
Applied Analysis Preliminary Exam (Hints/solutions)
9.00am–12.00pm, January 13, 2021

Instructions: You have three hours to complete this exam. Work all five problems; each is worth
20 points. Please start each problem on a new page. Please clearly indicate any work that you do
not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST prove your
conclusions or show a counter-example for all problems unless otherwise noted. In your proofs, you
may use any major theorem on the syllabus or discussed in class, unless you are being asked to
prove such a theorem (when in doubt, ask the proctor). Write your student number on your exam,
not your name.

Problem 1: Cauchy Condensation Test and an application:

(a) Prove the Cauchy Condensation Test: Suppose an is a decreasing sequence with an ≥ 0.

Then,
∞∑
n=1

an converges if and only if
∞∑
n=1

2na2n converges.

(b) For what values of a and b will the series
∞∑
n=2

n−a(log n)−b converge?

Solution/Hint :

(a) Consider the partial sums:

sn =
n∑
i=1

ai

tk =
k∑
j=1

2ja2j

As each an is nonnegative, the partial sums sn and tk are monotone increasing. Moreover,
as {an} is a decreasing and positive sequence we have that:

For n < 2k,

sn ≤ a1 + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1−1)

≤ a1 + 2a2 + · · ·+ 2ka2k

= tk

Thus, sn ≤ tk for n < 2k.

On the other hand, if n ≥ 2k,

sn ≥ a1 + a2 + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

≥ (1/2)a1 + a2 + 2a4 + · · ·+ 2k−1a2k

= (1/2)tk

Thus, 2sn ≥ tk when n ≥ 2k.

We see that {sn} and {tn} are either both bounded or both unbounded. The Monotone
Convergence Theorem for Sequences, which states that a monotone sequence converges if
and only if it is bounded, concludes the proof.

(b) Apply the Cauchy Condensation Test to

∞∑
n=2

n−a(log n)−b, to obtain the series

∞∑
n=2

2n(2n)−a(log 2n)−b =
∞∑
n=2

(2n)1−an−b(log 2)−b.

Apply the ratio test to this series to obtain that it converges when a > 1 and diverges when
a < 1, regardless of the value of b. When a = 1 the ratio test is inconclusive.



To handle the case when a = 1: Substitute in a = 1 to obtain the series

∞∑
n=2

n−b(log 2)−b

which converges when b > 1 and diverges when b ≤ 1.

Problem 2: Do the following problems:

(a) State the Arzela-Ascoli Theorem.
(b) Let C0(R) denote the Banach space of continuous functions f : R→ R such that f(x)→ 0 as
|x| → ∞, equipped with the sup-norm. A family of functions, F ⊂ C0(R), is said to be tight
if for all f ∈ F and every ε > 0 there exists R > 0 such that |f(x)| ≤ ε for all x ∈ R with
|x| ≥ R. Prove that F ⊂ C0(R) is precompact in C0(R) if it is bounded, equicontinuous,
and tight.

Solution/Hint :

(a) The family of functions F ⊂ C([a, b]) is compact if and only if it is bounded, closed, and
equicontinuous.

(b) Give that C0(R) is a Banach Space then it is complete. Thus, F is precompact if and only
if it is totally bounded. Now, we show that if F is bounded, equicontinuous, and tight then
it is totally bounded. For this purpose, let ε > 0. Since F is tight, there exists an R > 0
such that for all f it holds that:

|f(x)| < ε

2
for |x| ≥ R.

Define fR : [−R,R] → R to be the restriction of f to [−R,R]. By assumption we know
that family {fR : f ∈ F} is bounded and equicontinuous in the space C([−R,R]). Thus, by
the Arzelá-Ascoli theorem it is precompact, which implies that it is totally bounded. Thus,
{fR : f ∈ F} has a finite-ε net: {f1R, f2R, . . . , fnR} ⊂ {fR : f ∈ F} for some fk ∈ F . Now, for
f ∈ F we have that for |x| ≥ R∣∣f(x)− f i(x)

∣∣ ≤ |f |+ ∣∣f i∣∣ < ε.

Thus, fR ∈ Bε(f iR) implies that f ∈ Bε(f i). From this, we conclude that {f1, f2, . . . , fn} is
a finite-ε net of F , which means that its it totally bounded.

Problem 3: Let H be a Hilbert space and U = {un}n∈N ⊂ H an orthonormal set. Consider the
map PU : H → H defined by:

PU (x) =

∞∑
n=1

(un, x)un.

(a) Show that P is a bounded linear operator.
(b) Find the norm of P .
(c) Under what conditions is the operator PU the identity? Explain.
(d) Show that P 2

U = PU .

Solution/Hint :

(a) By orthogonality we see that

‖PU (x)‖2 =

∥∥∥∥∥
∞∑
n=1

(un, x)un

∥∥∥∥∥
2

=
∞∑
n=1

‖(un, x)un‖2 =
∞∑
n=1

|(un, x)|2 ≤ ‖x‖ ,

where the last inequality follows from Bessel’s inequality. Thus, PU is bounded. Linearity
follows by the linearity of the second argument of the inner-product.

(b) From part (a) we know that ‖P‖ ≤ 1. We also see that for all k ∈ N we have, by orthogo-
nality, that

PU (uk) =
∞∑
n=1

(un, uk)un = (uk, uk)uk = uk.

Thus, we have that
‖PU (uk)‖ = ‖uk‖

so ‖PU‖ = 1.



(c) We need the orthonormal set U to be complete, in other words, if it has to be a a basis. In
this case, we have that

PU (x) = x,

and so it is the identity.
(d) Here we have that:

P 2
U (x) = PU

( ∞∑
n=1

(un, x)un

)

=
∞∑
n=1

(un, x)PU (un) by linearity of PU

=
∞∑
n=1

(un, x)un

= PU (x).

Problem 4: Solve the following unrelated problems:

(a) Show that the set of polynomials with domain [0, 1] is dense in (C1([0, 1]), ‖·‖C1).
(b) Let X be a vector space. Show that if P : X → X is a projection, then X = ran(P )⊕ker(P ).
(c) Let H be a finite dimensional Hilbert Space and suppose that T : H → H is self-adjoint.

Moreover, suppose that for λ ∈ R and ε > 0 there is an x ∈ H with unit norm such that

‖Tx− λx‖ ≤ ε.

Show that T has an eigenvalue µ such that |λ− µ| < ε.

Solution/Hint :

(a) Let f ∈ C1([0, 1]) then f ′ ∈ C([0, 1]). Let ε > 0, by the Weierstrass Approximation Theorem
there is a polynomial defined on [0, 1], q, such that∥∥f ′ − q∥∥∞ <

ε

2
.

Define

p(x) =

∫ x

0
q(s) ds+ f(0).

We see that p is a polynomial and that p′ = q. Note that we can write

f(x) =

∫ x

0
f ′(s) ds+ f(0),

so we can compute:

|f(x)− p(x)| =
∣∣∣∣∫ x

0
[f ′(s)− q(s)] ds

∣∣∣∣ ≤ ∫ x

0

∣∣f ′(s)− q(s)∣∣ ds ≤ x ∥∥f ′ − q∥∥∞ ≤ ε

2
.

Now, taking the sup over [0, 1] gives that ‖f − p‖∞ < ε
2 . Then, we have that ‖f − p‖C1 < ε

and from this we conclude.
(b) This is Theorem 8.2 (a) in our textbook, but for completeness we reproduce the proof here.

The first step is to prove that x ∈ ran(P ) iff Px = x. If Px = x then x ∈ ran(P ). Now,
assume that x ∈ ran(P ), so there exists a y ∈ X such that Py = x. Now, P is a projections,
which by definition is a linear map such that P 2 = P , so we have that Px = P 2y = Py = x.
If x ∈ ran(P )∩ ker(P ) then based on the above argument we see that Px = x and Px = 0,
which means that x = 0. Thus, ran(P ) ∩ ker(P ) = {0}. Now, if x ∈ H then we have that

x = Px+ (x− Px)

where Px ∈ ran(x) and as P (x− Px) = Px− P 2x = Px− Px = 0 then x− Px ∈ ker(P ).
This was true for any arbitrary x ∈ X so we see that X = ran(P )⊕ ker(P ).



(c) Since T is self-adjoint, so is T − λI. Thus, by the spectral theorem it is orthonormally
diagonalizable: let e1, e2, . . . , en be an orthonormal basis with eigenvalues λ1, λ2, . . . , λn,
respectively. We can express x =

∑n
k=1 αkek and we have

‖(T − λI)x‖2 =

∥∥∥∥∥(T − λI)
n∑
k=1

αkek

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
k=1

λkαkek

∥∥∥∥∥
2

=

n∑
k=1

|λkαk|2

=

n∑
k=1

∣∣∣∣ min
0≤j≤n

λj

∣∣∣∣2 |αk|2
≥
∣∣∣∣ min
0≤j≤n

λj

∣∣∣∣2 .
Thus, we have if λm = min0≤j≤n λj then

|λm| ≤ ‖(T − λI)x‖ < ε.

However, note that µ = λm + λ is an eigenvalue of T, so |µ− λ| = |λm| ≤ ε.

Problem 5: Show that for every non-negative, bounded, and measurable function f : [0, 1] → R,
it holds that: ∫ 1

0
f(x) dµ(x) = inf

∫ 1

0
ϕ(x) dµ(x)

where the infimum is taken over all simple measurable functions ϕ that satisfy f ≤ ϕ. Here µ is
the Lebesgue measure.
Solution/Hint : Let M = supx∈[0,1] f, which is finite since f is bounded. For every simple function

ϕ ≥ f , we can define another simple function ψ(x) = min{ϕ,M}. Note that f ≤ ψ ≤ ϕ. Of course,
we have that ∫ 1

0
ψ(x) dµ(x) ≤

∫ 1

0
ϕ(x) dµ(x)

and so

inf
f≤ψ≤M

∫ 1

0
ψ dµ(x) ≤ inf

f≤ϕ

∫ 1

0
ϕ dµ(x).

This means that we can restrict our search for the infimum over the set of simple functions that
satisfy f ≤ ψ ≤ M . Now, note that g = M − f is a non-negative, measurable function that is
bounded by M . Thus, by definition of the integral

M −
∫ 1

0
f dµ(x) =

∫ 1

0
g dµ(x) = sup

0≤φ≤g

∫ 1

0
φ dµ(x),

φ a simple function. Note that each φ defines a simple function

ψ = M − φ
that satisfies f ≤ ψ ≤ M . At the same time, for all simple function ψ satisfying f ≤ ψ ≤ M we
have a simple function φ = ψ −M that satisfies 0 ≤ φ ≤ g. Thus, we obtain that:∫ 1

0
f dµ(x) = M − sup

0≤φ≤g

∫ 1

0
φ dµ(x) = − sup

f≤ψ≤M

∫ 1

0
(−ψ) dµ(x) = inf

f≤ψ≤M

∫ 1

0
ψ dµ(x).


