
Applied Analysis Preliminary Exam (Hints/solutions)
10.00am–1.00pm, January 10, 2019

Instructions: You have three hours to complete this exam. Work all five problems; each is worth
20 points. Please start each problem on a new page. Please clearly indicate any work that you do
not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST prove your
conclusions or show a counter-example for all problems unless otherwise noted. In your proofs, you
may use any major theorem on the syllabus or discussed in class, unless you are being asked to
prove such a theorem (when in doubt, ask the proctor). Write your student number on your exam,
not your name.

Problem 1: Suppose
∑∞

n=1 an is a convergent series.

(a) Prove that if an ≥ 0 for all n, then

(1)
∞∑
n=1

a2n

converges.
(b) By contrast, find an example of a sequence {an} for which the series converges, but (1)

diverges.
(c) Suppose that {bn} is a bounded sequence, and that

∑∞
n=1 an converges absolutely. Prove

that
∞∑
n=1

anbn

converges.

Solution/Hint :

(a) Note that when an ≥ 0, then the partial sum

M∑
n=1

a2n ≤

(
M∑
n=1

an

)2

,

since the added cross terms are all non-negative. Since the sequence of partial sums sM =∑M
n=1 an → s converges, then we have

M∑
n=1

a2n ≤ (sM )2 ≤ s

Now
∑M

n=1 a
2
n is a monotone increasing, bounded sequence, and so it has a limit.

(b) Let, for example an = (−1)n/
√
n. This alternating series converges by the alternating series

test but since a2n = 1/n is the Harmonic series, it diverges.
(c) Since the sequence is assumed to be absolutely convergent then its absolute values give a

Cauchy sequence: for all ε > 0 there exists an N(ε) such that whenever M > N

M∑
n=N

|an| < ε

Thus ∣∣∣∣∣
M∑

n=N

anbn

∣∣∣∣∣ ≤
M∑

n=N

|an||bn| ≤ B
M∑

n=N

|an| < Bε

where by assumption |bn| ≤ B < ∞. Therefore the sequence sk =
∑k

n=1 anbn is a Cauchy
sequence: For all ε′ = Bε > 0

|sM − sN | =

∣∣∣∣∣
M∑

n=N

anbn

∣∣∣∣∣ < ε′

with M > N as before. Thus sk converges.



Problem 2: Consider the following two sequences of functions:

fk(x) =


1, x ∈ [0, 1k ]
3( 1k − x) + 1, x ∈ [ 1k ,

1
k + 1

3 ]
0, x ∈ [ 1k + 1

3 , 1]
and gk(x) =


1, x ∈ [0, 1k ]
3(1− kx) + 1, x ∈ [ 1k ,

4
3k ]

0, x ∈ [ 4
3k , 1]

for k ≥ 2, k an integer. To which sequences does the Arzelà-Ascoli theorem apply and why? What
does the theorem allow one to conclude?
Solution/Hint : Both sequences are continuous functions on [0, 1] for all k, and hence uniformly
bounded. The first sequence is equicontinuous since

|fk(x)− fk(y)| ≤ 3|x− y| < ε

if |x−y| < δ and we choose δ = ε/3 independently of k. Thus the theorem implies this sequence has
a uniformly convergent subsequence. Indeed the sequence itself converges uniformly to a continuous
function, so every subsequence also converges to the same function. The second sequence, however
is not equicontinuous, for if x, y are in the middle interval then

|gk(x)− gk(y)| = 3k|x− y|

so it would be necessary to choose δ = ε/(3k), which depends on k. Thus the theorem does not
apply. Indeed, this sequence converges pointwise to the discontinuous function g(x) = 1 if x = 0
and 0 otherwise.

Problem 3: Suppose that f is integrable on Rd. Prove that for every ε > 0 the following hold:

(a) There exists a set B of finite measure such that∫
B
|f | < ε.

(b) There exists a δ > 0 such that ∫
E
|f | < ε

if the measure of E is less than δ.

Solution/Hint :

• WLOG assume that f ≥ 0. To prove (a) let BN be the ball of radius N centered at 0 and
define

fN (x) = f(x)χBN
(x),

where χ is the characteristic function. Note that fN ≥ 0 and is measurable. Moreover,
fN (x) ≤ fN+1(x) and

lim
N→∞

fN (x) = f(x).

• By the Monotone Convergence Theorem we have that

lim
N→∞

∫
fN =

∫
f.

Hence, for ε > 0 there exists a N sufficiently large such that

0 ≤
∫
f −

∫
fN < ε.(2)

• However, note that χBc
N

= 1− χBN
. Thus, (2) implies that

∫
Bc

N
f < ε.

• To prove part (b) we now define fN (x) = f(x)χEN
where

EN = {x : f(x) ≤ N}.

• Note that fN ≥ 0 is measurable and again fN (x) ≤ fN+1(x).
• Again for any ε > 0 by the Monotone Convergence Theorem there exists an N such that∫

(f − fN ) < ε/2.



Choose δ > 0 such that Nδ < ε/2. If the measure of E is less than δ (that is m(E) < δ)
then we have that ∫

E
f =

∫
E

(f − fN ) +

∫
E
fN

≤
∫

(f − fN ) +

∫
E
fN

≤ ε/2 +Nm(E)

≤ ε.

Problem 4: Let T : H → H be a non-trivial, compact and self-adjoint operator on a Hilbert Space
H. Show that either −‖T‖ or ‖T‖ is an eigenvalue of T .

Solution/Hint :

• Let m = ‖T‖ = sup‖f‖=1 |(Tf, f)| by Lemma 8.26 in H-N book. Thus either,

‖T‖ = sup
‖f‖=1

(Tf, f) or − ‖T‖ = inf
‖f‖=1

(Tf, f).

• First assume that the former holds (the proof for the latter is similar).
• Take a sequence {fn} ⊂ H with ‖fn‖ = 1 and (Tfn, fn)→ m.

• Since T is compact there exists a converging subsequence (not renamed for convenience)
Tfn → g in H.
• Claim: g is an eigenvector of T with eigenvalue m.
• Indeed, note that

‖Tfn −mfn‖2 = ‖Tfn‖2 − 2m(Tfn, fn) +m2‖fn‖2

≤ ‖T‖2‖fn‖2 − 2m(Tfn, fn) +m2‖fn‖2

= 2m2 − 2m(Tfn, fn)→ 0

as n→∞. Thus, Tfn −mfn → 0 as n→∞. Thus, Tfn → g implies that mfn → g.
• Now, as g is continuous we have that mTfn → Tg.
• Finally, note g is non-trivial for it were then ‖Tfn‖ → 0 and so (Tfn, fn) → 0 and then
‖T‖ = 0 which is a contradiction.

Problem 5: Prove that a closed linear subspace Y of a reflexive Banach space X is also reflexive.
(HINT: You might want to use the following result: A point z in a normed vector space X belongs
to the closed linear span of a subset {yi} ⊂ X if and only if for every ` ∈ X∗ that vanishes on the
subset {yi} also vanishes on z. That is, if `(yi) = 0 for all yi then `(z) = 0).

Solution/Hint :

• Let ` ∈ X∗ then `|Y is a bounded linear functional on Y .
• Denote `0 = `|Y : Y → F (where F denotes the field).
• By Hahn-Banach all bounded, linear functional can be extended to X. Thus, the restriction
R : X∗ → Y ∗ defined by

`
R−→ `0

is onto.
• This restriction induces a mapping from Y ∗∗ → X∗∗ as follows: for any η ∈ Y ∗∗ we define
γ ∈ X∗∗ by setting

γ(`) = η(`0) ∀ ` ∈ X∗.
• X is reflexive and so γ can be identified with an element z ∈ X: γ(`) = `(z) and thus

`(z) = η(`0).(3)



• Claim: z ∈ Y. Indeed, if ` ∈ Y ⊥ so that `(y) = 0 for all y ∈ Y then `0 = 0 and thus by (3)
then `(z) = 0.
• By the hint then z is in the closure of Y . However, as Y is closed then z ∈ Y .
• Thus, we can write (3) as

`0(z) = η(`0).(4)

• However, every functional in Y ∗ occurs as `0 so (4) shows that every η ∈ Y ∗∗ can be identified
with a z ∈ Y . Thus, Y is relexive.


