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Analysis of Downlink Connectivity Models
in a Heterogeneous Cellular Network

via Stochastic Geometry
Prasanna Madhusudhanan, Juan G. Restrepo, Youjian Liu, Member, IEEE, and Timothy X Brown

Abstract—In this paper, a comprehensive study of the down-
link performance in a heterogeneous cellular network (or HetNet)
is conducted via stochastic geometry. A general HetNet model
is considered consisting of an arbitrary number of open-access
and closed-access tiers of base stations (BSs) arranged accord-
ing to independent homogeneous Poisson point processes. The
BSs within each tier have a constant transmission power, ran-
dom fading factors with an arbitrary distribution and arbitrary
path-loss exponent of the power-law path-loss model. For such
a system, analytical characterizations for the coverage probabil-
ity are derived for the max-SINR connectivity and nearest-BS
connectivity models. Using stochastic ordering, interesting prop-
erties and simplifications for the HetNet downlink performance
are derived by relating these two connectivity models to the max-
imum instantaneous received power (MIRP) connectivity model
and the maximum biased received power (MBRP) connectivity
models, providing good insights about HetNets and their downlink
performance in these complex networks. Furthermore, the results
also demonstrate the effectiveness and analytical tractability of the
stochastic geometric approach to study the HetNet performance.

Index Terms—Multi-tier networks, Cellular Radio, Co-channel
Interference, Fading channels, Poisson point process, max-SINR
connectivity, nearest-BS connectivity.

I. INTRODUCTION

T HE MODERN cellular communication network is an
overlay of multiple contributing subnetworks such as the

macrocell, microcell, picocell and femtocell networks. These
are denoted collectively as heterogeneous networks (or, in
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short, HetNets). HetNets have been shown to sustain greater
end-user data-rates as well as provide indoor and cell-edge
coverage. As such, they are an important feature of fourth-
generation (4G) cellular standards [4]–[10].

Until recently, such networks have been analyzed solely
through system simulations. HetNets consist of regularly
spaced macrocell base-stations (BSs) along with irregularly
spaced microcell and picocell BSs and randomly placed end-
user deployed femtocell BSs. The BSs in each of these networks
have different transmission powers and radio environments.
Some BSs (e.g. a customer’s femtocell in their home) may
accept only a private subset of users. These BSs are essen-
tially interference sources for other users. Some HetNets
may operate among unlicensed or secondary devices that are
also interference sources. The result is a complex environ-
ment with many parameters that cannot be efficiently studied
through simulation. Under these circumstances, an analyti-
cal model that captures all the design scenarios of interest is
needed.

Cellular networks modeled with randomly deployed nodes
have yielded a rich set of results [11]–[14]. An important tool
in this work is the homogeneous Poisson point process [15]–
[17]. It can yield analytically tractable results unlike purely
simulation-based studies based on a regular hexagonal grid
[18]–[20]. In practice, we observe that increasingly dense and
irregular BS deployments deviate significantly from an ideal
regular grid. Further, studies have shown that increasing radio
variability drives the performance of ideal regularly spaced
BSs to that of BSs deployed as a homogeneous Poisson point
process [16, Fig. 2], [21, Theorem 3].

In light of the above motivations, it is well-justified to
study a HetNet composed of multiple tiers of networks (e.g.
macrocell, microcell, picocell and femtocell networks), each
modeled as an independent homogeneous Poisson point pro-
cess. Such studies have been done in [22]–[30] and by us in
[1]–[3]. These studies mathematically characterize important
performance metrics such as the signal-to-interference-plus-
noise ratio (SINR) distribution, coverage probability (1 - outage
probability), average ergodic rate, and average load carried by
BSs of each tier.

In this paper we focus on the HetNets downlink cover-
age probability. The main contribution is to develop a general
framework that combines and extends these existing results.
We consider BSs assigned to different tiers. Each tier is a
homogeneous set of radios deployed as a Poisson point pro-
cess with common transmission, propagation, fading factor, and
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reception parameters. Different tiers may have different densi-
ties and radio parameters. Results on this model can be distin-
guished along two dimensions. The first is the algorithm used
to select which BS a mobile station (MS) connects. Different
connectivity models will be defined later and include max-
SINR, nearest BS, maximum biased received power (MBRP),
and maximum instantaneous received power (MIRP). A second
dimension is which of the radio parameters are allowed to vary
between tiers.

The tiers can be further classified as open-access or closed-
access [3], [26], [25], [31]. Open-access tiers consist of ordi-
nary BSs to which any MS can connect. Closed-access tiers
represent private femtocells, unlicensed devices, and other
interference sources. Whether they consist of actual BSs or not,
closed-access tiers model interfering radios that do not provide
service to the MS we wish to study. The open and closed-access
tiers enable many flexible HetNet models to be developed. A
simple model might consist of two tiers. One open-access tier
consists of tall long-range macrocell BS towers with appropri-
ate radio parameters. A second closed-access tier consists of
low-power indoor femtocells with corresponding radio param-
eters. A more complex model might segregate BSs into many
finely distinguished tiers to represent different types of operator
equipment and interference sources.

The max-SINR connectivity model where the fading factors
are exponentially distributed and the path-loss exponents are the
same for all tiers was considered in [26], [27]. Using an entirely
different approach, [22]–[24] derives the coverage probability
for the HetNet with max-SINR and nearest BS connectivity
models, and exponentially distributed fading factors. In [30],
the authors study the HetNet coverage probability for MBRP
connectivity, and, again, for the exponentially distributed fad-
ing. In [1]–[3], we studied the HetNet coverage probability and
stochastic ordering results for MIRP connectivity in the case
when the fading factors have an arbitrary distribution and each
tier’s path-loss exponent may differ.

In this paper we consider nearest-BS and max-SINR con-
nectivity models as a natural extension of our earlier results to
popular connectivity models. We derive the coverage probabil-
ities when each tier has arbitrary transmit power, fading factor
distribution, path loss exponent, and receiver SINR threshold.
The result is a relatively complex semi-analytic expression.
This is found to be useful in several ways. First we are able
to make a qualitative study of performance using results from
stochastic ordering. We show that MBRP and MIRP connec-
tivity models are a special case of nearest-BS and max-SINR
connectivity models, respectively. We also derive a reduced
canonical form for the HetNets that can, in some cases, sim-
plify the HetNet to an equivalent network with one or a few
tiers. When the SINR thresholds of all the tiers are above 1, we
show the HetNet coverage probability under max-SINR con-
nectivity and MIRP connectivity are identical, and nearest-BS
connectivity and the MBRP connectivity are identical. Further,
in these special cases, simple and novel analytical expression
are derived for the coverage probability, average rate and the
load carried by the BSs of each tier. Finally, the semi-analytic
expression is used to study a specific two-tier example. We start
with the system model.

II. SYSTEM MODEL

This section describes the various elements used to model the
wireless network: the BS layout, the radio environment, and the
role of the BS connectivity model.

A. BS Layout

The HetNet is composed of K open-access and L closed-
access tiers. The BS layout in each tier is according to an
independent homogeneous Poisson point process in R

2 with
density λok , λcl for the kth open-access tier and l th closed-access
tier, respectively, where k = 1, . . . , K and l = 1, . . . , L . The
MS is allowed to communicate with any BS of the open-access
tiers, but cannot communicate with any of the closed-access
BSs. We assume the MS location is independent of the BS loca-
tions. Since the BS densities are homogeneous, without loss of
generality, the MS is placed at the origin.

B. Radio Environment and Downlink SINR

The signal transmitted from each BS undergoes fading and
path-loss. At this point we do not concern ourselves whether
the fading is fast fading or slow (shadow) fading and refer to
it as a generic fading factor. The SINR at an arbitrary MS in
the system from the i th BS of the kth open-access tier is the
ratio of the received power from this BS to the sum of the inter-
ferences from all the other BSs in the system and the constant
background noise η, and is expressed as

SINRki = Pok�oki R−εok
oki

Io − Pok�oki R−εok
oki + Ic + η

, (1)

where subscripts ‘o’ and ‘c’ indicate open-access and closed-
access tiers, respectively, Io = ∑K

m=1
∑∞

n=1 Pom�omn R−εom
omn

is the sum of the received powers from all the open-access
tier BSs; {Pom, �omn, εom, Romn}m=K , n=∞

m=1, n=1 are the constant
transmit power, random fading factor, constant path-loss expo-
nent, and the distance from the MS to the nth nearest BS of
the mth open-access tier; Ic =∑L

l=1
∑∞

n=1 Pcl�cln R−εcl
cln is the

sum of the received powers from all the closed-access tier
BSs; {Pcl , �cln, εcl , Rcln}l=L , n=∞

l=1, n=1 lists the constant transmit
power, random fading factor, the constant path-loss expo-
nent, and the distance from the MS to the nth nearest BS
of the l th closed-access tier. The fading factors {�omn}∞n=1
are i.i.d. random variables with the same distribution as �om ,
m = 1, . . . , K , and similarly, the fading factors {�cln}∞n=1
are i.i.d. random variables with the same distribution as
�cl , l = 1, . . . , L . Further, following [19], it is assumed that{
E

[
�

2
εm
om

]}K

m=1
,

{
E

[
�

2
εcl
cl

]}L

l=1
< ∞. The various symbols

introduced in this section are listed in Table I for quick
reference.

C. BS Connectivity Models

Given thresholds {βk}K
k=1, a MS is able to communicate with

a BS i of the kth open-access tier if SINRki > βk . In this case,
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the MS is said to be in coverage. The BS connectivity model
determines to which BS the MS connects and consequently its
coverage performance. The next two sections provide the main
results of this paper. They define and analyze the max-SINR,
nearest-BS, MIRP, and MBRP connectivity models.

III. MAX-SINR AND NEAREST-BS COVERAGE

PROBABILITY

Under the max-SINR connectivity model, the MS is said to
be in coverage if there exists at least one BS among all the open-
access tiers with an SINR at the MS above the corresponding
threshold, and is expressed as follows.

P
max-SINR
coverage = P

(
K⋃

k=1

{
max

i
(SINRki ) > βk

})
, (2)

where SINRki corresponds to the SINR of the i th BS of the kth

tier as defined in (1).
The MS is said to be in coverage under the nearest-BS con-

nectivity model if there exists at least one of the nearest BSs
of the K open-access tiers with SINR at the MS above the
corresponding threshold. This is expressed as

P
nearest
coverage = P

(
K⋃

k=1

{SINRk1 > βk}
)

, (3)

where SINRk1 is the SINR at the MS from tier k’s nearest BSs.
The relative performance is given in this proposition.

Proposition 1: For the same system parameters,
P

max-SINR
coverage ≥ P

nearest
coverage.

The above result is easily proved by noting the coverage
events in (2) are a superset of those in (3).

The downlink coverage probability under max-SINR con-
nectivity for a single-tier network was computed in [14]. The
method is generalized to compute the coverage probability for
the max-SINR and nearest-BS connectivity models for the more
general HetNets model.

Theorem 1: The HetNet coverage probability under the max-
SINR and the nearest-BS connectivity models are as follows:

P
max-SINR
coverage =

K∑
i=1

λoi
2π

εoi
(γi Poi )

2
εoi E

[
�

2
εok

ok

]

×
∫ ∞

y=0

∫ ∞

ω=−∞
LIo+Ic+η, max

i=1,··· ,Kγi Mi ≤y ( jω)

×

(
e

jωy
(

1−γ −1
i

)
− e

jω
(
η+y
(
κ−1−γ −1

i

)))
2π jωy

1+ 2
εoi

dωdy,

(4)

P
nearest
coverage =

∫ ∞

y=0

∫ ∞

ω=−∞
e jωy − e jω( y

κ
+η)

jω2π

× ∂

∂u
LIo+Ic+η, max

i=1,··· ,Kγi Ni ≤u ( jω)

∣∣∣∣
u=y

dωdy,

(5)

TABLE I
LIST OF SYMBOLS USED IN THE PAPER

where κ = max
i=1,··· , K

γi (see Table I); and the Laplace trans-

form function, LIo+Ic+η, max
i=1,··· ,Kγi Mi ≤y ( jω), in (4) and the

derivative of the Laplace transform function, ∂
∂uLIo+Ic+η,

max
i=1,··· ,Kγi Ni ≤u ( jω), in (5) are given in (30) and (35),

respectively.

Proof: See Appendix A. �
Using an alternate approach, expressions for the HetNet cov-

erage probability are obtained in [22] when all the fading
factors are i.i.d. exponential random variables. For a general
system model as in this paper, to the best of our knowledge, the
HetNet coverage probability has not been characterized before.

The semi-analytical expressions are extremely complicated
even for numerical computations. Nevertheless, we can gain
some insights into the problem. First, we observe the role of
fading in the max-SINR connectivity model.

Corollary 1: The HetNet performance under max-SINR
connectivity with an arbitrary fading distribution at each
tier is the same as in another HetNet with open-access

and closed-access BS densities as

{
λoiE

[
�

2
εoi

oi

]}K

i=1
and{

λciE

[
�

2
εci
ci

]}L

i=1
, respectively, and unit fading factor.

The above result is obtained by noting that the effect of

fading is equivalent to scaling the density of BSs by the 2
ε

th

moment of the fading factor random variable [19, Corollary 2].
Most prior wireless network studies that use stochastic geom-
etry assume fading factors to be i.i.d. exponential random
variables, as this greatly simplifies the analysis and renders
itself to closed-form coverage probabilities and other related
performance metrics (see [26]). However, the exponential dis-
tribution does not accurately capture the slow fading environ-
ment. Interestingly, the above corollary shows any fading factor

distribution that has the correct 2
ε

th
moment is sufficient for the

max-SINR connectivity model. Unfortunately, the same is not
true for the nearest-BS connectivity model.

Next, we observe that we only ever need to consider a single
closed tier of BSs with unity transmission power and fading
factor.

Corollary 2: If the closed tier path-loss exponents are all
equal, i.e. {εcl}L

l=1 = εc, the downlink coverage probability in
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the HetNet is the same as in another HetNet with the same open-
access tiers as in the original HetNet (described in Section II-A)
and one closed access tier where the BSs have unity transmis-
sion power and fading factor, and are arranged according to a
homogeneous Poisson point process with a BS density given by

λc =∑L
l=1 λcl P

2
εc

cl E

[
�

2
εc

cl

]
.

Proof: Inspecting equations (4), (5), (29)–(31) the closed-
access tiers affect the HetNet downlink coverage probabil-
ity solely through the Laplace transform expression in (29).
Substituting {εcl}L

l=1 = εc in (29), the Laplace transform is the
same as in the case when there is a single closed-access tier with
base-station arrangement according to a homogeneous Poisson
point process with BS density λc, unity transmission power and
fading factor, and path-loss exponent εc. �

When the path-loss expoenents differ between closed tiers,
we can still create a single equivalent closed tier but with a non-
homogeneous intensity function as follows.

Corollary 3: The downlink coverage probability in the
HetNet is the same as in another HetNet with the same open-
access tiers as in the original HetNet (described in Section II-A)
and one closed access tier where the BSs have unity trans-
mission power, fading factor and path-loss exponent, and are
arranged according to a non-homogeneous Poisson point pro-
cess with a BS density as a function of radial distance r from
the origin:

λc (r) =
L∑

l=1

λcl P
2

εcl
cl E

[
�

2
εcl
cl

]
r

2
εcl

−1
, r ≥ 0. (6)

Proof: The total closed-access interference power Ic is
independent of the signal power and interference power at the
MS from the open-access tiers. Next, Ic satisfies the following
stochastic equivalence Ic =st

∑∞
n=1 R̃−1

n , where
{

R̃n
}∞

n=1 is the
set of distances from the origin of BSs arranged according to a
non-homogeneous Poisson point process with BS density func-
tion given in (6). This is obtained by first using [19, Theorem 2]
to obtain an equivalent BS arrangement for each closed-access
tier according to non-homogeneous Poisson point process with
unity transmission power, fading factor and path-loss exponent
at each BS in the tier. Since the BS arrangements, transmission
and fading characteristics of the BSs of all closed-access tiers
are independent of each other, using the Superposition theo-
rem [32, Page 16], the L closed-access tiers can be combined
together to obtain a single closed-access tier with BS density
function as shown in (6). Due to [19, Theorem 2], the equiva-
lent BS arrangement has the same probability distribution for
Ic as the original case. �

We note that both corollaries apply to the max-SINR and
nearest-BS connectivity models.

IV. MIRP AND MBRP COVERAGE PROBABILITY

Under the maximum instantaneous received power
(MIRP) connectivity model, the MS connects to the BS
with the maximum instantaneous received power among all
the open-access tiers. This BS will also have the highest SINR

(since all tiers contribute to the interference). Let this BS’s
index be (T, I ) = argmax

k=1,··· , K , i=1, 2,···
SINRk,i . In this case

P
MIRP
coverage = P

({
SINRT,I > βT

})
(7)

Another HetNet connectivity model is the maximum biased
received power (MBRP) connectivity model studied in [30].
Under MBRP, the MS associates with the BS with the maxi-
mum long-term average received-power with a certain bias in
each tier. By long-term average we mean the MS measures the
expected value of the fading factor. Since fading factors within
a tier all have the same distribution, the serving BS will be the
nearest BS in its tier. The tier-index of the serving BS and the
HetNet coverage probability under MBRP are determined as
follows:

T = argmax
k=1,··· , K

max
i=1, 2,···

PokE [�oki ] R−εok
oki Bok

= argmax
k=1,··· , K

PokE [�ok] R−εok
ok1 Bok (8)

P
MBRP
coverage =P

({
SINRT,1 > βT

})
, (9)

where {Bok(> 0)}K
k=1 are the biasing factors;{

PokE [�oki ] R−εok
oki

}∞
i=1

is the long-term averaged received

power at the MS from the kth tier BSs; and SINRk,i is defined in
(1). When {Bok}K

k=1 = 1, MBRP is called maximum averaged
received power (MARP) connectivity.

From the definition of the HetNet coverage probability
under MIRP and MBRP, the stochastic ordering result can be
extended beyond Proposition 1 as follows.

Proposition 2: If a HetNet has {βk}K
k=1 = β or {βk}K

k=1 ≥
1, and the MBRP bias factor is Bok = 1

PokE[�ok ] for k =
1, · · · , K , then P

MBRP
coverage = P

nearest
coverage ≤ P

max-SINR
coverage = P

MIRP
coverage.

Proof: With Bok = 1
PokE[�ok ] , for k = 1, · · · , K , by

inspecting equations (8), (9) and (26), we get P
MBRP
coverage =

P
nearest
coverage. When {βk}K

k=1 = β, by inspecting equations (7) and

(25), it is clear that Pmax-SINR
coverage = P

MIRP
coverage. From [26, Lemma 1],

when {βk}K
k=1 ≥ 1, there exists at most one open-access BS

that can have an SINR above the corresponding threshold. As a
result, HetNet coverage probability in (2) becomes Pmax-SINR

coverage =∑K
k=1 P ({maxi (SINRki ) > βk}) = P

MIRP
coverage. �

For the remainder of this section, we assume a single
closed access tier with homogeneous intensity λc, transmis-
sion power Pc, path-loss exponent εc and i.i.d. fading factors

�c

(
E

[
�

2
εc
c

]
< ∞
)

. We begin by analyzing the MIRP case.

A. SINR Characterization Under MIRP Connectivity

The SINR characterization is simplified by considering a
stochastically equivalent two-tier 1-D system as follows.

Lemma 1: The SINR at the MS under MIRP is the same
as in a one-dimensional non-homgeneous two-tier HetNet
with one open-access network and one closed-access network,
respectively. In the equivalent two-tier HetNet, the open-
access network has a BS density function λ̃ (r) =∑K

k=1 λ̃ok (r)
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with λ̃ok (r) = λok
2π
εok

P
2

εok
ok E

[
�

2
εok
ok

]
r

2
εok

−1
, r ≥ 0 and the

closed-access network has a BS density function λ̂ (r) =
λc

2π
εc

P
2
εc

c E

[
�

2
εc
c

]
r

2
εc

−1. All the BSs in the equivalent HetNet

have unity transmit powers, fading factors and path-loss expo-
nents. The SINR stochastic equivalence is shown below

SINRT,I =st
R̃−1

1∑∞
k=2 R̃−1

k +∑∞
l=1 R̂−1

l + η
, (10)

where =st indicates the equivalence in distribution; and{
R̃i
}∞

i=1

({
R̂i
}∞

i=1

)
is the ascendingly ordered distances of

the open (closed) BSs from the origin, obtained from a non-
homogeneous 1-D Poisson point process with BS density
function λ̃ (r)

(
λ̂ (r)
)

defined above.

Proof: See Appendix B. �
The next lemma shows interesting stochastic equivalences.
Lemma 2: When {εok}K

k=1 = εc = ε, with respect to the
HetNet SINR distribution under MIRP connectivity, the follow-
ing HetNets are equivalent. All three equivalent HetNets have
unity transmit power and fading factors for all tiers.

1) K open-access tiers and 1 closed-access tier with BS

densities

{
λok P

2
ε

okE

[
�

2
ε

ok

]}K

k=1
, λc P

2
ε

c E

[
�

2
ε

c

]
, respec-

tively, and a background noise power η (same as the
original HetNet).

2) 1 open-access tier and 1 closed-access tier with BS den-

sities
∑K

l=1 λol P
2
ε

olE

[
�

2
ε

ol

]
, λc P

2
ε

c E

[
�

2
ε

c

]
, respectively,

and a background noise power η.
3) 1 open-access tier and 1 closed-access tier with BS den-

sities 1, λ̂c =
λc P

2
ε

c E

[
�

2
ε

c

]
∑K

l=1 λol P
2
ε

ol E

[
�

2
ε

ol

] , respectively and a back-

ground noise power η̄ = η

(∑K
l=1 λol P

2
ε

olE

[
�

2
ε

ol

])− ε
2

.

We can express this as a function of the total number of tiers,
BS densities of each open-access tier, BS density of the closed-
access tier, background noise power, and the tier index of the
serving BS:

SINRT,I =st SINR

(
K + 1,

{
λok P

2
ε

okE

[
�

2
ε

ok

]}K

k=1
,

λc P
2
ε

c E

[
�

2
ε

c

]
, η, T

)
(11)

=st SINR

(
2,

K∑
l=1

λol P
2
ε

olE

[
�

2
ε

ol

]
, λc P

2
ε

c E

[
�

2
ε

c

]
, η, 1

)
(12)

=st SINR
(
2, 1, λ̂c, η̄, 1

)
, (13)

where =st indicates equivalence in distribution.

Proof: See Appendix C. �
Lemmas 1 and 2 generalize [2, Lemma 1] and [3, Lemma 1],

respectively, to the case where the HetNet also contains a
closed-access tier. Next, we compute the HetNet coverage
probability.

Theorem 2: The HetNet coverage probability under MIRP is

P
MIRP
coverage =

K∑
k=1

λok P
2

εok
ok E

[
�

2
εok

ok

] ∫ ∞

r=0
2πr
∫ ∞

ω=−∞

e jωηrεok

(
1 − e− jω

βk

)
jω2π

e
−λc P

2
εc

c E

[
�

2
εc

c

]
πr

2εok
εc G
(

jω, 2
εc

)
×

e
−∑K

l=1 λol P
2

εol
ol E

[
�

2
εol

ol

]
πr

2εok
εol 1 F1

(
− 2

εol
;1− 2

εol
; jω
)
dωdr, (14)

where G
(

jω, 2
εc

)
= ∫∞

t=0

(
1 − e jωt

) 2
εc

t−1− 2
εc dt , and

1 F1 (·; ·; ·) is called the confluent hypergeometric func-
tion of the first kind (Refer [33, Chapter 1, Section 1.7] for the
definition).

Proof: The proof is along the same lines as [2,
Theorem 1], and is not shown here. �

The above expression can be greatly simplified under certain
special cases, and the following results present these cases.

Corollary 4: When {εok}K
k=1 = εc = ε, the HetNet coverage

probability is

P
MIRP
coverage =

K∑
k=1

λok P
2
ε

okE

[
�

2
ε

ok

]∫∞
ω=−∞

1−e
− jω

βk
jω2π

H( jω)dω

∑K
l=1 λol P

2
ε

ol E

[
�

2
ε

ol

] ,

(15)

H( jω)=
∫ ∞

r=0
2πre

jωη̄rε−πr2
(

1 F1

(
− 2

ε
;1− 2

ε
; jω
)
+λ̂cG

(
jω, 2

ε

))
dr

where H ( jω)|η̄=0 = 1

1 F1

(
− 2

ε
;1− 2

ε
; jω
)
+λ̂cG

(
jω, 2

ε

) , η̄ and λ̂c are

from Lemma 2 and G (·, ·) is defined in Theorem 2. When
{βk}K

k=1 = β or {βk}K
k=1 ≥ 1, (15) is equal to P

max-SINR
coverage . When

there is no closed-access tier
(
λ̂c = 0

)
, (15) is equal to the

single-tier network coverage probability (see [19, Corollary 4]
and is independent of the BS transmission powers and fading
factors.

Proof: The result is obtained by exchanging the order of
integrations in (14) and simplifying. �

The following theorem shows another scenario when the
HetNet coverage probabilities are identical for the max-SINR
and MIRP connectivity models.

Theorem 3: When βk ≥ 1, ∀ k = 1, · · · , K , the HetNet
coverage probability is given by

P
max-SINR
coverage = P

MIRP
coverage =

K∑
k=1

λok P
2
εk

ok E

[
�

2
εk
ok

]
β

−εk
k

�
(

1 + 2
εok

) ×

∫ ∞

r=0
2πr × exp

⎛
⎜⎜⎝−ηrεok −

λcπ P
2
εc

c E

[
�

2
εc

c

]
r

2εok
εc

�
(

1 + 2
εc

)
sinc
(

2π
εc

)

−
K∑

l=1

λolπ P
2

εol
ol E

[
�

2
εol
ol

]
r

2εok
εol

�
(

1 + 2
εol

)
sinc
(

2π
εol

)
⎞
⎟⎟⎟⎠ dr, (16)
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and in the interference limited case (η = 0) when {εok}K
k=1 =

εc = ε

P
max-SINR
coverage =P

MIRP
coverage =

K∑
k=1

λok P
2
ε

okE

[
�

2
ε

ok

]
sinc
(

2π
ε

)
β−ε

k

λc P
2
ε

c E

[
�

2
ε

c

]
+∑K

l=1λol P
2
ε

olE

[
�

2
ε

ol

] .
(17)

Proof: See Appendix D to derive (16), which simplifies to
(17) when η = 0. �

In the above result, (16) can be easily computed numer-
ically and is an extension of [26, Theorem 1] to the arbi-
trary fading and path-loss case. Note that if there is no
closed tier and {βk}K

k=1 = β, then P
max-SINR
coverage = P

MIRP
coverage =

sinc
(

2π
ε

)
β−ε. Said otherwise, if all tiers are open, there is no

noise, and the pathloss exponent and threshold are the same
for every tier, then adding additional tiers has no effect on
performance.

The study of the MIRP connectivity has given many interest-
ing insights and simplifications for the max-SINR case. Further,
other performance metrics pertinent to HetNets such as the
average fraction of load carried by each tier in the HetNet and
the area-averaged rate acheived by an MS that is in coverage
in a HetNet can also be derived using the results in this section.
We refer the reader to [3, Theorems 2, 3 and 4] for these results.
Now, we study the MBRP connectivity in further detail and its
relationships to nearest-BS connectivity.

B. SINR Characterization Under MBRP Connectivity

It is clear from equations (26) and (35) that it is tedious
to compute the HetNet coverage probability under nearest-BS
connectivity, even with numerical integration, for the arbi-
trary fading case. With slight modifications to the approach
in Theorem 1 and [14, Theorem 1], HetNet coverage proba-
bility with MBRP can also be derived. These expressions do
not simplify significantly beyond that in (26) and hence are not
presented here. Hence, we conduct a similar qualitative study
of the HetNet performance under MBRP, as in Section IV-A.

Corollary 5: Under MBRP connectivity, the following
stochastic equivalence holds:

SINRT,1 =st
P̃oT �oT 1 R̃−1

oT 1∑K
m=1
∑∞

l=1 P̃om�oml R̃−1
oml−P̃oT �oT 1 R̃−1

oT 1+
∑∞

n=1 �cn R̂−1
cn +η

,
(18)

where the equivalent HetNet has BS distributions accord-
ing to non-homogeneous 1-D Poisson process with density

functions

{
λ̃k (r) = λok

2π
εok

(PokE [�ok] Bok)
2

εok r
2

εok
−1
}K

k=1
,

λ̂ (r) = λc
2π
εc

P
2
εc

c r
2
εc

−1, r ≥ 0, for the K open-access tiers
and the closed-access tier, respectively, transmission power
of the mth (m = 1, . . . , K ) open-access tier BSs are
P̃om = (E [�om] Bom)−1 and unity for the closed-access tier
BSs; and unity path-loss exponent for all BSs, but the fading
factor distributions are the same as the original HetNet.

Proof: From (8), T = arg max
m=1,··· ,K

Pom R−εom
om1 E [�om] Bom

P
({

SINRT,1 >βT
}) = P

({
PoT �oT 1 R

−εoT
oT 1

Io−PoT �oT 1 R
−εoT
oT 1 +Ic+η

>βT

})
,

where Io and Ic are defined in (1). Now, as in the proof
of Lemma 1, using [2, Theorem 2], let us consider the set{

R̃omi = (PomE [�om] Bom)−1 Rεom
omi

}∞
i=1 as a set of distances

from the origin of mth tier BSs from the origin in an equivalent
HetNet. Using the Marking theorem of Poisson processes [32,
Page 55], the equivalent HetNet is from a non-homogeneous
Poisson point process with a BS density function λ̃om (r), r ≥
0, ∀ m = 1, · · · , K as shown in Corollary 5. Further, the serv-
ing BS is the closest among all the open-access BSs of the
HetNet. Finally, the mth tier transmit power of the equivalent
system, P̃om , is obtained to ensure that the received power at the
MS is stochastically equivalent to that of the original cellular
system. �

The result is yet another application of the Marking theorem
of Poisson processes, and can be proved using the same tech-
niques as developed in Lemma 1. The next result characterizes
the serving BS under the MBRP case.

Lemma 3: For the serving BS under MBRP connectivity, the
probability mass function (p.m.f.) of its tier-index and the joint
p.d.f. of its tier-index and distance from the MS are

P({T =k})=
∫ ∞

r=0
λ̃ok (r) · e−∑K

l=1 λolπ(PolE[�ol ]Bol )
2

εol r
2

εol dr,

(19)

fT,R̃oT,1
(k, r) = λ̃ok (r) · e−∑K

l=1 λolπ(PolE[�ol ]Bol )
2

εol r
2

εol
,

(20)

for k = 1, · · · , K , where λ̃ok (r)and R̃oT,1 are from
Corollary 5. When {εol}K

l=1 = ε,

P ({T = k}) = λok (PokE [�ok] Bok)
2
ε∑K

l=1 λol (PolE [�ol ] Bol)
2
ε

. (21)

Proof: Along the same lines as [2, Lemmas 3 and 4], the
c.c.d.f. of the distance of the serving BS belonging to the kth

open-access tier are derived.

P

(
{T = k}

⋂{
R̃ok1 > r

}) (a)=

P

⎛
⎝ K⋂

l=1, l �=k

{
R̃ol1 > R̃ok1

}⋂{
R̃ok1 > r

}⎞⎠ =

ER̃ok1

⎡
⎣I (R̃ok1 > r

)
P

⎛
⎝ K⋂

l=1, l �=k

{
R̃ol1 > R̃ok1

}∣∣∣∣∣∣ R̃ok1

⎞
⎠
⎤
⎦

(b)=
∫ ∞

t=r
λ̃ok (t) e−∑K

l=1
∫ t

s=0 λ̃ol (s)dsdt, (22)

where (a) is obtained since the serving BS belongs to the kth

tier if the nearest BS among all the open-access tiers in the
equivalent HetNet of Corollary 5 belongs to the kth tier and
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(b) is obtained by noting that
{

R̃ol1
}K

l=1 is a set of indepen-
dent random variables with the p.d.f. of R̃ol1 as f R̃ol1

(r) =
λ̃ol (r) · e− ∫ r

s=0 λ̃ol (s)ds , r ≥ 0 from the properties of Poisson
process. Computing the integrals and setting r = 0 yields (19),
while taking the derivative with respect to r yields (20). �

When {E [�ol ]}K
l=1 = 1, (19) and (21) reduce to [30, (3) and

(4)], respectively. Deriving the coverage probability expres-
sions for the arbitrary fading distribution case under MBRP
suffers from similar analytical intractabilities as the nearest-
BS case studied in Section III. Hence, we consider the special
case where fading factors are i.i.d. unit mean exponential ran-
dom variables. In [30], Jo et. al. have demonstrated that simple
expressions for the HetNet coverage probability under MARP
can be computed when the fading factors are i.i.d. exponen-
tial random variables. These results were restricted to the
open-access case. We extend to a general HetNet below.

Theorem 4: The HetNet coverage probability under MBRP
connectivity with i.i.d. exponentially distributed fading factors
at all BSs is

P
MBRP
coverage =

K∑
k=1

λok P
2

εok
ok β

− 2
εok

k

∫ ∞

r=0
2πre−ηrεok ×

e
− λcπ P

2
εc

c r
2εok
εc

sinc
(

2π
εc

) −∑K
l=1 λolπ P

2
εol

ol F(βk ,εol )r
2εok
εol

dr (23)

where F(βk, εol) = β
− 2

εol
k

[
1 − 2 F1

(
1, 2

εol
; 1 + 2

εol
;−β−1

k

)]
+

1

sinc
(

2π
εol

) . When {εok}K
k=1 = ε and η = 0,

P
nearest
coverage = P

MARP
coverage =

K∑
k=1

λok P
2
ε

okβ
− 2

ε

k sinc
(

2π
ε

)
λc P

2
ε

c +∑K
l=1 λol P

2
ε

ol F (βk, ε) sinc
(

2π
ε

) . (24)

Proof: See Appendix E. �
The above is a generalization of [30, Theorem 1]

to the closed-access case. Further, comparing (17) and
(24), clearly, P

MIRP
coverage ≥ P

MARP
coverage, when {βk}∞k=1 ≥ 1 since

F (βk, εol) sinc
(

2π
εol

)
≥ 1, ∀ βk ≥ 0, εol > 2.

V. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we provide some numerical examples that
complement the theoretical results presented until now. We
restrict ourselves to the study of a two tier HetNet consisting of
the macrocell and the femtocell networks, under the max-SINR
connectivity model. More tiers and other models can be ana-
lyzed but this is suggestive of the kinds of results we can derive.
It is also representative because we have shown in many cases
the analysis of many tiers can be reduced to analyzing one or a
few tiers. Please refer to Appendix F for the algorithm to per-
form the Monte-Carlo simulations. The simulation results in the
graphs are the lines and the semi-analytic results are the marks.
These lie on top of each other for all of the graphs. For all the

Fig. 1. Two-tier HetNet (a) Comparing coverage probabilities for various fad-
ing distributions, (b) Average fraction of MSs served by macrocell BSs vs
macrocell SIR threshold.

studies in this paper, λ2 = 5λ1, P1 = 25P2, ε = 3, β2 = 1 dB,
and η =0 where the subscripts ‘1’ and ‘2’ correspond to macro-
cell and femtocell networks, respectively. Further, under the
closed-access BS association scheme, the MS has access to the
macrocell network only.

In Figures 1a, 1b and 2, we study the coverage probability,
the average fraction of users served by the macrocell network,
and coverage conditional average rate for various configura-
tions of fading distributions at the macrocell and the femtocell
BSs. Note that the expressions for the coverage conditional
average rate and the average fraction of users served by the
macrocell network can be found in [3, Theorems 2, 3 and 4]
and are included to show the applicability of the results. In all
the figures, T1 and T2 stand for tier 1 and tier 2. Further, the
fading factor distributions are either exponential (Exp(·)) with
a given mean or log normal (LN(·)) with a zero mean and given
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Fig. 2. Two-tier HetNet: Variation of coverage conditional average rate with
Tier 1 SIR threshold and different fading distributions.

standard deviation (when the random variable is expressed in
dB).

The plots in Figure 1a clearly show that a MS has a bet-
ter coverage probability under open-access than closed-access
as predicted by Theorem 3. The top plot (T1: Exp(40), T2:
Exp(1)) is equivalent to the case where P1 = 1000P2, with the
fading factors at both the tiers being unit mean exponential dis-
tributions. The open and closed access have approximately the
same coverage probabilities because the MS is almost always
served by a macrocell BS, as can been seen in the corresponding
curve in Figure 1b. As a result, blocking access to the femtocell
BSs altogether, has only a marginal influence on the coverage
probability at the MS.

When both tiers have the same fading factor distribution, the
coverage probability becomes independent of the exact distri-
bution as shown in (15). This is shown by the next two curves
(T1: LN(4dB), T2: LN(4dB)) and (T1: Exp(1), and T2: Exp(1))
in the figures which each have this characteristic and lie on top
of each other. We also note in (15) that the only component

of the fading factor that is important is E
[
�

2
ε

]
. This is shown

in the last two curves (T1: LN(4dB), T2: LN(6dB)) and (T1:
LN(4dB), T2: Exp(230)) which lie on top of each other since
LN(6dB) and Exp(230) have the same (2/ε)th moments.

Under open-access, the coverage probability and the cover-
age conditional average rate (see Figures 1a and 2) for all the
5 curves mentioned above intersect when the SIR threshold for
the macrocell network is equal to 1 dB. This brings us to an
important point. Given all open tiers and no noise, when the
SIR threshold and path loss exponent is the same for all the
tiers, these become the only factors that affect the performance
and all fading factors, transmit power, and BS density drop out.

VI. CONCLUSIONS

In this paper, for the most general model of the HetNets, the
downlink coverage probability and other related performance

metrics such as the average downlink rate and average fraction
of users served by each tier of the HetNet are characterized.
Two important BS connectivity models are studied, namely,
the max-SINR and the nearest-BS connectivity, respectively.
Semi-analytical expressions for the HetNet coverage probabil-
ity is obtained for both the cases. Further, several properties
pertaining to the HetNet downlink performance are analyzed,
which provide great insights about these complex networks.
As an example, we identify the MIRP and MBRP connec-
tivity models to be equivalent to the former models under
certain special conditions. These models are much simpler to
analyze and the results for these models expose interesting
properties of the HetNet. The results admit arbitrarily dis-
tributed fading factors. So, they can be applied to scenarios
that consider either fast or slow fading or a combined fad-
ing. The results in this paper greatly generalize the existing
HetNet performance characterization results and are essen-
tial for better understanding of the future developments in
wireless communications that are heavily based on HetNets.
Future work will address fast and slow fading when treated
separately.

APPENDIX

A. Proof for Theorem 1

The coverage probability expressions in (2) and (3) can be
equivalently expressed as follows:

P
max-SINR
coverage = P

(
K⋃

k=1

{
Mk

Io + Ic + η − Mk
> βk

})

= P

({
max

k=1,··· , K
γk Mk > Io + Ic + η

})
, (25)

P
nearest
coverage = P

(
K⋃

k=1

{
Nk

Io + Ic + η − Nk
> βk

})

= P

({
max

k=1,··· , K
γk Nk > Io + Ic + η

})
, (26)

where βk, γk are defined in Table I, Mk =
max

l=1,··· , ∞
Pok�okl R−εok

okl is the maximum of the received

powers from all the kth tier’s BSs, Nk = Pok�ok1 R−εok
ok1 is

the received power from the nearest BS among all the kth

tier’s BSs, Io + Ic + η is the total received power at the
MS, η is the background noise power, and Io, Ic (defined
in (1)) are the sum of the received powers from all the
open-access BSs and closed-access BSs in the system,
respectively. Notice from (25) and (26) that the HetNet
coverage probability can be obtained if the joint probability

density function (p.d.f.) of

(
Io + Ic + η, max

i=1,··· ,K
γi Mi

)
and(

Io + Ic + η, max
i=1,··· ,K

γi Ni

)
is known, respectively. Using
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the same steps as in the proof of [14, Corollary 4], the above
mentioned joint p.d.f.s can be expressed as

f Io+Ic+η, max
i=1,··· ,Kγi Mi (x, y) =∫ ∞

ω=−∞
∂

∂u
LIo+Ic+η, max

i=1,··· ,Kγi Mi ≤u ( jω)

∣∣∣∣
u=y

e jωx

2π
dω, (27)

f Io+Ic+η, max
i=1,··· ,Kγi Ni (x, y) =∫ ∞

ω=−∞
∂

∂u
LIo+Ic+η, max

i=1,··· ,Kγi Ni ≤u ( jω)

∣∣∣∣
u=y

e jωx

2π
dω, (28)

where f·,· (·, ·) denotes the joint p.d.f. of the involved random
variables:

LIo+Ic+η, max
k=1,··· ,Kγk Mk≤u (s)

� E

[
e−s(Io+Ic+η)I

(
max

k=1,··· ,K
γk Mk ≤ u

)]
,

LIo+Ic+η, max
k=1,··· ,Kγk Nk≤u (s)

� E

[
e−s(Io+Ic+η)I

(
max

k=1,··· ,K
γk Nk ≤ u

)]
denote the Laplace transform function of the total received
power at the MS (Io + Ic + η) such that the received power
from the desired serving BS of each open-access tier satis-
fies the constraint γk Mk ≤ u and γk Nk ≤ u, for the max-SINR
connectivity and the nearest BS connnectivity models, respec-
tively; and I (·) is the indicator function. In order to avoid
repetition, we refer the reader to [14, Corollary 4] for the inter-
mediate steps for the derivation of (27) and (28). We begin with
computing the Laplace transform of the interference from the
closed-access tiers, Ic, LIc (s) = E

[
e−s Ic
]
.

Lemma 4: The Laplace transform of the interference from
the closed-access tiers is

LIc (s) = e
−∑L

l=1 λclπ(s Pcl )
2

εcl E

[
�

2
εcl

cl

]
�
(

1− 2
εcl

)
. (29)

Proof: The proof for (29) is as follows.

LIc (s) = E

[
exp

(
−s

L∑
l=1

∞∑
n=1

Pcl�cln R−εcl
cln

)]

(a)=
L∏

l=1

E

[
exp

(
−s

∞∑
n=1

Pcl�cln R−εcl
cln

)]

(b)=
L∏

l=1

exp

(
−λclE�cl

[∫ ∞

r=0

(
1 − e−s Pcl�clr−εcl

)
2πrdr

])
,

where (a) is obtained because the BS arrangement for the L
closed-access tiers and the corresponding transmission and fad-
ing factors are independent of each other, and (b) evaluates the
expectation in (a) using Campbell’s theorem for a Poisson point
process [32, Page 28], and (29) is obtained by evaluating the
integral in the expression of the equality (b). �

Next, we derive expressions for the two Laplace tranform
functions in (27) and (28) that will later be used to obtain semi-
analytical expressions for Pmax-SINR

coverage and P
nearest
coverage, respectively.

Lemma 5:

LIo+Ic+η, max
k=1,··· ,Kγk Mk≤u (s) = LIc (s)×

exp

(
−sη −

K∑
k=1

λokπ (s Pok)
2

εok E

[
�

2
εok

ok

]
×

[
�

(
1 − 2

εok

)
+ 2

εok
�

(
− 2

εok
,

su

γk

)])
, (30)

LIo+Ic+η, max
k=1,··· ,Kγk Nk≤u (s) =

LIc (s) e
−sη−∑K

k=1 λokπ(s Pok )
2

εok E

[
�

2
εok

ok

]
�
(

1− 2
εok

)
×

K∏
k=1

E�ok1

[∫ su
γk�ok1

x=0
λok

2π

εok
(s Pok)

2
εok x

− 2
εok

−1×
.

e
−�ok1x−λok

2π
εok

(s Pok )
2

εok E�ok

[
�

2
εok

ok �
(
− 2

εok
,x�ok

)]
dx

⎤
⎥⎦ , (31)

where u ≥ 0, LIc (s) is from Lemma 4 and the random vari-
ables �ok1 and �ok are i.i.d. for all k = 1, · · · , K .

Proof: The proof for (30) is shown below.

LIo+Ic+η, max
k=1,··· ,Kγk Mk≤u (s) =

E

[
exp (−s (Io + Ic + η)) × I

(
max

k=1,··· ,K
γk Mk ≤ u

)]
(a)= LIc (s) e−sη×

E

[
K∏

k=1

∞∏
l=1

e−s Pok�okl R
−εok
okl I
(
γk Pok�okl R−εok

okl ≤ u
)]

(b)= LIc (s) e−sη×
K∏

k=1

E

[ ∞∏
l=1

e−s Pok�okl R
−εok
okl I

(
Pok�okl R−εok

okl ≤ u

γk

)]

(c)= LIc (s) e−sη
K∏

k=1

exp

(
−λok

∫ ∞

r=0
(1−

E

[
e−s Pok�okr−εok

I

(
Pok�okr−εok ≤ u

γk

)])
2πrdr

)
(d)= LIc (s) e−sη

K∏
k=1

exp

(
−λokE�ok

[∫ ∞

t=0
(1−

e−tI

(
t ≤ su

γk

))
2π

εok
t
− 2

εok
−1

(s Pok�ok)
2

εok dt

])
(e)= LIc (s) e−sη

K∏
k=1

exp

(
−λokπ (s Pok)

2
εok E

[
�

2
εok
ok

]
×

[
�

(
1 − 2

εok

)
+ 2

εok

∫ ∞

t=0
e−t t

− 2
εok

−1
I

(
t >

su

γk

)
dt

])
(32)

where (a) is obtained by noting that Ic is independent of
the random variables Io and max

k=1,··· ,K
γk Mk ≤ u, LIc (s) is a
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direct consequence of Campbell’s theorem [32], e−sη is a con-

stant and

{
max

k=1,··· ,K
γk Mk ≤ u

}
⇐⇒
{
γk Pok�okl R−εok

okl ≤ u
}

,

∀ k = 1, · · · , K and l = 1, 2, · · · ; (b) is obtained since the
random variables corresponding to a given tier are independent
of the other tiers; (c) is obtained by applying Campbell’s theo-
rem [32] to each tier of the HetNet; (d) is obtained by changing
the variable of integration from r to t = s Pok�okr−εok ; (e) is
obtained by rewriting the integral in (d) using special func-
tions; and finally (30) is obtained by rewriting the integral in
(e) in terms of the incomplete Gamma function.

The proof for (31) follows along the same lines as above and
we provide a brief outline below:

LIo+Ic+η, max
k=1,··· ,Kγk Nk≤u (s)

LIc (s) e−sη

(a)= E

[
K∏

k=1

∞∏
l=1

e−s Pok�okl R
−εok
okl I

(
max

k=1,··· ,K
γk Pok�ok1

Rεok
ok1

≤ u

)]

= E

[
K∏

k=1

∞∏
l=1

e
−s Pok�okl R

−εok
okl +ln

(
I
(
γk Pok�ok1 R

−εok
ok1 ≤u

))]

(b)=
K∏

k=1

E�ok1,Rok1

[
e−s Pok�ok1 R

−εok
ok1 I
(
γk Pok�ok1 R−εok

ok1 ≤ u
)

×E

[ ∞∏
l=2

e−s Pok�okl R
−εok
okl I(Rokl>Rok1)

∣∣∣∣∣ Rok1

]]

(c)=
K∏

k=1

E�ok1,Rok1

[
e−s Pok�ok1 R

−εok
ok1 I
(
γk Pok�ok1 R−εok

ok1 ≤ u
)

×e
−λok
∫∞

r=Rok1

(
1−E

[
e−s Pok�okr−εok

])
2πrdr
]

(d)=
K∏

k=1

E�ok1,Rok1

[
e−s Pok�ok1 R

−εok
ok1 I
(
γk Pok�ok1 R−εok

ok1 ≤ u
)

× exp

(
−λokπ (s Pok)

2
εok ×

E�ok

[
�

2
εok
ok

∫ s Pok�ok R
−εok
ok1

t=0

(
1 − e−t) 2

εok
t
− 2

εok
−1

dt

])]
(33)

where the maximization in (a) is only among the nearest BSs
of the K tiers of the HetNet, LIc (s) is defined in (32); (b) is
obtained by exchanging the order of expectation and product
since the K tiers of the HetNet are independent of each other,
and further conditioning w.r.t. the fading factors and the dis-
tance of the nearest BS of each tier; (c) is obtained by applying
Campbell’s theorem to the set of kth tier BSs beyond Rok1,
conditioned on Rok1; (d) is obtained by further simplifying
(c); and finally (31) is obtained by evaluating the expecta-
tion w.r.t. Rok1 in (d) where the p.d.f. of Rok1 is fRok1 (r) =
λok2πre−λokπr2

, r ≥ 0, and further simplifying. �
Next, the partial derivative of the Laplace transform function

in (30) and (31) w.r.t. u are shown, which are in turn used to

compute the joint p.d.f.s of

(
Io + Ic + η, max

i=1,··· ,K
γi Mi

)
and(

Io + Ic + η, max
i=1,··· ,K

γi Ni

)
shown in (27) and (28), respec-

tively. We leave the proof to the interested readers as it involves
straightforward algebraic manipulation after taking the partial
derivative w.r.t. u to obtain (34) and (35), shown at the bottom
of the page.

To compare this result with [27], we note that for a unit mean

exponential random variable E

[
�

2
εok

ok

]
= �
(

1 + 2
εok

)
. Setting

{λcl}L
l=1 = 0 and {εok}K

k=1 = α, (34) reduces to [27, (2)].
Having computed the expressions for the joint p.d.f.’s in
(27) and (28), the coverage probabilities equations derived in
Theorem 1 can be proved below.

Once the joint p.d.f. has been obtained (see (27) and (28), the
probability of the event in (25) can be derived as follows:

P
max-SINR
coverage

(a)= P

({
1

κ
max

i=1,··· ,K
γi Mi + η <

Io + Ic + η < max
i=1,··· ,K

γi Mi

})
(b)=
∫ ∞

y=0

∫ y

x= y
κ
+η

f Io+Ic+η, max
i=1,··· ,Kγi Mi (x, y) dxdy

(c)=
∫ ∞

y=0

∫ ∞

ω=−∞
∂

∂u
LIo+Ic+η, max

i=1,··· ,Kγi Mi ≤y ( jω)

∣∣∣∣
u=y

× e jωy − e jω( y
κ
+η)

jω2π
dωdy,

∂
∂uLIo+Ic+η, max

i=1,··· ,Kγi Mi ≤u (s)

LIo+Ic+η, max
i=1,··· ,Kγi Mi ≤u (s)

=
K∑

k=1

λok
2π

εok
(γk Pok)

2
εok E

[
�

2
εok
ok

]
u

−1− 2
εok e

− su
γk , (34)

∂
∂uLIo+Ic+η, max

i=1,··· ,Kγi Ni ≤u (s)

LIo+Ic+η, max
i=1,··· ,Kγi Ni ≤u (s)

=
K∑

k=1

E�ok1

⎡
⎢⎢⎢⎣�

2
εok

ok1 e
−λok

2π
εok

(s Pok )
2

εok E�ok

⎡
⎣�

2
εok

ok �

(
− 2

εok
,

su�ok
γk�ok1

)⎤⎦
⎤
⎥⎥⎥⎦

ue
su
γk

∫ 1
x=0

E�ok1

⎡
⎢⎢⎢⎣�

2
εok

ok1 e
−λok

2π
εok

(s Pok )
2

εok E�ok

⎡
⎣�

2
εok

ok �

(
− 2

εok
,

xux�ok
γk�ok1

)⎤⎦
⎤
⎥⎥⎥⎦

x
2

εok
+1

e
sux
γk

dx

. (35)

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 05,2023 at 16:49:51 UTC from IEEE Xplore.  Restrictions apply. 



MADHUSUDHANAN et al.: ANALYSIS OF DOWNLINK CONNECTIVITY MODELS IN A HETEROGENEOUS CELLULAR NETWORK 3905

where (a) is obtained by noting that{
Io + Ic + η < max

i=1,··· ,K
γi Mi

}
={

1

κ
× max

i=1,··· ,K
γi Mi + η < Io + Ic + η < max

i=1,··· ,K
γi Mi

}
⋃{{

Io + Ic + η < max
i=1,··· ,K

γi Mi

}⋂
⎧⎨
⎩Io + Ic + η ≤

max
i=1,··· ,K

γi Mi

κ
+ η

⎫⎬
⎭
⎫⎬
⎭ ,

and the second set in the union of two sets shown above is a null
set, (b) expresses the probability of the coverage event in terms
of the joint p.d.f., (c) is obtained by substituting for the joint
p.d.f. from (27), then interchanging the order of integrations
of the variables x and ω which is justified by the boundedness
of the integrals. Finally, the above expression can be further
simplified to obtain (4).

The same steps can be followed for obtaining (5), and are
omitted for brevity.

B. Proof for Lemma 1

Given a BS belonging to the kth open-access tier is at a
distance R from the origin, then, due to [2, Theorem 2],
R̃ = (Pok�ok)

−1 Rεok represents the distance of the BS from
the origin where the BS arrangement is according to a non-
homogeneous 1-D Poisson point process with BS density

function λ̃ok (r), as long as E

[
�

2
εok
ok

]
< ∞, for each k =

1, 2, · · · , K . Similarly, for the closed-access tier, R̂ =
(Pc�c)

−1 Rεc is the distance where the BS arrangement is
according to a non-homogeneous 1-D Poisson point process

with BS density function λ̂ (r), as long as E

[
�

2
εc
c

]
< ∞. This

is a consequence of the Mapping theorem [32, Page 18] and
the Marking Theorem [32, Page 55] of the Poisson processes.
Further, since the BS arrangements in the different tiers were
originally independent of each other, the set of all the BSs in
the equivalent 1-D non-homogeneous Poisson process is merely
the union of all R̃′s in all tiers. By the Superposition Theorem
[32, Page 16] of Poisson processes, the combined process is a
non-homogeneous Poisson point process with density function
λ̃ (r) =∑K

k=1 λ̃ok (r) , r ≥ 0.

In summary, we have converted the BS arrangement on a 2-
D plane of a HetNet to a BS arrangement of the equivalent 2-
tier network along 1-D (positive x-axis), and hence, the SINR
distributions of both these networks are also equivalent. Further,
by our construction, the MIRP BS in the HetNet corresponds to
the BS that is nearest to the origin (MS) in the equivalent 2-tier
network. As a result, SINR may be written in terms of the R̃’s
and R̂’s indexed in the ascending order, and we get (10).

C. Proof for Lemma 2

The HetNet SINR under MIRP can be computed as follows.
For each tier m = 1, · · · , K , c (c refers to the closed-access

tier), form the set

{(
Pom�om,l

)− 1
ε Rom,l

}∞
l=1

and represent as{
R̄m,l
}∞

l=1 where R̄’s are ascendingly ordered. Now,
{

R̄−ε
m,l

}∞
l=1

represents the received powers of all the mth tier BSs in the
descending order. Finally, the desired BS’s power and tier index
(T ) can be easily found by identifying the maximum in the

set
{

R̄−ε
m,1

}K

m=1
and the SINR can be computed. Using [19,

Corollary 3] which is an application of the Marking theorem
[32, Page 55], it can be seen that

{
R̄m,l
}∞

l=1 represents the
distances from origin of BSs arranged according to homoge-

neous Poisson point process with BS density λom PomE

[
�

2
ε

om

]
,

where �om has the same distribution as the mth tier fading fac-

tors. As a result, the set
{

R̄−ε
m,l

}m=K , l=∞
m=1, l=1

represents the set

of received powers at the origin of the HetNet composed of
K open-access tiers and a closed-acess tier with BS densities{
λok PokE

[
�

2
ε

ok

]}K

k=1
, λc PcE

[
�

2
ε

c

]
, respectively, with unity

transmit powers and fading factors at each BS. This is equiv-
alent to the original heterogeneous network and has the same
SINR distribution, hence proving (11).

Further, using the Superposition theorem [32, Page 16], the
K open-access tiers of the equivalent HetNet can be com-
bined to form a single tier network with a BS density equal

to
∑K

k=1 λok P
2
ε

okE�
2
ε

ok, thus proving the SINR equivalence in
(12). The distribution of SINR of this two-tier network is the
same as that of an MS in another two-tier network where the
open-access tier has unity BS density, the closed-access tier has

a BS density
λc PcE

[
�

2
ε

c

]
∑K

k=1 λok P
2
ε

okE�
2
ε

ok

, unity transmit power and fading

factors at all BSs and a background noise η(∑K
k=1 λok P

2
ε

okE�
2
ε

ok

)− ε
2

,

due to [19, Lemma 3] and hence we get the relation (13).

D. Proof for Theorem 3

From Corollary 1 and Lemma 1, we get the following
stochastic equivalence:

SINRT,I =st

hT,I R̃−1
T,I∑K

k=1
∑∞

l=1
(k,l) �=(T,I )

hkl R̃−1
kl +∑∞

l=1 gl R̂−1
l + η

∣∣∣∣∣∣∣∣({λ̃k (r)}∞
k=1,λ̂(r)

)
,

where hkl ’s and gl ’s are i.i.d. unit mean exponential ran-
dom variables, I = argmax

k=1,2,···
hT,k R̃−1

T,k ,
{

R̃kl
}∞

l=1 and
{

R̂l
}∞

l=1

are from non-homogeneous 1-D Poisson processes with den-

sity functions λ̃ok (r) = λok
2π
εok

P
2

εok
ok r

2
εok

−1
, k = 1, · · · , K

and λ̂ (r) = λc
2π
εc

P
2
εc

c r
2
εc

−1, respectively. The following steps
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derive the HetNet coverage probability and closely follows the
proof techniques for [2, Theorem 4] and [26, Theorem 1]

P
max-SINR
coverage = P

MIRP
coverage =

K∑
i=1

P

⎛
⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩

hi j R̃−1
i j∑K

k=1
∑∞

l=1
(k,l) �=(i, j)

hkl R̃−1
kl +∑∞

l=1 gl R̂−1
l + η

> βi

⎫⎪⎪⎬
⎪⎪⎭
⎞
⎟⎟⎠

(a)=
K∑

i=1

ER̃i j

[
e−βi R̃i j ηE

[
e
−βi R̃i j

∑K
k=1
∑∞

l=1
(k,l)�=(i, j)

hkl R̃−1
kl

∣∣∣∣∣ R̃i j

]
×

E

[
e−βi R̃i j

∑∞
l=1 gl R̂−1

l

∣∣∣ R̃i j

]]

(b)=
K∑

i=1

∫ ∞

r=0
λ̃oi (r) e

−ηβi r−
λcπ(Pcβi r)

2
εc E

⎡
⎣�

2
εc

c

⎤
⎦

�
(

1+ 2
εc

)
sinc
(

2π
εc

)
×

e
−∑K

l=1

λol π(Pol βi r)
2

εol E

⎡
⎣�

2
εol

ol

⎤
⎦

�
(

1+ 2
εol

)
sinc
(

2π
εol

)
dr,

where R̃i j is the distance from the origin of an arbitrary point
in the non-homogeneous Poisson process with density function
λ̃oi (r), (a) is obtained by computing the coverage probability
w.r.t. hi j conditioned on all the other involved random vari-
ables and noting that the two Poisson processes are independent
of each other, (b) is obtained by evaluating the inner expecta-
tions by applying Campbell’s theorem [32] (same steps as in
the proof of [2, Theorem 4]) and expressing the expectation
w.r.t. R̃i j by the integral where λ̃ (r) dr is the probability that
there exists a point in the interval (r, r + dr), and finally (16) is
obtained by simplifying the integral in (b).

E. Proof for Theorem 4

The HetNet coverage probability is given in (36), shown at
the bottom of the page, where (a) is from the stochastic equiva-
lence in Corollary 5, (b) is obtained due to the independence

P
MBRP
coverage

(a)=
K∑

k=1

ET,R̃oT 1

⎡
⎢⎢⎣
⎧⎪⎪⎨
⎪⎪⎩

P̃ok1�ok1 R̃−1
ok1∑∞

n=1
�cn
R̂cn

+ η +∑K
m=1
∑∞

l=1
(m,l) �=(k,1)

P̃oml�omlI(R̃oml>R̃ok1)
R̃oml

> βT

⎫⎪⎪⎬
⎪⎪⎭
∣∣∣∣∣∣∣∣ k, R̃ok1

⎤
⎥⎥⎦

(b)=
K∑

k=1

ET,R̃oT 1

⎡
⎢⎢⎢⎢⎣e

− ηβk R̃ok1
P̃ok1 × E

[ ∞∏
n=1

e
−βk R̃ok1�cn

P̃ok1 R̂cn

∣∣∣∣∣ T = k, R̃oT 1 = R̃ok1

]
︸ ︷︷ ︸

=E1

×
K∏

m=1

E

[ ∞∏
l=1

e
−βk R̃ok1�oml

P̃ok1 R̃oml
I(R̃oml>R̃ok1)

∣∣∣∣∣ T = k, R̃oT 1 = R̃ok1

]
︸ ︷︷ ︸

=E2

⎤
⎥⎥⎥⎥⎦ (36)

of each tier in the HetNet given (T, RoT 1). Now, we derive
expressions for E1 and E2 in (b):

E1 = exp

(
−
∫ ∞

r=0

(
1 − E�c

[
e

−βk R̃ok1�c
P̃ok1r

])
λ̂ (r) dr

)

= e

− λcπ(Pcβk R̃ok1)
2
εc

P̃
2
εc

ok1sinc
(

2π
εc

)
,

E2 = e
− ∫∞

r=R̃ok1

⎛
⎝1−E�om

⎡
⎣e

−βk R̃ok1�om
P̃ok1r

⎤
⎦
⎞
⎠λ̃om (r)dr

= e
−λomπ

2βk(Pom Bom R̃ok1)
2

εom

P̃ok1(εom−2)
×2 F1

(
1,1− 2

εom
;2− 2

εom
;− βk

P̃ok1

)
.

Finally, (23) is obtained by computing each expectation in (b)

by applying the Campbell-Mecke theorem. For {εok}K
k=1 = ε

and η = 0, the integral in (23) simplifies to (24).

F. Simulation Method

The kth tier of the HetNet with K tiers is identified by
the following set of system parameters: (λk, Pk, �k, εk, βk) ,

where the symbols have all been defined in Section II, and
k = 1, 2, · · · , K , where K is the total number of tiers.
Now we illustrate the steps for simulating the HetNet in order
to obtain the SINR distribution and the coverage probabil-
ity assuming the MS is at the origin. The algorithm for the
Monte-Carlo simulation is as follows: 1) Generate Nk ran-
dom variables according to a uniform distribution in the circular
region of radius RB for the locations of all the kth tier BSs,
where Nk ∼ Poisson

(
λkπ R2

B

)
. 3) Compute the SINR at the

desired BS according to Section II-C and record the tier index
I of the desired BS. Repeat the same procedure T (typically,
>50000) times. Finally, the tail probability of SINR at η is
given by {# of trials where SINR > η}

T , and the coverage probability

is given by
∑K

k=1
{# of trials where I=k and SI N R>βk }

T .
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