
Numerical Differentiation
Functions

BENGT FORNBERG
California Institute of Technology

of Analytic

It is well known that the classical difference formulas for evaluating high derivatives of a real function
f(~) are very ill-conditioned. However, if the function f(~) is analytic and can be evaluated for
complex values of ~, the problem can be shown to be perfectly well-conditioned. An algorithm that
performs this evaluation for an arbitrary analytic function f(~) is described. A short FORTRAN
program for generating up to 50 leading derivatives is to be found in the algorithm section of this
issue. To use this program, no knowledge is required either of the method or of the analytical nature
(e.g., position of nearest singularity, its type) of the function.

Key Words and Phrases: numerical differentiation, Taylor series coefficients, analytic functions
CR Categories: 5.16
The Algorithm: CPSC: Complex Power Series Coefficients, ACM Trans. Math. Softw. 7, 4 (Dec.
1981), 542-547.

1. INTRODUCTION

T h e p u r p o s e o f t h e p r e s e n t a l g o r i t h m is to p r o v i d e t h e n u m e r i c a l F O R T R A N
u s e r w i t h a n a u t o m a t i c m e t h o d for f ind ing d e r i v a t i v e s of a n a l y t i c func t ions . A
t y p i c a l u sage m a y be to f ind a m o d e r a t e n u m b e r (up to 50 is a l lowed) of
d e r i v a t i v e s of f unc t i ons w h o s e a n a l y t i c p r o p e r t i e s (pos i t ion a n d n a t u r e of s ingu-
l a r i t i e s in t h e c o m p l e x p lane , etc.) a r e n o t eas i ly ava i l ab le . F o r r e fe rence , we
b r i e f ly d e s c r i b e b e l o w two ea r l i e r n u m e r i c a l m e t h o d s . K n o w l e d g e of t h e s e
m e t h o d s is n o t r e q u i r e d to u n d e r s t a n d ou r p r e s e n t m e t h o d , w h i c h is a l so s u m -
mar i zed . T h i s i n t r o d u c t o r y s ec t i on is c o n c l u d e d w i t h s o m e r e m a r k s on f o r m u l a
m a n i p u l a t i o n sys t ems .

T h e fac t t h a t d i f f e r e n t i a t i o n (or e q u i v a l e n t l y , e v a l u a t i o n o f T a y l o r coef f ic ients)
o f a n a l y t i c f unc t i ons c a n b e e f f i c ien t ly p e r f o r m e d n u m e r i c a l l y was o b s e r v e d a b o u t
15 y e a r s ago. T h e e a r l i e s t a l g o r i t h m s e e m s to b e t h e one d e s c r i b e d b y A b a t e a n d
D u b n e r in 1968 [1]. T h e i r m e t h o d is b a s e d on a n u m e r i c a l s c h e m e for t h e
i n v e r s i o n of L a p l a c e t r a n s f o r m s . L e t us d e n o t e t h e f u n c t i o n as f (~) a n d c o n s i d e r

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported by Control Data Corporation and by the Department of Energy (Office of
Basic Energy Sciences).
Author's address: Department of Applied Mathematics, 217-50 Caltech, Pasadena, CA 91125.
© 1981 ACM 0098-3500/81/1200-0512 $00.75

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981, Pages 512-526.

Numerical Differentiation of Analytic Functions • 513

an expansion around ~ = z:
oo

f(~) = Y, a ~ (~ - z y . (1)
v=O

The coefficients a~ are to be determined.
We can define g (t) as a piecewise linear function satisfying g (n) = ~7=~ a~ when

n is a positive integer, and zero for nonpositive n. The Laplace transform of g (t)
can be shown to be

1 - e - s
L g (t) - s2 f (z + e -8) .

This transform can be numerically inverted by repeated complex numerical
quadrature to give g (n) for different n. The coefficients a~ can then be evaluated
by a, = g(r + 1) - g(r).

A different approach was taken by Lyness and co-workers [6]-[8]. By Cauchy's
theorem, (1) implies

1 ~c f(~) a~ = ~-~ ~ (~_--~+~ d~. (2)

This periodic contour integral over a circle with radius r can be evaluated
efficiently by trapezoidal approximations. If this is to be performed simultane-
ously for a large number of values of r, the fast Fourier transform algorithm
[2, 3] gives the different trapezoidal approximations directly from the equispaced
function values on Cr. Extrapolation methods have been developed to suppress
truncation errors, which are very dependent on singularities in f(~). Lyness and
Moler discuss in [7] cancellation of error terms with the use of the M6bius
transform. An algorithm was later published by Lyness and Sande [8]. That
algorithm requires the user to choose a radius and then attempts to reach a
required accuracy with the use of an increasing number of sample points on this
fixed circle. A comparison in performance between this method and the present
one is given in the last section.

The aim of this study is to develop an alternative algorithm leading to both a
shorter and a more automatic code. ~ Its use does not require knowledge about
the method or the character of the function.

As before, we denote the function as f(~). We want to evaluate a number of
leading coefficients a~ in (1). The calculation in this routine proceeds in the
following steps.

(1) A radius r is chosen.
(2) We put ~ = z + r . e io and evaluate f(D for n (a power of 2) equidistant values

of 8 in the interval (0, 2~r).
(3) Since

oo

f (z + r . e i°) = ~, a~r~e i~e (3)
r=0

An early version of this description and code was given by the present author in [4].

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981.

514 • Bengt Fornberg

a discrete (fast) Fourier transform (FFT) on these function values can be
used to obtain the numbers b, where

b , -~ r ~ x (a , + r " a , + , + r2na2n+v 4" r3naan+, + • • • },

r = O , 1 , 2 , . . . , n - 1 . (4)

(4)

(5)

(The terms after the leading one a~ are aliasing terms: They correspond to
the higher modes that cannot be distinguished from the r th mode using only
function values at the discrete points.)
On the basis of two tests using the b~, the radius r is changed in order to
optimize the final accuracy. If a stop criterion is not satisfied, we return to
step 2.
Using the results from the last three radii, repeated Richardson extrapolation
gives the desired coefficients.

In the special case of an expansion around a real point z for a function that is
real on the real axis, symmetries can be used to reduce all work by a factor of 2.
(The code in the FORTRAN algorithm is for the general case. It does not test for
or exploit this possibility.)

In some cases, in particular when analytical rather than numerical results are
desired, formula manipulation systems can be considered. For the typical numer-
ical FORTRAN user, disadvantages with this approach include limited availabil-
ity of powerful systems, uncertain efficiency, difficulties in automatic interfacing
with FORTRAN code, and a very limited function repertoire. Most special
functions (e.g., the gamma function) are easily available numerically, but often
not differentiable in closed form.

2. IMPLEMENTATION

To explain the details of this algorithm and the basic structure of a code for it, we
consider the following very simple example: f(~) ~- 1/(1 - ~) expanded around
z ffi 0. Assume that we require the first 15 coefficients and that all computations
are performed with 14 significant digits. Increased accuracy is gained by changes
in the radii and by extrapolations, not by increasing the number of sample points.
Therefore, we can decide to use 32 points. {This power of 2 is chosen in the code
if we want between 13 and 25 coefficients.) The radius of the first circle can be
chosen at random (within some four orders of magnitude of an "optimal" choice).
Assume we pick ro ffi 0.6580924658. The first FFT will return the 32 values

II.0000015317~

"6580934738 I .

, . . . ,

bo,~-- 10"0000035368] ~, O, 1, 31. (5)

[_0.0000023275_]

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981.

Numerical Differentiation of Analytic Fu~Cti~ms * 515

After division by r~ we get

[1.0000015317~
1.0000015317.

b°'~r°~ -- | 1.0000015322
L 1.0000015342

From formula (4) we know that these numbers are equal to

"ao + r~a~ + ro~a~ + ..."
a, + r3o2a33 + r~a6~ + . . .

ao
al

a30
a31

where the first truncation error
extrapolation (see, for example,
r2 gives as the final result

azo + ro32a62 + ro~a~ + . . .
a31 + r~2a63 + r~a95 + . . .

If this calculation is repeated with another radius rl, the linear combination

1
bl,~r~ ~ - (bl,~r~ TM -- bo,~ro~).

1 - (ro/rl) 32

of the two resulting vectors will give the vector

(ro.r~)32a65 +
Q

(ro. r~)32a94 +
(ro.rQ32a95 +

(6)

(7)

(8)

term is eliminated. This is a standard Richardson
[5]). The repeated version of it with a third radius

al + (ro.r,.r2)32a97 +

ago + (ro.rl.r2)32a126 +

La31 + (ro.rl.r2)3~a~27 +

(9)

By using small radii, we can decrease the truncation errors (ro.rl.r2)a2a~+~.
However, the use of small radii will lead to few significant digits in the last b~,
since an FFT produces an output with approximately the same absolute error for
all coefficients. It is reasonable to choose radii such that the two types of errors
approach the same level. This would happen, in this example, if r is chosen such
that the last b~ are four powers of 10 less than the first ones. Figures 1-4 illustrate
this. Figure 1 shows schematically the b~ in fixed-point format. The number b~-i
has four more leading zeros than bo. Coefficients beyond b~-~ appear superposed

ACM Transacti9ns on Mathematical Software, Vol. 7, No. 4, December 1981.

5 1 6

b 0

b n - I

Fig. 1.

• Bengt Fornberg

w o r d I

c
._o
°

C

word n
0 4 8

dec i rn01 DI0Ce

14

Typical form of the b, in fixed point.

w o r d I

w o r d
i

nO 4

t .

O
t . t.. ¢~

C
.o

c

4'--

I0 14

Fig. 2. Corresponding mantissas for the b, in
floating point.

word I

word n
0 IO 14

-

O

g/=l
" °/;I ~,. c c

i

8 I 0 14

Fig. 3. The b, after one Richardson
extrapolation.

w o r d I

word n
O.

4
Fig. 4. The b~ after two Richardson

extrapolations.

on b0, bl, etc., as t runcat ion errors. The rounding errors have the same absolute
size for all coefficients. In a computer with floating-point word format, mantissas
usually have no leading zeros. Figure 2 shows what these mantissas would look
like. This figure can be compared with (6). Comparing (7) and (8) we see tha t one
step of Richardson extrapolat ion will remove the leading t runcat ion errors (cor-
responding to coefficients r~2a32 to ro32a63 in (7)). This is i l lustrated in Figure 3
where the number of correct places has doubled f rom 4 to 8. After one more
extrapolat ion step, represented by (9) and Figure 4, we have reached our final
result. With a word length of 14 places, about 12 are correct.

T he initial radius ro = 0.658092 . . . was not the optimal choice. Therefore , a
search for a radius such tha t the b~ look like those in Figure 1 is conducted. If a
radius is too small, i t causes the b~ to decrease too rapidly, and the opposite holds

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981.

Numerical Differentiation of Analytic Functions • 517

t rue if the radius is too big. We compare I b~ I with a geometric progression c~ such
tha t Co -- 1 and Cn-1 ---- 10 -4 (in this case n -- 32) and check if max~ I b~ [/c~ is
a t ta ined for a r in the upper or lower half of the range [0, n - 1] for r.

In this example, the maximum is at tained for r -- 1. However, if r is bigger than
the radius of convergence, the b~ normally correspond to a Lauren t expansion
and not to a Taylor expansion. If our test should suggest an increase in r (as in
the case in our example), a fur ther test is made by reevaluating three function
values, assuming tha t the series is a Taylor series, and comparing them with the
true function values. The arguments used are z + r . (-0 .4 + 0.3. i), z + r . (0.7 +
0.2.i), and z + r . {0.02 - 0.06.i), where z is the center of the expansion. T h e
arguments are randomly chosen. The values are considered to agree if the
maximal difference in the three cases is less than 10 -~ t imes the maximal function
value in the three points, according to the evaluation by the series. If the values
do not agree, r is decreased; otherwise r is increased. In the la t ter case, this tes t
is not performed again because the first test will be sufficient. T h e reason for this
can be seen in our example.

The first radius was ro = 0.658092 After this, the radius is repeatedly
changed, ei ther by a factor of 2 or of 0.5, until i t becomes too large or too small.
Since the first test suggests an increase in our example, the second test is
performed, and it shows agreement. The next radius used is thus rl = 1.316185
. . . . We obtain

-0.0048649092
-0.0064031201

(10)

r3 = 0.7826082426

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981.

-18.4749031128
-24.3163890891

These numbers correspond to a Lauren t series. The re is now a singularity inside
our circle. The form assumed in eqs. (3) and (4) must be changed to also include
negative values of v. These additional terms in (4) will decay very slowly (if at
all), since we are only very closely outside the singularity (we were too far inside
it before the radius was doubled). If the decay rate is too slow, we can safely
decrease the radius without having to decide if we ever had a Lauren t series or
not. F rom this point on, the factor by which we change r is ei ther the square root
of the previous factor or one divided by the square root. We do this six t imes (in
this example) and obtain

r2 = 0.9306832904

[1.1115844835 "]
1.0345331046 /

b2j,

| 0.1288249475 |
t.o.119895226o j

518 • Bengt Fornberg

ba,~ I
'1.0003922760
0.7829152410

0.0006404760
.0.0005012418

r4 ffi 0.7176549227

b~,v ffi

1.0000245082
0.7176725112

0.0000475862
0.0000341504

r5 ffi 0:7494282207

bsj,

"1.0000980401
0.7495016947

0.0061745597
0.0001308199

"1.0000980401"]
1'0000980401/.

1.0000980401|
1.0000980401J

(11)

!"6 ffi 0.7658385618

1.0001960995 1
0.7659887424 /

1°.°°°33435°6 /
L0.0002560586 .I

1.00019609951
1"0001960995/.

1.0001960995|
1.0001960995J

r7 = 0 . 7 5 7 5 8 8 9 5 8 9

r 1.0001386553"] F 1.0001386553 "]

/ b 7 , . " b 7 , v r ~ TM " .

| 0.0002415846 | | 1.0001386553 |
L 0.0001830219 J L 1.0001386554 J

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981.

Numerical Differentiation of Analytic Functions • 519

For the last three radii, we perform the repeated Richardson extrapolation on the
15 first coefficients. This gives us our final answer.

a ~ - -

"1.0(0)0(0)000~3"
1.000000000002
1.000000000002
1.000000000002
1.000000000002
1.000000000002
1.000000000002
1.000000000002
1.00(D(0)00(D01
1.000000000001
1.000000000001
1.000000000001
0.999999999999
0.999999999999
0.999999999999

(12)

To obtain a practical code for automated general use, some fixed choices have
to be made, even in cases where manual fine tuning for each individual test
function could have been used. This is particularly the case if the potential
advantages by case-dependent tuning, in either software safety or efficiency, are
minimal. One such case is to relate the number of coefficients generated internally
(n) to the number of coefficients asked for (N). The adapted rule was

I _ N - - 6, n = 8

7 __ N <-- 12, n = 16 (13)

13__ N<_ 25, n = 32

26___ N_< 51, n = 64

(called in the following ranges 1, 2, 3, and 4, respectively). Use of n = 32 or 64 is
wasteful if use of n = 8 can perform the same job at a fraction of the cost. The
other extreme, use of n = 16 if N = 16, on the whole worked satisfactorily but did
fail in a few test cases. The choices given above represent a safe compromise,
avoiding the two disadvantages mentioned. The choices of performing two
Richardson extrapolations rather than, for example, one or three, represents a
similar compromise. The two steps performed clearly increased the accuracy.
Performing four or more extrapolations would offer only insignificant additional
improvements. A further choice is, after the first t ime the changes in the radii
altered direction, to let the number of circles used be three plus the range number.
Use of fewer circles would cause the final accuracy to fluctuate more as a function
of the initially supplied radius. This rule also makes the constants in the final
extrapolations independent of the range number.

ACM Transactions on Mathematical Software, Vo]. 7, No. 4, December 1981.

r~

e~

E

x x

x x

x x

b b
x x

o d o o

X X X X

~ b b
X X X X

X X X X

b b b b
X X X X

I ~ +

&
I

o o +

0

-~ + i ' ~ I ~'~

Numerical Differentiation of Analytic Functions * 521

3. RESTRICTIONS

Figures 1-4 and the discussions about error levels become exact if the power
series coefficients satisfy a geometric progression. A case in point is f (z) = 1/
(1 - z), which was used to illustrate the description. T h e errors in the me thod
depend on how close to being t rue this geometric progression behavior is for the
range of coefficients we consider. When we have increases in error, they will
normally be revealed by the error estimates provided. Th e largest deviation f rom
this geometric behavior (for functions not explicitly constructed to have isolated
very large terms in an expansion like, say f (z) = 105 + (1/(1 - z))) exists among
entire functions. (The coefficients for a function with a radius of convergence
limited by ei ther a branch point, essential singularity, or multiple pole will
asymptotical ly decay by a rate lying between the two geometric progressions
given by functions with a simple pole just inside and just outside the original
circle. The rate can then be well est imated by these geometric progressions.) Two
examples in Table I are used to illustrate the case e z. Th e first 25 terms give little
or no problem but, if 50 terms are required, the very lowest ones lose accuracy.
However, the supplied error est imate predicts tha t accurately.

It is necessary that the function have at least one nonzero coefficient among
the first n / 2 and also one among the next n / 2 coefficients, n being the number of
points in the Fourier transforms. The routine should therefore not be used on a
polynomial of low order.

If the radius of convergence is limited only by a branch point at which the
function remains continuous, the irregularity may be difficult to detect numeri-
cally. An example is f (z) = (1 + z)l°log(1 + z) expanded around z -- 0. Th e radius
of convergence is 1 but, owing to the factor (1 +z) ~°, the function appears to be
numerically very regular around the critical point z = -1 . T h e me thod will still
work satisfactorily in ranges 1 and 2 (i.e., up to 12 coefficients), bu t for more
coefficients both values and error estimates fail. Should this unusual problem be
encountered, a reliable s trategy would be to accept only coefficients obtained by
using two different ranges.

If the initial guess for a computat ional radius is wrong ei ther way by a factor
of more than about 30,000, the routine makes an error exit leaving all e lements of
the result vector zero and of an error est imate vector 101° . Th e reason for this
restr ict ion is tha t we want to avoid any risk of infinite looPs. This could otherwise
happen, for example, in cases of complex functions tha t lack a Tay lor expansion
(f (z) = 5, f (z) = v~z at z -- 0, for a z on a branch cut, etc.).

4. ERROR ESTIMATE

The error est imate produced by the routine is based on a direct calculation
following the principle shown in Figures 1-4. If the machine accuracy is E (in our
example, 10-14), the t runcat ion error is est imated by e 3/~4 t imes the last Richardson
correction, and the rounding error by

1 Ib l
e • - - • m a x ~ -

r ~ c~

The use of e 3/14 instead of E 4/14 includes a safety factor of ~1/14. This error est imate

ACM Transact ions on Mathemat ica l Software, Vol. 7, No. 4, December 1981.

522 • Bengt Fornberg

Table II

N_~ 12
Ranges 2, 3, and 4 all

N ffi 6 agree to this accuracy
k Range 1 for first 12 numbers

0 1.000000000 1.000000000
1 1.000000000 1.000000000
2 4.000000000 4.000000000
3 4.000000000 3.999999999
4 28.000000O0 28.00000000
5 -164.0000000 -164.0000000
6 64.000000
7 -13376.00000
8 47248.0000
9 -858224.000

10 13829824.00
11 .-112705856.0

aims to be realistic. If a still larger safety margin is desired, the estimate can be
increased further.

5. TEST EXAMPLES

Table I shows the results that were obtained when the routine was applied to six
different simple test functions. These calculations were performed on a CDC 7600
computer.

Three further examples follow.

Example 1. Consider

e ~-
f (;) - -

(s i n ~)3 + (cos ~)3.

All derivatives of this function at ~ ffi 0 are integers. We obtain the values for
f(k)(0) shown in Table II. The value N ffi 51 gives [f(5°)(~)]~.0 ffi 1.46483674605 ×
1070 , estimated by the routine to be correct to 11.4 decimal places. (Execu-
tion in quadruple precision on an IBM 3032 computer gives the value
0.1464836745910329202251099956 × 1070 with the last one or two digits estimated
as uncertain. I thank one of the referees for quoting the value 0.1464836745910329
× 107° obtained by the formula manipulation system MACSYMA.)

A driver program for this example is included with the algorithm.

Example 2. Calculation of the first 15 Bernoulli numbers directly from the
generating function

,) f (f) = f + ~ = 1 + B1 ~. - B2 T., + B3 ?5., - B , ~ +

Bk ---- (--1) k÷l f(2k~(0), k ffi 1, 2, 3,

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981.

Numerical Differentiation of Analytic Functions

Table I I I

Re la t ive
Exac t Compu ted error

B, ffi 1/6 0.166666666667 x 10 ° 0.27 x 10 - '2

B2 = 1/30 0.333333333333 × 10-' 0.42 × 10 - '2
B3 ffi 1/42 0.238095238095 x 10-' 0.34 × 10 - '2

B4 = 1/30 0.333333333333 × 10 -1 0.18 × 10 - '2
B5 = 5/66 0.757575757576 x 10 -1 0.64 x I0 -'~
B6 = 691/2730 0.253113553114 x 10 o -0.21 × I0 -'~

B~ = 7/6 0.116666666667 x 10' -0 .18 x 10 -~2
B8 = 3617/510 0.709215686274 x 10' -0 .23 X 10 - '2
B9 = 43867/798 0.549711779449 x 10 ~ -0 .21 x 10 - '2
B,o = 174611/330 0.529124242424 × 104 -0 .43 × 10 -12
B,, = 854513/138 0.619212318840 × 104 -0 .81 × 10 - '2

B,2 = 236364091/2730 0.865802531135 × 105 -0 .51 x 10 -~2
B,3 = 8553103/6 0.142551716667 x 107 -0 .12 × 1 0 - "
B14 = 23749461029/870 0.272982310678 x l 0 s -0 .11 X 10 -11

B,5 = 8615841276005/14322 0.601580873900 x 109 -0 .17 × 10 -H

523

Evaluating 31 terms, the Bernoulli numbers are obtained immediately from every
second coefficient (see Table III).

Example 3. Comparison between the present routine CPSC and ACM Algo-
rithm 413 (ENTCAF) [8].

The previous example (evaluating the first 15 Bernoulli numbers) was run with
both routines on a CDC CYBER 203. Execution times and the largest relative
errors were observed for different choices of user-supplied radii. There is a version
of ENTCAF called ENTCRE for the case of a function that is real on the real
axis and is expanded at a real point. It uses symmetries to save almost a factor of
2 in execution time. A real version of CPSC could be similarly written. Although
the example chosen is real, we use the complex versions of both algorithms to
obtain a comparison between the methods. Several parameters have to be
supplied to ENTCAF to guide its calculations. We specified that it should attempt
to reach an absolute accuracy of 10 -1° in the "normalized" Taylor coefficients
{relative accuracy cannot be specified), and that if this level was not possible, it
should do the best it could. Further, most 1024 function evaluations were
permitted for each case. Figures 5 and 6 show how computer time and the
accuracy obtained varied with the supplied radius for CPSC and ENTCAF. We
see that the accuracy reached by CPSC is virtually independent of the supplied
radius ro and that the computer time has a minimum at about re = 2~r, the radius
of convergence for the Taylor expansion. ENTCAF gives a similar accuracy for
ro between 4.6 and 6.1, with computer times between 2 and 3.5 times faster than
CPSC. We note that the best ro now are slightly smaller than re, but if rc is not
known (or is infinite for entire functions), this observation is of little use in finding
a good computational radius. As soon as a too large value of ro is used, the time
needed merely to recognize a failure exceeds the time of CPSC. (A special option
i~ ' ENTCAF to try to stop early if failure seemed likely increased the time when
a too large r0 was used.)

ACM Transactions on Mathematical Software, Vol, 7, No. 4, December 1981.

/

I

i

o

bJ I I

. - c o l I'

. _ , " , ,~ .

I

i "\
t \

!

i
I

!
!

i
I

I
i
I -

I
I

i
!

I

I
I

i
I

i
I

I
I / /
i /
I /

I /
a •

\
"\

\
\

\
\

.~_ ~
I-- "\

\
\

\

I
I

I
I

/
I

/
/

l"
/

/
/

(%1 (x l - - --. O,
o d 6 o o

I I I I I

0

0 : P i t

o
0

4)

. o_
. (D

R') "10 >
0 C

oJ

0

0

0

O

0

0
~o

n~

o~

o~ o3

o:

0

I

I
®!
E l

i
I

- - - - ~ " ~ " ~ - " ~ " "-" ~ , i - = - -~-~ ' . - ~ :

r o

0

i , i

o ~

I

,~ zmo

~ ~ 0

6 c~ (5 o 6

I I I I I
o ~0 ~o ~" oJ

o ~ -o~
I =J , .

Z

0
-o ~

- ~

E_ ~.

- 0

0

526 • Bengt Fornberg

REFERENCES

1. ABATE, J., AND DUBNER, H. A new method for generating power series expansion of functions.
S I A M J. Numer. Anal. 5 (1968), 102-112.

2. COOLEY, J.W., LEWIS, P.A.W., AND WELCH, P.D. The fast Fourier transform and its applications.
I E E E Trans. Educ. E-12, 1 (1969), 27-34.

3. COOLEY, J.W., AND TUKEY, J.W. An algorithm for the machine calculation of complex Fourier
series. Math. Comput. 19 (1965), 297-301.

4. FORNBERG, B. CPSC: Complex power series coefficients. CERN-Data Handling Division Rep.
DD/73/29, 1973.

5. KOPAL, Z. Numerical Analysis. Chapman & Hall, Ltd., London, 1955, pp. 250-251.
6. LYNESS, J.N. Differentiation formulas for analytic functions. Math. Comput. 22 (1968), 352-362.
7. LYNESS, J.N., AND MOLER, C.B. Numerical differentiation of analytic functions. S I A M J.

Numer. Anal. 4 (1967) 202-210.
8. LYNESS, J.N., AND SANDE, G. Algorithm 413--ENTCAF and ENTCRE: Evaluation of normal-

ized Taylor coefficients of an analytic function. Commun. A C M 14, 10 (Oct. 1971), 669-675.

Received August 1978; revised February 1980; accepted June 1981

ACM Transactions on Mathematical Software, Vol. 7, No. 4, December 1981.

