
Applied Analysis Jan 2024 Preliminary Exam

Instructions: You have three hours to complete this exam. Work all five problems; each is worth
20 points. Please start each problem on a new page. Please clearly indicate any work that you do
not wish to be graded (e.g., write SCRATCH at the top of such a page). You MUST prove your
conclusions or show a counter-example for all problems unless otherwise noted. In your proofs, you
may use any major theorem on the syllabus or discussed in class, unless you are being asked to
prove such a theorem (when in doubt, ask the proctor). Write your student number on your exam,
not your name.

Student Number:

1. (20 points) Compute the following quantities.

(a) For each real x, compute lim
n→∞

e−nx
(
1 +

x

n

)n2

(Hint: ln(1 + x) =
∞∑
k=1

(−1)k−1x
k

k
for

−1 < x ≤ 1)

(b) Evaluate lim
n→∞

[
1√

n(n+ 0)
+

1√
n(n+ 1)

+ · · · 1√
n(n+ n)

]

Solutions:

(a) Let

L = lim
n→∞

e−nx
(
1 +

x

n

)n2

ln(L) = lim
n→∞

[
ln(e−nx) + n2 ln

(
1 +

x

n

)]
= lim

n→∞

[
−nx+ n2 ln

(
1 +

x

n

)]
Recall the MacLaurin series for ln(1 + x),

ln(1 + x) =
∞∑
k=1

(−1)k−1x
k

k

with an interval of convergence −1 < x ≤ 1. Then, for fixed positive integer n

ln(1 + x/n) =

∞∑
k=1

(−1)k−1 xk

knk

with interval of convergence −n < x ≤ n and

n2 ln(1 + x/n) =

∞∑
k=1

(−1)k−1 xk

knk−2
= nx− x2

2
+

x3

3n
− x4

4n2
+ · · ·
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Substituting this expansion into the expression for ln(L) gives

ln(L) = lim
n→∞

[
−nx+ n2 ln

(
1 +

x

n

)]
= lim

n→∞

[
−nx+ nx− x2

2
+

x3

3n
− x4

4n2
+ · · ·

]
= lim

n→∞

[
−x2

2
+

x3

3n
− x4

4n2
+ · · ·

]
= −x2

2
.

Thus,

L = lim
n→∞

e−nx
(
1 +

x

n

)n2

= e−x2/2 for all x ∈ R.

(b) For this limit, we use Reimann sums with n equally spaced subintervals on the interval
[0, 1] and the Fundamental Theorem of Calculus. Thus:

lim
n→∞

n∑
k=0

1√
n(n+ k)

= lim
n→∞

n∑
k=0

1

n
√
1 + k/n

= lim
n→∞

[
n−1∑
k=0

1

n
√
1 + k/n

+
1√
2n

]

=

∫ 1

0

1√
1 + x

dx

= 2(
√
2− 1).
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2. (20 points) Let (X, d) be a complete metric space and let T : X → X be a contraction,
with contraction constant c. Choose x0 ∈ X and define the sequence {xn} by Txn = xn+1.
From the Contraction Mapping Theorem, T has a unique fixed point x. Prove the following
inequalities:

(a) For n ≥ m ≥ 1, d(xm, xn) ≤
cm

1− c
d(x1, x0)

(b) d(xm, x) ≤ cm

1− c
d(x1, x0)

(c) d(xm, x) ≤ c

1− c
d(xm−1, xm)

Solutions:

(a) Recall a mapping T : X → X is a contraction if there exists a constant c, with 0 ≤ c < 1
so that d(T (x), T (y)) ≤ cd(x, y) for all x, y ∈ X. Since Txn = xn+1, we have Tnx0 = xn
So, if n ≥ m ≥ 1 then

d(xn, xm) = d(Tnx0, T
mx0)

≤ cmd(Tn−mx0, x0)

≤ cm
[
d(Tn−mx0, T

n−m−1x0) + d(Tn−m−1x0, T
n−m−2x0) + · · ·+ d(Tx0, x0)

]
≤ cm

[
n−m−1∑
k=0

ck

]
d(x1, x0)

≤ cm

[ ∞∑
k=0

ck

]
d(x1, x0)

≤ cm

1− c
d(x1, x0)

Aside: Since 0 ≤ c < 1 this proves that {xn} is a Cauchy sequence.

(b) By the Contraction Mapping Theorem, we have lim
n→∞

xn = x. So the inequality in part

(b) follows immediately from part (a) since the right-hand side of part (a) is independent
of n.

(c) Since x is a fixed point and T is a contraction we have

d(xm, x) = d(Txm−1, T (x))

≤ cd(xm−1, x)

≤ c (d(xm−1, xm) + d(xm, x)) by the Triangle Inequality)

Rearrange the terms to obtain the desired inequality.

Aside: Parts (b) and (c) provide error estimates for the iteration. The inequality in part
(b) is sometimes called the prior estimate and the inequality in part (c) is called the
posterior estimate.
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3. (20 points) Let (X, d) be a compact metric space. Prove that the following set is compact

A = {f ∈ C(X) : ||f ||∞ ≤ 1, Hα(f) ≤ 1}

where

Hα(f) := sup
x ̸=y

|f(x)− f(y)|
d(x, y)α

,

with 0 < α ≤ 1.

Solution: By the Arzela-Ascoli Theorem we need to show that A is closed, bounded, and
equicontinous. It is easy to see that the set is bounded. To prove that it is closed, we take
a convergent sequence {fn} with limit f and show that f ∈ A. First, note that the uniform
limit of continuous functions is continuous and ∥f∥∞ ≤ ∥f − fn∥∞ + ∥fn∥∞ ≤ ϵ+ 1 where ϵ
can be made arbitrarily small by taking the limit as n → ∞. Thus, ∥f∥∞ ≤ 1. Moreover, for
x ̸= y

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| ≤ ϵ

2
+ d(x, y)α +

ϵ

2

for n sufficiently large. Which gives that

|f(x)− f(y)|
d(x, y)α

≤ ϵ

d(x, y)α
+ 1

for arbitrary ϵ > 0. Thus, we conclude that Hα(f) ≤ 1 and so f ∈ A.

The only thing we have left to show is equicontinuity. Let ϵ > 0. If d(x, y) ≤ ϵ1/α then
d(x, y)α ≤ ϵ. Any f ∈ A satisfies:

sup
x̸=y

|f(x)− f(y)|
d(x, y)α

≤ 1 ⇒ |f(x)− f(y)| ≤ dα(x, y) ≤ ϵ.

Thus, we can take δ = ϵ1/α to be the equicontinuity contact, which is independent of f ∈ A.
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4. (20 points) Define the function g : (0, 1) → (0, 1) by

g(x) =


0, 0 < x < 1

4 ,
2
(
x− 1

4

)
, 1

4 ≤ x ≤ 3
4 ,

1, 3
4 < x < 1.

Consider the multiplication operator M : L2[(0, 1)] → L2[(0, 1)] defined by M [f ](x) =
g(x)f(x).

(a) (4 points) Find the norm of M .

(b) (8 points) Find the point spectrum of M and describe the eigenspace of each of the
eigenvalues in the point spectrum.

(c) (8 points) Find the continuous and residual spectrum of M .

Solution:

(a) We can compute directly

||M || = sup
||f ||=1

||Mf ||

= sup
||f ||=1

√∫ 1

0
g2(x)f2(x) dx

≤ sup
||f ||=1

√∫ 1

0
|f(x)|2 dx

= 1.

Taking any function f with support [3/4, 1] with ||f || = 1 we see that ||M [f ]|| = 1 so
||M || = 1.

(b) Any non-zero function, f , with support on [0, 1/3] will be such that Mf = 0 ·f and thus
zero is an eigenvalue with eigenspace:{

f ∈ L2([0, 1]) : f is non-zero and has support on a subset of [0, 1/3]
}
.

Similarly, any function with support on [3/4, 1] satisfies Mf = f . Thus, one is an
eigenvalue with eigenspace:{

f ∈ L2([0, 1]) : f is non-zero and has support on a subset of [3/4, 1]
}
.

Thus, {0, 1} ⊂ σp(M). For general λ ∈ (0, 1) we see that if Mf = gf = λf we need
g(x)−λ to be constant almost everywhere, which we know is not the case! Thus, in fact
σp(M) = {0, 1} .

(c) Note that σ(M) ⊂ [−∥M∥, ∥M∥] = [−1, 1]. In fact, σ(M) = {g(x) : x ∈ R} = [0, 1]. To
prove this let λ /∈ {g(x) : x ∈ R}. First, note that λ cannot be in the point spectrum as
g(x)− λ is bounded away from zero. Thus, for f ∈ L2(R) define

h(x) =
f(x)

λ− g(x)
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so f(x) = (λ− g(x))h(x) and so the mapping G− λI is onto. Thus, λ cannot be in the
continuous or residual spectrum. Now, if λ ∈ {g(x) : x ∈ R} we claim that G−λI is not
onto. Assume that it is, for contradiction. Then (G − λI)−1 is bounded by the open
mapping theorem. Also, if G − λI is onto then its range is the whole space, a Hilbert
Space. Hence, it is closed. Thus, we can invoke Proposition 5.30 once more and note
that then:

∥(G− λI)h∥ ≥ c∥h∥, (1)

for all h ∈ H. Our goal is to find a function h such that the above inequality breaks
down. To do this we take advantage of the singularity at some x0 ∈ R, this is because
it must be that λ = g(x0) for some x0 ∈ R. In fact, then we have that |λ− g(x)| ≤ ϵ on

some ball of radius r, Br(x0). Now, define f(x) = 1√
2r
χBr(x0) and let h = f(x)

λ−g(x) . Note

that ∥f∥ = 1 and so ∥h∥ ≥ 1
ϵ and so we have that

∥(G− λI)h∥ = ∥f∥ <
c

ϵ

for ϵ sufficiently small. There are two possibilities to consider: either h /∈ L2(R) or
we have broken inequality (1). Also, σr = ∅ as the operator is self-adjoint and thus,
σc = (0, 1).
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5. Let f be a non-decreasing function defined on [0, 1].

(a) (10 points) Prove that ∫ 1

0
f ′(x) dx ≤ f(1)− f(0).

(b) (10 points) Let {fn} be a sequence of non-decreasing functions on [0, 1] such that the
series F (x) =

∑∞
n=1 fn(x) converges for all x ∈ [0, 1]. Prove that F ′(x) =

∑∞
n=1 f

′
n(x)

almost everywhere.

Solution: (a) We begin by extending the function f such that f(x) = f(1) for all x > 1. As
f is non-decreasing it is differentiable almost everywhere and so we can write

f ′(x) = lim
h→0+

f(x+ h)− f(x)

h

for almost all x. Note that the quotient above is non-negative a.e. x since f is non-decreasing.
We can apply Fatou’s Lemma to obtain∫ 1

0
f ′(x) dx =

∫ 1

0
lim

h→0+

f(x+ h)− f(x)

h
dx

≤ lim inf
h→0+

1

h

∫ 1

0
f(x+ h)− f(x) dx

= lim inf
h→0+

1

h

(∫ 1+h

1
f(x) dx−

∫ h

0
f(x)

)
= f(1)− f(0).

To prove part (b) note that since all f ′
ns are non-decreasing, then so is F and so it is differ-

entiable almost everywhere. Define

RN (x) =

∞∑
n=N+1

f ′
n(x)

so that F (x) =
∑N

n=1 fn(x) + RN (x) and F ′(x) =
∑N

n=1 f
′
n(x) + R′

N (x) for almost all x. we
aim to show that limN→∞R′

N (x) = 0. To achieve this note that

R′
N (x)−R′

N+1(x) = (RN −RN+1)
′(x) = f ′

N (x) ≥ 0

as fN is non-decreasing. From this, we conclude that {R′
N}N is monotone decreasing for

almost all x. Thus, limN→∞R′
N (x) exists for almost all x and is non-negative. To show that

it is zero we apply the Monotone Convergence Theorem∫ 1

0
lim

N→∞
R′

N (x) dx = lim
N→∞

∫ 1

0
R′

N (x) dx ≤ lim
N→∞

[RN (1)−RN (0)] = 0.
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