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Definition 1 (Royden and Fitzpatrick §6.4). A real-valued function f on a closed, bounded interval [a, b] is said
to be absolutely continuous on [a, b] provided for each ε > 0, there is δ > 0 such that for every finite disjoint
collection {(ak, bk)}nk=1 of open intervals in (a, b),

if
n∑
k=1

(bk − ak) < δ, then
n∑
k=1
|f(bk)− f(ak)| < ε.

If we have an absolutely continuous function f on [a, b], then for every ε > 0, there is a δ > 0 such that, in
particular using n = 1 open intervals (x, x + δ) (or (x − δ, x)), then |f(x + δ) − f(x)| < ε. That is, not only is f
continuous at x, but the choice of δ did not depend on x, so f is in fact uniformly continuous.
Overall, we have absolutely continuous =⇒ uniformly continuous =⇒ continuous and, (on a compact interval),

Continuously diff. =⇒ Lipschitz cts =⇒ absolutely cts =⇒ bounded variation =⇒ diff. a. e. where “diff” means dif-
ferentiable. The Cantor function (p. 32 in Hunter and Nachtergaele) is continuous everywhere but not absolutely
continuous. The function f(x) =

√
x on [0, 1] is absolutely continuous but not Lipschitz.

Theorem 2 (Fund. Thm. Calc., Thm. 10 §6.5 Royden and Fitzpatrick, or wikipedia). If f is absolutely contin-
uous on the finite interval [a, b] then f is differentiable a.e. on (a, b), its derivative f ′ is integrable, and∫ x

a

f ′ = f(x)− f(a) ∀x ∈ [a, b].

Note that absolute continuity has a different (though related) definition in regards to measures:

Definition 3 (cf. wikipedia). A measure µ on Borel subsets of the real line R(R) is absolutely continuous with
respect to Lebesgue measure λ if for every measurable set A, λ(A) = 0 implies µ(A) = 0. This is written as µ� λ
and we say µ is “dominated” by λ.

Theorem 4. Let µ be a finite measure on R(R), then µ � λ iff there exists a Lebesgue integrable function g on
the real line such that

∀A ∈ R(R), µ(A) =
∫
A

g dλ. (1)

The function g is unique up to a set of zero measure (wrt λ), and is called the Radon-Nikodym derivative of µ,
and is often denoted g = dµ

dλ .

The theorem generalizes to Rn, and to general σ-finite measure spaces. The theorem states that a probability
measure has a pdf iff it is an absolutely continuous measure. It also implies the following intuitive statement that
if
∫
A
g dλ = 0 for all A, then g = 0 a.e. (by uniqueness of the R-N derivative).

In particular, that if a CDF is absolutely continuous, then its PDF is a valid function, not a distribution. For
example, discrete measures can not write their PDF as a function (rather, it is a series of delta functions).
A weaker version would just say that if the CDF is differentiable, then it has a PDF (and the PDF is the

derivative of the CDF). But that’s too stringent. For example, consider a PDF on the interval [−1, 1] where the
PDF is 1/3 on [−1, 0] and 2/3 on [0, 1]. This is a valid probability distribution, but the CDF is not differentiable
at zero. The CDF is absolutely continuous though.

Theorem 5 (Tonelli). Let f : X × Y → [0,∞] be non-negative and measurable and the measures on X and Y
be σ-finite, then ∫

X

(∫
Y

f(x, y)dy
)
dx =

∫
Y

(∫
X

f(x, y)dx
)
dy =

∫
X×Y

f(x, y)dydx

1



1. If g : [0,1) ! R is a monotone non-increasing (thus measurable) function satisfying
limx!1 g(x) = c > 0, prove that there exists a rational-valued function h : [0,1) ! Q
such that the function f : [0,1) ! R defined by f = g ·h is improperly Riemann integrable
on [0,1), but not Lebesgue integrable there.

2. Assume that f : [1, 2] ! R is absolutely continuous, with f(2) = 0. Prove that

����
Z 2

1
f 0(x) log xdx

���� 
Z 2

1
|f(x)|dx.

3. Let f : [a, b] ! R be a C1 function. For ✏ > 0, let C✏ := {x 2 (a, b) : |f 0(x)| < ✏},
and let A := {f(x) | x 2 (a, b), f 0(x) = 0}.

(i) Prove that C✏ is open and that m(f(C✏)) < ✏ · (b � a).

(ii) Prove that A has Lebesgue measure zero.

4. Let (X, B, µ) be a measure space, and suppose that p, q, r 2 (1,1) satisfy

1

p
+

1

q
+

1

r
= 1.

If f 2 Lp(X, µ), g 2 Lq(X, µ), and h 2 Lr(X, µ), prove that f · g · h 2 L1(X, µ) and
that

kf · g · hk1  kfkp · kgkq · khkr.

5. Let (X, B, µ) be a �-finite measure space, and suppose that f : X ! [0,1) is a
nonnegative integrable function. Prove that the function  : [0,1) ! [0,1] defined by
 (t) = µ({x 2 X : f(x) � t}) is Lebesgue measurable and that

Z

X
fdµ =

Z 1

0
 (t) dt.

Hint: you may find Tonelli’s Theorem useful.

6. If {f1, f2, · · ·} is a complete orthonormal set in the Hilbert space L2[0, 1], where [0, 1]
is equipped with Lebesgue measure, and B is an arbitrary measurable subset of positive
measure in [0, 1], use Parseval’s identity applied to the characteristic function for B to
prove that

1 
Z

B

1X

i=1

|fi(x)|2dx.
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