Definition 11.24: If $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then the Fourier transform $\hat{\varphi} : \mathbb{R}^n \to \mathbb{C}$ is the function defined by

$$\hat{\varphi}(k) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \varphi(x) e^{-ik \cdot x} \, dx \quad \text{for } k \in \mathbb{R}^n.$$

We define the Fourier transform operator $\mathcal{F} : \mathcal{S} \to \mathcal{S}$ by $\mathcal{F}\varphi = \hat{\varphi}$.

Eigenvalues of The Fourier Transform: Knowing that $\mathcal{F}^2 \varphi = R \varphi$ where R is a reflection. It is easy to see that $\mathcal{F}^4 \varphi = \varphi$ leading to the characteristic equation $\lambda^4 = 1$. It turns out that the eigenvalues of \mathcal{F} are

$$\sigma_p(\mathcal{F}) = \{ \pm 1, \pm i \}.$$

Proposition 11.25: If $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then:
(a) \(\hat{\varphi} \in C^\infty(\mathbb{R}^n) \), and
\[\partial^\alpha \hat{\varphi} = \mathcal{F}[(-ix)^\alpha \varphi]; \]
(b) \(k^\alpha \hat{\varphi} \) is bounded for every multi-index \(\alpha \in \mathbb{Z}^n_+ \), and
\[(ik)^\alpha \hat{\varphi} = \mathcal{F}[\partial^\alpha \varphi]. \]

The Fourier transform \(\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n) \) is a continuous linear map on \(\mathcal{S}(\mathbb{R}^n) \).

Proposition 11.27: If \(\varphi, \psi \in \mathcal{S} \) and \(h \in \mathbb{R}^n \), then:
\[
\hat{\tau}_h \hat{\varphi} = e^{-ik \cdot h} \hat{\varphi}, \\
e^{ix \cdot h} \varphi = \tau_h \hat{\varphi}, \\
\hat{\varphi} \ast \psi = (2\pi)^{n/2} \hat{\varphi} \hat{\psi}.
\]

Definition 11.28: If \(\varphi \in \mathcal{S} \), then the inverse Fourier transform \(\hat{\varphi} \) is given by
\[
\hat{\varphi}(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{ik \cdot x} \varphi(k) \, dk.
\]
We define \(\mathcal{F}^*: \mathcal{S} \to \mathcal{S}^* \) by \(\mathcal{F}^* \varphi = \hat{\varphi} \).

Proposition 11.29: The map \(\mathcal{F}^* \) is a continuous linear transformation on \(\mathcal{S} \), and \(\mathcal{F}^* = \mathcal{F}^{-1} \).

11.6 The Fourier Transform of Tempered Distributions

Definition 11.30: The Fourier transform of a tempered distribution \(T \) is the tempered distribution \(\hat{T} = \mathcal{F}T \) defined by
\[
\langle \hat{T}, \varphi \rangle = \langle T, \hat{\varphi} \rangle \quad \text{for all} \quad \varphi \in \mathcal{S}.
\]
The inverse Fourier transform \(\check{T} = \mathcal{F}^{-1}T \) on \(\mathcal{S}^* \) is defined by
\[
\langle \check{T}, \varphi \rangle = \langle T, \hat{\varphi} \rangle \quad \text{for all} \quad \varphi \in \mathcal{S}.
\]
The map \(\mathcal{F}: \mathcal{S}^* \to \mathcal{S}^* \) is a continuous, one-to-one transformation of \(\mathcal{S}^* \) onto itself.

Example 11.31: The Fourier transform of the delta function is
\[
\langle \delta, \varphi \rangle = \langle \delta, \hat{\varphi} \rangle = \hat{\varphi}(0) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \varphi(x) \, dx = \frac{1}{(2\pi)^{n/2}} \langle 1, \varphi \rangle.
\]
Hence, the Fourier transform of the delta function is
\[
\hat{\delta} = \frac{1}{(2\pi)^{n/2}}.
\]
11.7 The Fourier Transform of L^1

Convergence of the Fourier Integral: The Fourier integral (Fourier transform on L^1-functions)

$$\hat{f}(k) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x)e^{-ik \cdot x} dx$$

converges if and only if $f \in L^1(\mathbb{R}^n)$, meaning that

$$\int_{\mathbb{R}^n} |f(x)| dx < \infty.$$

Theorem 11.34 (Riemann-Lebesgue): If $f \in L^1(\mathbb{R}^n)$, then $\hat{f} \in C_0(\mathbb{R}^n)$, and

$$(2\pi)^{n/2} \|\hat{f}\|_\infty \leq \|f\|_1.$$

Theorem 11.35 (Convolution): If $f, g \in L^1(\mathbb{R}^n)$, then $f * g \in L^1(\mathbb{R}^n)$ and

$$\hat{f * g} = (2\pi)^{n/2} \hat{f} \hat{g}.$$

11.8 The Fourier Transform of L^2

Theorem 11.37 (Plancherel): The Fourier Transform $\mathcal{F} : L^2(\mathbb{R}^n) \rightarrow L^2(\mathbb{R}^n)$ is a unitary map. For every $f, g \in L^2(\mathbb{R}^n)$, we have

$$(\hat{f}, \hat{g}) = (f, g),$$

where

$$(f, g) = \int_{\mathbb{R}^n} \overline{f(x)} g(x) dx$$

and $\hat{f} = \mathcal{F} f$. In particular,

$$\int_{\mathbb{R}^n} |f(x)|^2 dx = \int_{\mathbb{R}^n} |\hat{f}(k)|^2 dk.$$

Definition 11.38: Let $s \in \mathbb{R}$. The Sobolev space $H^s(\mathbb{R}^n)$ consists of all distributions $f \in \mathcal{S}^*$ whose Fourier transform $\hat{f} : \mathbb{R}^n \rightarrow \mathbb{C}$ is a regular distribution and

$$\int_{\mathbb{R}^n} (1 + |k|^2)^s |\hat{f}(k)|^2 dk < \infty.$$
Chapter 12: Measure Theory and Function Spaces

12.1 Measures

Definition 12.1: A σ-algebra on a set X is a collection of \mathcal{A} of subsets of X such that:

(a) $\emptyset \in \mathcal{A}$;

(b) If $A \in \mathcal{A}$, then $A^c = X \setminus A \in \mathcal{A}$;

(c) If $\{A_i \mid i \in \mathbb{N}\}$ is a countable family of sets in \mathcal{A}, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

A measurable space (X, \mathcal{A}) is a set X and a σ-algebra \mathcal{A} on X. The elements of \mathcal{A} are called measurable sets.

Definition 12.5: A measure μ on a set X is a map $\mu : \mathcal{A} \to [0, \infty]$ on a σ-algebra \mathcal{A} of X, such that:

(a) $\mu(\emptyset) = 0$;

(b) If $\{A_i \mid i \in \mathbb{N}\}$ is a countable family of mutually disjoint sets in \mathcal{A}, meaning that $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

A measure is finite if $\mu(X) < \infty$, and σ-finite if there is a countable family $\{A_i \in \mathcal{A} \mid i = 1, 2, \ldots\}$ of measurable sets of X such that $\mu(A_1) < \infty$ and

$$X = \bigcup_{i=1}^{\infty} A_i.$$

Example 12.6: Let X be an arbitrary set and \mathcal{A} the σ-algebra consisting of all subsets of X. The counting measure ν on X is defined by

$$\nu(A) = \text{the number of elements of } A,$$

with the convention that if A is an infinite set, then $\nu(A) = \infty$. The counting measure is finite if X is a finite set, and σ-finite if X is countable.

Example 12.7: We define the delta measure δ_{x_0} supported at $x_0 \in \mathbb{R}^n$ on the Borel σ-algebra $\mathcal{B}(\mathbb{R}^n)$ of \mathbb{R}^n by

$$\delta_{x_0}(A) = \begin{cases} 1 & \text{if } x_0 \in A, \\ 0 & \text{if } x_0 \notin A. \end{cases}$$

Theorem 12.10: A subset A of \mathbb{R}^n is Lebesgue measurable if and only if for every $\epsilon > 0$, there is a closed set F and an open set G such that $F \subset A \subset G$ and $\lambda(G \setminus F) < \epsilon$. Moreover,

$$\lambda(A) = \inf\{\lambda(U) \mid U \text{ is open and } U \supset A\} = \sup\{\lambda(K) \mid K \text{ is compact and } K \subset A\}.$$

Thus, a Lebesgue measurable set may be approximated from the outside by open sets, and from the inside by compact sets.

Almost Everywhere A property that holds except on a set of measure zero is said to hold almost everywhere or a.e. for short.
12.2 Measurable Functions

Definition 12.19: Let \((X, \mathcal{A})\) and \((Y, \mathcal{B})\) be measurable spaces. A **measurable function** is a mapping \(f : X \to Y\) such that

\[f^{-1}(B) \in \mathcal{A} \quad \text{for every } B \in \mathcal{B}. \]

Proposition 12.23: Let \((X, \mathcal{A})\) be a measurable space. A function \(f : X \to \mathbb{R}\) is measurable if and only if the set \(\{x \in X \mid f(x) < c\}\) belongs to \(\mathcal{A}\) for every \(c \in \mathbb{R}\). In this proposition, the sets \(\{f(x) \leq c\}\), \(\{f(x) > c\}\), or \(\{f(x) \geq c\}\), could be used equally well.

Theorem 12.24: If \((f_n)\) is a sequence of measurable functions that converges pointwise to a function \(f\), then \(f\) is measurable. If \((X, \mathcal{A}, \mu)\) is a complete measure space and \((f_n)\) converges pointwise-a.e. to \(f\), then \(f\) is measurable.

Definition 12.25: A function \(\varphi : X \to \mathbb{R}\) on a measurable space \((X, \mathcal{A})\) is a **simple function** if there are measurable sets \(A_1, A_2, \ldots, A_n\) and real numbers \(c_1, c_2, \ldots, c_n\) such that

\[\varphi = \sum_{i=1}^{n} c_i \chi_{A_i}. \]

Here, \(\chi_A\) is the characteristic function of the set \(A\), meaning that

\[\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases} \]

Theorem 12.26: Let \(f : X \to [0, \infty]\) be a nonnegative, measurable function. There is a monotone increasing sequence \(\{\varphi_n\}\) of simple function that converges pointwise to \(f\).

12.3 Integration

Definition 12.27: Let \(f : X \to [0, \infty]\) be a nonnegative measurable function on a measure space \((X, \mathcal{A}, \mu)\). We define

\[\int f \, d\mu = \sup \left\{ \int \varphi \, d\mu \mid \varphi \text{ is simple and } \varphi \leq f \right\}. \]

if \(f : X \to \mathbb{R}\) and \(f = f^+ - f^-\), where \(f^+\) and \(f^-\) are the positive and negative parts of \(f\), the we define

\[\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu, \]

provided that at least one of the integrals on the right had side is finite. If

\[\int |f| \, d\mu = \int f^+ \, d\mu + \int f^- \, d\mu < \infty, \]

then we say that \(f\) is **integrable** or **summable**. The Lebesgue integral does not assign a value to the integral of a highly oscillatory function \(f\) for which both \(\int f^+ \, d\mu\) and \(\int f^- \, d\mu\) are infinite.

Example 12.29: If \(\delta_{x_0}\) is the delta-measure, and \(f : \mathbb{R}^n \to \mathbb{R}\) is a Borel measurable function, then

\[\int f \, d\delta_{x_0} = f(x_0). \]

We have \(f = g\) a.e. with respect to \(\delta_{x_0}\) if and only if \(f(x_0) = g(x_0)\).
Example 12.30: Let \(\nu \) be the counting measure on the set \(\mathbb{N} \) of natural numbers defined in Example 12.6. If \(f : \mathbb{N} \to \mathbb{R} \), then
\[
\int f \, d\nu = \sum_{n=1}^{\infty} f_n,
\]
where \(f_n = f(n) \).

12.4 Convergence Theorems

Theorem 12.33 (Monotone Convergence): Suppose that \((f_n)\) is monotone increasing sequence of non-negative, measurable functions \(f_n : X \to [0, \infty] \) on a measurable space \((X, \mathcal{A}, \mu) \). Let \(f : X \to [0, \infty] \) be the pointwise limit,
\[
f(x) = \lim_{n \to \infty} f_n(x).
\]
Then
\[
\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu.
\]

Theorem 12.34 (Fatou): If \((f_n)\) is any sequence of nonnegative measurable functions \(f_n : X \to [0, \infty] \) on a measure space \((X, \mathcal{A}, \mu) \), then
\[
\int \left(\liminf_{n \to \infty} f_n \right) \, d\mu \leq \liminf_{n \to \infty} \int f_n \, d\mu.
\]

Theorem 12.35 (Lebesgue Dominated Convergence): Suppose that \((f_n)\) is a sequence of integrable functions, \(f_n : X \to \mathbb{R} \) on a measure space \((X, \mathcal{A}, \mu) \) that converge to a pointwise limiting function \(f : X \to \mathbb{R} \). If there is an integrable function \(g : X \to [0, \infty] \) such that
\[
|f_n(x)| \leq g(x) \quad \text{for all } x \in X \text{ and } n \in \mathbb{N},
\]
then \(f \) is integrable and
\[
\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu.
\]

12.5 Product Measure and Fubini’s Theorem

Definition 12.38: Let \((X, \mathcal{A})\) and \((Y, \mathcal{B})\) be measurable spaces. The product \(\sigma\)-algebra \(\mathcal{A} \otimes \mathcal{B} \) is the \(\sigma\)-algebra on \(X \times Y \) that is generated by the collection of sets
\[
\{ A \times B \mid A \in \mathcal{A}, B \in \mathcal{B} \}
\]

Theorem 12.39: Suppose that \((X, \mathcal{A}, \mu)\) and \((Y, \mathcal{B}, \nu)\) are \(\sigma\)-finite measure spaces. There is a unique product measure \(\mu \otimes \nu \), defined on \(\mathcal{A} \otimes \mathcal{B} \), with the property that for every \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \)
\[
(\mu \otimes \nu)(A \times B) = \mu(A)\nu(B).
\]

Theorem 12.41 (Fubini): Let \((X, \mathcal{A}, \mu)\) and \((Y, \mathcal{B}, \nu)\) are \(\sigma\)-finite measure spaces. Suppose that \(f : X \times Y \to \mathbb{R} \) is an \((\mathcal{A} \otimes \mathcal{B}) \)-measurable function.
(a) The function f is integrable, meaning that
\[\int_{X \times Y} |f| d\mu \otimes d\nu < \infty, \]
if and only if either of the following iterated integrals is finite:
\[\int_X \left(\int_Y |f_x(y)| d\nu(y) \right) d\mu(x), \]
\[\int_Y \left(\int_X |f_y(x)| d\mu(x) \right) d\nu(y). \]

(b) If f is integrable, then
\[\int_{X \times Y} f(x, y) d(\mu(x) \otimes \nu(y)) = \int_X \left(\int_Y f_x(y) d\nu(y) \right) d\mu(x), \]
\[\int_{X \times Y} f(x, y) d(\mu(x) \otimes \nu(y)) = \int_Y \left(\int_X f_y(x) d\mu(x) \right) d\nu(y). \]

12.6 The L^p Spaces

Definition 12.45: Let (X, \mathcal{A}, μ) be a measure space and $1 \leq p < \infty$. The space $L^p(X, \mu)$ is the space of equivalence classes of measurable functions $f : X \to \mathbb{C}$, with respect to the equivalence relation of a.e.-equality, such that
\[\int |f|^p d\mu < \infty. \]
The L^p-norm of f is defined by
\[\|f\|_p = \left(\int_X |f|^p d\mu \right)^{1/p}. \]

Theorem 12.46: If (X, \mathcal{A}, μ) is a measure space and $1 \leq p \leq \infty$, then $L^p(X)$ is a Banach space.

Theorem 12.48: Suppose that (X, \mathcal{A}, μ) is a measure space and $1 \leq p \leq \infty$. If $f \in L^p(X)$, then there is a sequence (φ_n) of simple functions $\varphi_n : X \to \mathbb{C}$ such that
\[\lim_{n \to \infty} \|f - \varphi_n\|_p = 0. \]

Theorem 12.49: If $1 \leq p < \infty$, then $L^p(\mathbb{R}^n)$ is a separable metric space.

Theorem 12.50: The space $C_c(\mathbb{R}^n)$ of continuous functions with compact support is dense in $L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$.

Theorem 12.51: If $1 \leq p < \infty$, then $C_c^\infty(\mathbb{R}^n)$ is a dense subspace of $L^p(\mathbb{R}^n)$.

19
12.7 The Basic Inequalities

Theorem 12.54 (Hölder): Let $1 \leq p, p' \leq \infty$ satisfy $1/p + 1/p' = 1$. If $f \in L^p(X, \mu)$ and $g \in L^{p'}(X, \mu)$, then $fg \in L^1(X, \mu)$ and
\[
\left| \int f g d\mu \right| \leq \|f\|_p \|g\|_{p'}.
\]

Proposition 12.55: Suppose that (X, μ) is a finite measure space, meaning that $\mu(X) < \infty$, and $1 \leq q \leq p \leq \infty$. Then
\[
L^1(X, \mu) \supset L^q(X, \mu) \supset L^p(X, \mu) \supset L^\infty(X, \mu).
\]

Theorem 12.56 (Minkowski): If $1 \leq p \leq \infty$, and $f, g \in L^p(X, \mu)$, then $f + g \in L^p(X, \mu)$, and
\[
\|f + g\|_p \leq \|f\|_p + \|g\|_p.
\]

Theorem 12.58 (Young): Suppose that $1 \leq p, q, r \leq \infty$, satisfy
\[
\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r},
\]
if $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then $f * g \in L^r(\mathbb{R}^n)$, and
\[
\|f * g\|_r \leq \|f\|_p \|g\|_q.
\]

12.8 The Dual Space of L^p

Theorem 12.59: If $1 < p < \infty$, then every $\varphi \in L^p(X)^*$ is of the form
\[
\varphi(f) = \int_X fg \, d\mu
\]
for some $g \in L^{p'}(X)$, where $1/p + 1/p' = 1$. If μ is σ-finite the same conclusion holds when $p = 1$ and $p' = \infty$. Moreover,
\[
\|\varphi\|_{L^p} = \|g\|_{L^{p'}}.
\]

Definition 12.60: Suppose that $1 \leq p < \infty$. A sequence (f_n) converges weakly to f in L^p, written $f_n \rightharpoonup f$, if
\[
\lim_{n \to \infty} \int f_n g \, d\mu = \int f g \, d\mu \quad \text{for every } g \in L^{p'},
\]
where p' is the Hölder conjugate of p. When $p = \infty$ and $p' = 1$, the condition above corresponds to weak*-convergence in L^∞.

Theorem 12.62: Suppose that (f_n) is a bounded sequence in $L^p(X)$, meaning that there is a constant M such that $\|f_n\| \leq M$ for every $n \in \mathbb{N}$. If $1 < p < \infty$, then there is a subsequence (f_{n_k}) and a function $f \in L^p(X)$ with $\|f\| \leq M$ such that $f_{n_k} \rightharpoonup f$ as $k \to \infty$ weakly in $L^p(X)$.

20
Other Useful Things to Remember

Proposition 5.30: Let $T : X \to Y$ be a bounded linear map between Banach spaces X,Y. The following statements are equivalent:

(a) There is a constant $c > 0$ such that

$$c\|x\| \leq \|Tx\| \quad \text{for all } x \in X;$$

(b) T has closed range, and the only solution of the equation $Tx = 0$ is $x = 0$

Proposition 5.43: Let X, Y, Z be Banach spaces.

(a) If $S,T \in B(X,Y)$ are compact, then any linear combination of S and T is compact.

(b) If (T_n) is a sequence of compact operator in $B(X,Y)$ converging uniformly to T, then T is compact.

(c) If $T \in B(X,Y)$ has finite-dimensional range, then T is compact.

(d) Let $S \in B(X,Y)$, $T \in B(Y,Z)$. If S is bounded and T is compact, or S is compact and T is bounded, then $TS \in B(X,Z)$ is compact.