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It is well known that the classical difference formulas for evaluating high derivatives of a real function 
f(~) are very ill-conditioned. However, if the function f(~) is analytic and can be evaluated for 
complex values of ~, the problem can be shown to be perfectly well-conditioned. An algorithm that 
performs this evaluation for an arbitrary analytic function f(~) is described. A short FORTRAN 
program for generating up to 50 leading derivatives is to be found in the algorithm section of this 
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(e.g., position of nearest singularity, its type) of the function. 
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1. INTRODUCTION 

T h e  p u r p o s e  o f  t h e  p r e s e n t  a l g o r i t h m  is to  p r o v i d e  t h e  n u m e r i c a l  F O R T R A N  
u s e r  w i t h  a n  a u t o m a t i c  m e t h o d  for  f ind ing  d e r i v a t i v e s  of  a n a l y t i c  func t ions .  A 
t y p i c a l  u sage  m a y  be  to  f ind  a m o d e r a t e  n u m b e r  (up to  50 is a l lowed)  of  
d e r i v a t i v e s  of  f unc t i ons  w h o s e  a n a l y t i c  p r o p e r t i e s  (pos i t ion  a n d  n a t u r e  of  s ingu-  
l a r i t i e s  in  t h e  c o m p l e x  p lane ,  etc.)  a r e  n o t  eas i ly  ava i l ab le .  F o r  r e fe rence ,  we  
b r i e f ly  d e s c r i b e  b e l o w  two  ea r l i e r  n u m e r i c a l  m e t h o d s .  K n o w l e d g e  of  t h e s e  
m e t h o d s  is n o t  r e q u i r e d  to  u n d e r s t a n d  ou r  p r e s e n t  m e t h o d ,  w h i c h  is a l so  s u m -  
mar i zed .  T h i s  i n t r o d u c t o r y  s ec t i on  is c o n c l u d e d  w i t h  s o m e  r e m a r k s  on  f o r m u l a  
m a n i p u l a t i o n  sys t ems .  

T h e  fac t  t h a t  d i f f e r e n t i a t i o n  (or e q u i v a l e n t l y ,  e v a l u a t i o n  o f  T a y l o r  coef f ic ients )  
o f  a n a l y t i c  f unc t i ons  c a n  b e  e f f i c ien t ly  p e r f o r m e d  n u m e r i c a l l y  was  o b s e r v e d  a b o u t  
15 y e a r s  ago.  T h e  e a r l i e s t  a l g o r i t h m  s e e m s  to  b e  t h e  one  d e s c r i b e d  b y  A b a t e  a n d  
D u b n e r  in  1968 [1]. T h e i r  m e t h o d  is b a s e d  on  a n u m e r i c a l  s c h e m e  for  t h e  
i n v e r s i o n  of  L a p l a c e  t r a n s f o r m s .  L e t  us  d e n o t e  t h e  f u n c t i o n  as  f (~ )  a n d  c o n s i d e r  
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an expansion around ~ = z: 
oo 

f(~) = Y, a ~ ( ~ - z y .  (1) 
v=O 

The coefficients a~ are to be determined. 
We can define g (t) as a piecewise linear function satisfying g (n) = ~7=~ a~ when 

n is a positive integer, and zero for nonpositive n. The Laplace transform of g (t) 
can be shown to be 

1 - e - s  
L g ( t )  - s2  f ( z  + e -8 ) .  

This transform can be numerically inverted by repeated complex numerical 
quadrature to give g ( n )  for different n. The coefficients a~ can then be evaluated 
by a, = g(r  + 1) - g(r). 

A different approach was taken by Lyness and co-workers [6]-[8]. By Cauchy's 
theorem, (1) implies 

1 ~c f(~) a~ = ~-~ ~ (~_--~+~ d~. (2) 

This periodic contour integral over a circle with radius r can be evaluated 
efficiently by trapezoidal approximations. If this is to be performed simultane- 
ously for a large number of values of r, the fast Fourier transform algorithm 
[2, 3] gives the different trapezoidal approximations directly from the equispaced 
function values on Cr. Extrapolation methods have been developed to suppress 
truncation errors, which are very dependent on singularities in f(~). Lyness and 
Moler discuss in [7] cancellation of error terms with the use of the M6bius 
transform. An algorithm was later published by Lyness and Sande [8]. That  
algorithm requires the user to choose a radius and then attempts to reach a 
required accuracy with the use of an increasing number of sample points on this 
fixed circle. A comparison in performance between this method and the present 
one is given in the last section. 

The aim of this study is to develop an alternative algorithm leading to both a 
shorter and a more automatic code. ~ Its use does not require knowledge about 
the method or the character of the function. 

As before, we denote the function as f(~). We want to evaluate a number of 
leading coefficients a~ in (1). The calculation in this routine proceeds in the 
following steps. 

(1) A radius r is chosen. 
(2) We put ~ = z + r . e  io and evaluate f(D for n (a power of 2) equidistant values 

of 8 in the interval (0, 2~r). 
(3) Since 

oo 

f ( z  + r . e  i°) = ~, a~r~e  i~e (3) 
r=0 

An early version of this description and code was given by the present author  in [4]. 
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a discrete (fast) Fourier transform (FFT) on these function values can be 
used to obtain the numbers b,  where 

b ,  -~ r ~ x ( a ,  + r " a , + ,  + r2na2n+v 4" r3naan+, + • • • }, 

r = O ,  1 , 2 , . . . , n - 1 .  (4) 

(4) 

(5) 

(The terms after the leading one a~ are aliasing terms: They correspond to 
the higher modes that cannot be distinguished from the r th  mode using only 
function values at the discrete points.) 
On the basis of two tests using the b~, the radius r is changed in order to 
optimize the final accuracy. If a stop criterion is not satisfied, we return to 
step 2. 
Using the results from the last three radii, repeated Richardson extrapolation 
gives the desired coefficients. 

In the special case of an expansion around a real point z for a function that is 
real on the real axis, symmetries can be used to reduce all work by a factor of 2. 
(The code in the FORTRAN algorithm is for the general case. It does not test for 
or exploit this possibility.) 

In some cases, in particular when analytical rather than numerical results are 
desired, formula manipulation systems can be considered. For the typical numer- 
ical FORTRAN user, disadvantages with this approach include limited availabil- 
ity of powerful systems, uncertain efficiency, difficulties in automatic interfacing 
with FORTRAN code, and a very limited function repertoire. Most special 
functions (e.g., the gamma function) are easily available numerically, but often 
not differentiable in closed form. 

2. IMPLEMENTATION 

To explain the details of this algorithm and the basic structure of a code for it, we 
consider the following very simple example: f(~) ~- 1/(1 - ~) expanded around 
z ffi 0. Assume that  we require the first 15 coefficients and that  all computations 
are performed with 14 significant digits. Increased accuracy is gained by changes 
in the radii and by extrapolations, not by increasing the number of sample points. 
Therefore, we can decide to use 32 points. {This power of 2 is chosen in the code 
if we want between 13 and 25 coefficients.) The radius of the first circle can be 
chosen at random (within some four orders of magnitude of an "optimal" choice). 
Assume we pick ro ffi 0.6580924658. The first FFT will return the 32 values 

II.0000015317~ 

"6580934738 I .  

, . . . ,  

bo,~-- 10"0000035368] ~, O, 1, 31. (5) 

[_0.0000023275_] 
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After division by r~ we get 

[ 1.0000015317~ 
1.0000015317. 

b°'~r°~ -- | 1.0000015322 
L 1.0000015342 

From formula (4) we know that these numbers are equal to 

"ao + r~a~ + ro~a~ + ..." 
a, + r3o2a33 + r~a6~ + . . .  

ao 
al  

a30 
a31 

where the first truncation error 
extrapolation (see, for example, 
r2 gives as the final result 

azo + ro32a62 + ro~a~ + . . .  
a31 + r~2a63 + r~a95 + . . .  

If this calculation is repeated with another radius rl, the linear combination 

1 
bl,~r~ ~ - (bl,~r~ TM -- bo,~ro~). 

1 - (ro/rl)  32 

of the two resulting vectors will give the vector 

(ro.r~)32a65 + 
Q 

(ro. r~)32a94 + 
(ro.rQ32a95 + 

(6) 

(7) 

(8) 

term is eliminated. This is a standard Richardson 
[5]). The repeated version of it with a third radius 

al  + (ro.r,.r2)32a97 + 

ago + (ro.rl.r2)32a126 + 

La31 + (ro.rl.r2)3~a~27 + 

(9) 

By using small radii, we can decrease the truncation errors (ro.rl.r2)a2a~+~. 
However, the use of small radii will lead to few significant digits in the last b~, 
since an FFT produces an output with approximately the same absolute error for 
all coefficients. It is reasonable to choose radii such that the two types of errors 
approach the same level. This would happen, in this example, if r is chosen such 
that  the last b~ are four powers of 10 less than the first ones. Figures 1-4 illustrate 
this. Figure 1 shows schematically the b~ in fixed-point format. The number b~-i 
has four more leading zeros than bo. Coefficients beyond b~-~ appear superposed 
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Fig. 1. 

• Bengt Fornberg 

w o r d  I 

c 
._o 
° 

C 

word  n 
0 4 8 

dec i rn01  DI0Ce  

14 

Typical form of the b, in fixed point. 

w o r d  I 

w o r d  
i 

nO 4 

t .  

O 
t .  t.. ¢~ 

C 
.o 

c 

4'--  

I0 14 

Fig. 2. Corresponding mantissas  for the b, in 
floating point. 

word  I 

word n 
0 IO 14 

- 

O 

g/=l 
" °/;I ~,. c c 

i 

8 I 0  14 

Fig. 3. The  b, after one Richardson 
extrapolation. 

w o r d  I 

word n 
O. 

4 
Fig. 4. The  b~ after two Richardson 

extrapolations. 

on b0, bl, etc., as t runcat ion errors. The  rounding errors have the same absolute 
size for all coefficients. In a computer  with floating-point word format,  mantissas 
usually have no leading zeros. Figure 2 shows what  these mantissas would look 
like. This  figure can be compared with (6). Comparing (7) and (8) we see tha t  one 
step of Richardson extrapolat ion will remove the leading t runcat ion errors (cor- 
responding to coefficients r~2a32 to ro32a63 in (7)). This  is i l lustrated in Figure 3 
where the number  of correct  places has  doubled f rom 4 to 8. After one more 
extrapolat ion step, represented by (9) and Figure 4, we have reached our final 
result. With  a word length of 14 places, about  12 are correct.  

T he  initial radius ro = 0.658092 . . .  was not  the optimal choice. Therefore ,  a 
search for a radius such tha t  the b~ look like those in Figure 1 is conducted.  If a 
radius is too small, i t  causes the b~ to decrease too rapidly, and the  opposite holds 
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t rue if the radius is too big. We compare  I b~ I with a geometric progression c~ such 
tha t  Co -- 1 and Cn-1 ---- 10 -4 (in this case n -- 32) and check if max~ I b~ [/c~ is 
a t ta ined for a r in the upper  or lower half  of the range [0, n - 1] for r. 

In this example, the maximum is at tained for r -- 1. However,  if r is bigger than  
the radius of convergence, the b~ normally correspond to a Lauren t  expansion 
and not  to a Taylor  expansion. If  our test  should suggest an increase in r (as in 
the case in our  example), a fur ther  test is made by reevaluating three  function 
values, assuming tha t  the series is a Taylor  series, and comparing them with the 
true function values. The  arguments  used are z + r .  ( -0 .4  + 0.3. i), z + r .  (0.7 + 
0.2.i), and z + r .  {0.02 - 0.06.i), where z is the center  of  the expansion. T h e  
arguments  are randomly chosen. The  values are considered to agree if the 
maximal difference in the three  cases is less than  10 -~ t imes the maximal function 
value in the three  points, according to the evaluation by the series. If  the values 
do not  agree, r is decreased; otherwise r is increased. In the la t ter  case, this tes t  
is not  performed again because the first test  will be sufficient. T h e  reason for this 
can be seen in our example. 

The  first radius was ro = 0.658092 . . . .  After this, the  radius is repeatedly  
changed, ei ther  by a factor of 2 or of 0.5, until  i t  becomes too large or too small. 
Since the first test  suggests an increase in our example, the  second test  is 
performed, and it shows agreement.  The  next  radius used is thus rl = 1.316185 
. . . .  We obtain 

-0.0048649092 
-0.0064031201 

(10) 

r3  = 0.7826082426 
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-18.4749031128 
-24.3163890891 

These  numbers  correspond to a Lauren t  series. The re  is now a singularity inside 
our circle. The  form assumed in eqs. (3) and (4) must  be changed to also include 
negative values of v. These  additional terms in (4) will decay very  slowly (if at 
all), since we are only very closely outside the singularity (we were too far inside 
it before the radius was doubled). If  the decay rate  is too slow, we can safely 
decrease the radius without  having to decide if we ever had a Lauren t  series or 
not. F rom this point on, the factor by which we change r is ei ther  the square root  
of  the previous factor or one divided by the square root. We do this six t imes (in 
this example) and obtain 

r2 = 0.9306832904 

[ 1.1115844835 "] 
1.0345331046 / 

b2j, 

| 0.1288249475 | 
t.o.119895226o j 
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ba,~ I 
'1.0003922760 
0.7829152410 

0.0006404760 
.0.0005012418 

r4 ffi 0.7176549227 

b~,v ffi 

1.0000245082 
0.7176725112 

0.0000475862 
0.0000341504 

r5 ffi 0:7494282207 

bsj, 

"1.0000980401 
0.7495016947 

0.0061745597 
0.0001308199 

"1.0000980401"] 
1'0000980401/. 

1.0000980401| 
1.0000980401J 

(11) 

!"6 ffi 0.7658385618 

1.0001960995 1 
0.7659887424 / 

1°.°°°33435°6 / 
L0.0002560586 .I 

1.00019609951 
1"0001960995/. 

1.0001960995| 
1.0001960995J 

r7 = 0 . 7 5 7 5 8 8 9 5 8 9  

r 1.0001386553"] F 1.0001386553 "] 

/ b 7 , .  " b 7 , v r ~  TM " . 

| 0.0002415846 | | 1.0001386553 | 
L 0.0001830219 J L 1.0001386554 J 
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For the last three radii, we perform the repeated Richardson extrapolation on the 
15 first coefficients. This gives us our final answer. 

a ~  - -  

"1.0(0)0(0)000~3" 
1.000000000002 
1.000000000002 
1.000000000002 
1.000000000002 
1.000000000002 
1.000000000002 
1.000000000002 
1.00(D(0)00(D01 
1.000000000001 
1.000000000001 
1.000000000001 
0.999999999999 
0.999999999999 
0.999999999999 

(12) 

To obtain a practical code for automated general use, some fixed choices have 
to be made, even in cases where manual  fine tuning for each individual test  
function could have been used. This is particularly the case if the potential 
advantages by case-dependent tuning, in either software safety or efficiency, are 
minimal. One such case is to relate the number  of coefficients generated internally 
(n) to the number of coefficients asked for (N). The adapted rule was 

I _ N - -  6, n =  8 

7 __ N <-- 12, n = 16 (13) 

13__ N<_ 25, n = 32 

26___ N_< 51, n = 64 

(called in the following ranges 1, 2, 3, and 4, respectively). Use of n = 32 or 64 is 
wasteful if use of n = 8 can perform the same job at  a fraction of the cost. The  
other extreme, use of n = 16 if N = 16, on the whole worked satisfactorily but  did 
fail in a few test cases. The choices given above represent a safe compromise, 
avoiding the two disadvantages mentioned. The choices of performing two 
Richardson extrapolations rather than, for example, one or three, represents a 
similar compromise. The two steps performed clearly increased the accuracy. 
Performing four or more extrapolations would offer only insignificant additional 
improvements. A further choice is, after the first t ime the changes in the radii 
altered direction, to let the number of circles used be three plus the range number.  
Use of fewer circles would cause the final accuracy to fluctuate more as a function 
of the initially supplied radius. This rule also makes the constants in the final 
extrapolations independent of the range number. 
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3. RESTRICTIONS 

Figures 1-4 and the discussions about  error  levels become exact if the power 
series coefficients satisfy a geometric progression. A case in point  is f ( z )  = 1/  
(1 - z), which was used to illustrate the description. T h e  errors in the me thod  
depend on how close to being t rue this geometric progression behavior  is for the 
range of coefficients we consider. When we have increases in error, they  will 
normally be revealed by the error  estimates provided. Th e  largest deviation f rom 
this geometric behavior  (for functions not  explicitly constructed to have isolated 
very large terms in an expansion like, say f ( z )  = 105 + (1/(1 - z))) exists among 
entire functions. (The coefficients for a function with a radius of convergence 
limited by ei ther  a branch point, essential singularity, or multiple pole will 
asymptotical ly decay by a rate lying between the two geometric progressions 
given by functions with a simple pole just  inside and just  outside the original 
circle. The  rate can then be well est imated by these geometric progressions.) Two 
examples in Table  I are used to illustrate the case e z. Th e  first 25 terms give little 
or no problem but, if 50 terms are required, the very lowest ones lose accuracy. 
However,  the supplied error  est imate predicts tha t  accurately. 

It  is necessary that  the function have at  least one nonzero coefficient among 
the first n / 2  and also one among the next  n / 2  coefficients, n being the number  of 
points in the Fourier  transforms. The  routine should therefore  not  be used on a 
polynomial  of low order. 

If  the radius of convergence is limited only by a branch point  at  which the 
function remains continuous, the irregularity may  be difficult to detect  numeri-  
cally. An example is f ( z )  = (1 + z)l°log(1 + z) expanded around z -- 0. Th e  radius 
of convergence is 1 but, owing to the factor (1 +z)  ~°, the function appears  to be 
numerically very regular around the critical point  z = -1 .  T h e  me thod  will still 
work satisfactorily in ranges 1 and 2 (i.e., up to 12 coefficients), bu t  for more 
coefficients both  values and error  estimates fail. Should this unusual  problem be 
encountered,  a reliable s trategy would be to accept only coefficients obtained by 
using two different ranges. 

If  the initial guess for a computat ional  radius is wrong ei ther  way by  a factor 
of more than  about  30,000, the routine makes an error  exit leaving all e lements  of 
the result  vector zero and of an error  est imate vector  101° . Th e  reason for this 
restr ict ion is tha t  we want to avoid any risk of infinite looPs. This  could otherwise 
happen,  for example, in cases of complex functions tha t  lack a Tay lor  expansion 
( f ( z )  = 5, f ( z )  = v~z at z -- 0, for a z on a branch cut, etc.). 

4. ERROR ESTIMATE 

The  error  est imate produced by the routine is based on a direct calculation 
following the principle shown in Figures 1-4. If the machine accuracy is E (in our 
example, 10-14), the t runcat ion error  is est imated by e 3/~4 t imes the last Richardson 
correction, and the rounding error by 

1 Ib l 
e • - -  • m a x ~ -  

r ~ c~ 

The  use of  e 3/14 instead of E 4/14 includes a safety factor of  ~1/14. This  error  est imate 
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Table II 

N_~ 12 
Ranges 2, 3, and 4 all 

N ffi 6 agree to this accuracy 
k Range 1 for first 12 numbers 

0 1.000000000 1.000000000 
1 1.000000000 1.000000000 
2 4.000000000 4.000000000 
3 4.000000000 3.999999999 
4 28.000000O0 28.00000000 
5 -164.0000000 -164.0000000 
6 64.000000 
7 -13376.00000 
8 47248.0000 
9 -858224.000 

10 13829824.00 
11 .-112705856.0 

aims to be realistic. If a still larger safety margin is desired, the estimate can be 
increased further. 

5. TEST EXAMPLES 

Table I shows the results that were obtained when the routine was applied to six 
different simple test functions. These calculations were performed on a CDC 7600 
computer. 

Three further examples follow. 

Example 1. Consider 

e ~- 
f ( ; )  - -  

( s i n  ~)3 + (cos ~)3. 

All derivatives of this function at ~ ffi 0 are integers. We obtain the values for 
f(k)(0) shown in Table II. The value N ffi 51 gives [f(5°)(~)]~.0 ffi 1.46483674605 × 
1070 , estimated by the routine to be correct to 11.4 decimal places. (Execu- 
tion in quadruple precision on an IBM 3032 computer gives the value 
0.1464836745910329202251099956 × 1070 with the last one or two digits estimated 
as uncertain. I thank one of the referees for quoting the value 0.1464836745910329 
× 107° obtained by the formula manipulation system MACSYMA.) 

A driver program for this example is included with the algorithm. 

Example 2. Calculation of the first 15 Bernoulli numbers directly from the 
generating function 

,) f ( f )  = f + ~ = 1 + B1 ~.  - B2 T., + B3 ?5., - B ,  ~ + . . . .  

Bk ---- (--1) k÷l f(2k~(0), k ffi 1, 2, 3, . . . .  

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981. 
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Table  I I I  

Re la t ive  
Exac t  Compu ted  error  

B, ffi 1/6 0.166666666667 x 10 ° 0.27 x 10 - '2 

B2 = 1/30 0.333333333333 × 10-'  0.42 × 10 - '2 
B3 ffi 1/42 0.238095238095 x 10-'  0.34 × 10 - '2 

B4 = 1/30 0.333333333333 × 10 -1 0.18 × 10 - '2 
B5 = 5/66 0.757575757576 x 10 -1 0.64 x I0 -'~ 
B6 = 691/2730 0.253113553114 x 10 o -0.21 × I0 -'~ 

B~ = 7/6 0.116666666667 x 10' -0 .18  x 10 -~2 
B8 = 3617/510 0.709215686274 x 10' -0 .23  X 10 - '2 
B9 = 43867/798 0.549711779449 x 10 ~ -0 .21 x 10 - '2 
B,o = 174611/330 0.529124242424 × 104 -0 .43 × 10 -12 
B,, = 854513/138 0.619212318840 × 104 -0 .81 × 10 - '2 

B,2 = 236364091/2730 0.865802531135 × 105 -0 .51 x 10 -~2 
B,3 = 8553103/6 0.142551716667 x 107 -0 .12 × 1 0 - "  
B14 = 23749461029/870 0.272982310678 x l 0  s -0 .11 X 10 -11 

B,5 = 8615841276005/14322 0.601580873900 x 109 -0 .17  × 10 -H 

523 

Evaluating 31 terms, the Bernoulli numbers are obtained immediately from every 
second coefficient (see Table III). 

Example 3. Comparison between the present routine CPSC and ACM Algo- 
rithm 413 (ENTCAF) [8]. 

The previous example (evaluating the first 15 Bernoulli numbers) was run with 
both routines on a CDC CYBER 203. Execution times and the largest relative 
errors were observed for different choices of user-supplied radii. There is a version 
of ENTCAF called ENTCRE for the case of a function that  is real on the real 
axis and is expanded at a real point. It  uses symmetries to save almost a factor of 
2 in execution time. A real version of CPSC could be similarly written. Although 
the example chosen is real, we use the complex versions of both algorithms to 
obtain a comparison between the methods. Several parameters have to be 
supplied to ENTCAF to guide its calculations. We specified that  it should attempt 
to reach an absolute accuracy of 10 -1° in the "normalized" Taylor coefficients 
{relative accuracy cannot be specified), and that if this level was not possible, it 
should do the best it could. Further, most 1024 function evaluations were 
permitted for each case. Figures 5 and 6 show how computer time and the 
accuracy obtained varied with the supplied radius for CPSC and ENTCAF. We 
see that  the accuracy reached by CPSC is virtually independent of the supplied 
radius ro and that the computer time has a minimum at about re = 2~r, the radius 
of convergence for the Taylor expansion. ENTCAF gives a similar accuracy for 
ro between 4.6 and 6.1, with computer times between 2 and 3.5 times faster than 
CPSC. We note that the best ro now are slightly smaller than re, but if rc is not 
known (or is infinite for entire functions), this observation is of little use in finding 
a good computational radius. As soon as a too large value of ro is used, the time 
needed merely to recognize a failure exceeds the time of CPSC. (A special option 
i~ ' ENTCAF to try to stop early if failure seemed likely increased the time when 
a too large r0 was used.) 

ACM Transactions on Mathematical Software, Vol, 7, No. 4, December 1981. 
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