
Applied Analysis Preliminary Exam (Hints/solutions)
9:00 AM – 12:00 PM, Monday August 19, 2024

Instructions You have three hours to complete this exam. Work all five problems; there
are no optional problems. Each problem is worth 20 points. Please start each problem
on a new page. Please clearly indicate any work that you do not wish to be graded (e.g.,
write SCRATCH at the top of such a page). You MUST prove your conclusions or show a
counter-example for all problems unless otherwise noted. In your proofs, you may use any
major theorem on the syllabus or discussed in class, unless you are directly proving such a
theorem (when in doubt, ask the proctor). If you cannot finish part of a question, you may
wish to move on to the next part; problems are graded with partial credit. Write your
student number on your exam, not your name.

Problem 1 (20 points) Let
{
fn

}
be a sequence of nondecreasing functions that map [0, 1]

to itself, i.e., ∀n ∈ N, x ≥ y =⇒ fn(x) ≥ fn(y). Let g : [0, 1] −→ [0, 1] be a continuous
function on [0, 1] such that

∀x ∈ [0, 1], lim
n→∞

fn(x) = g(x). (1)

Note that the fn need not be continuous.

(a) Let 0 ≤ a < b ≤ 1 and (just for this subproblem) suppose there is some ε > 0 such that
∀x, y ∈ [a, b] then |g(x)−g(y)| < ε. Prove that for n sufficiently large, then ∀x, y ∈ [a, b]
then |fn(x) − fn(y)| < 3ε. Hint: assuming x ≤ y, prove that for n sufficiently large,

∀x ∈ [a, b], g(a) − ε < fn(a) ≤ fn(x) ≤ fn(y) ≤ fn(b) < g(b) + ε < g(a) + 2ε. (2)

(b) Prove that fn converges uniformly on [0, 1] to g.
(c) Give an example to show that the convergence need not be uniform if we no longer

assumed g is continuous.

Solution: By Heine’s theorem, g is uniformly continuous on [0, 1]. Let ε > 0, there
exists δ > 0, such that

|x− y| < δ ⇒ |g(x) − g(y)| < ε/3. (3)
Now, we lay down a uniform grid on [0, 1], defined by

[0, 1] =
N⋃

k=1
[ξk−1, ξk], with ξk = k/N, and 1/N < δ. (4)

We evaluate the fn and g on the grid
{
ξk

}
; since fn converges to g pointwise at every point

of the finite grid, there exists M , such that

∀n ≥ M, ∀1 ≤ k ≤ N,
∣∣∣g(ξk) − fn(ξk)

∣∣∣ < ε/3. (5)

Finally we tie all the points in a grid cell to the value of fn at that grid point. We have
∀x ∈ [ξk−1, ξk],

g(ξk−1) − ε/3 < fn(ξk−1) < fn(x) < fn(ξk) < g(ξk) + ε/3 < g(ξk−1) + 2ε/3, (6)
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where the first and fourth inequalities are a consequence of (5); the second and third in-
equality are consequences of the monotonicity of fn; and the last inequality is a consequence
of (3). Therefore, ∣∣∣g(ξk−1) − fn(x)

∣∣∣ < 2ε/3. (7)
Whence we conclude that∣∣∣g(x) − fn(x)

∣∣∣ ≤ |g(x) − g(ξk−1)
∣∣∣+ |g(ξk−1) − fn(x)

∣∣∣ ≤ ε (8)

Since the left hand side does not depend on x ∈ [0, 1], we can upgrade the pointwise conver-
gence of fn to uniform convergence.

Problem 2 (20 points) Let H be a separable complex Hilbert space, and let B(H ) be
the Banach space of bounded linear operators from H to itself equipped with the opera-
tor norm. As is customary, we use the same notation to denote the operator norm (as in
∥T∥ = ∥T∥B(H )) and the norm induced by the inner product in H (as in ∥x∥2 = ⟨x, x⟩).

We denote by K (H ) ⊂ B(H ) the closed subspace of compact operators, and by F (H )
the subspace of finite rank operators. We recall that an operator T ∈ B(H ) is finite rank
if its range has finite rank. All finite rank operators are compact; the limit of a convergent
sequence of finite rank operators is therefore compact.

(a) Prove that F (H ) is dense everywhere in K (H ).
(b) Let

{
fn

}
be an orthonormal family in H . Prove that

T ∈ K (H ) =⇒ lim
n→∞

Tfn = 0. (9)

You may use the following result (which we proved in class): a sequence
{
zn

}
defined in

a compact metric space converges to a limit z if and only if all convergent subsequences
converge to z.

(c) Let {en} be an orthonormal basis for H . Prove that
∞∑

n=0
∥Ten∥2 < ∞ =⇒ T ∈ K (H ). (10)

Solution:

(a) Let T ∈ K (H ) and let ε > 0, we will exhibit a finite rank operator Tε such that∥∥∥T − Tε

∥∥∥ < ε. Let B(0, 1) be the unit ball in H . T being compact, T (B(0, 1)) has
compact closure, so it is totally bounded, and ∃N(ε), ∃y1, . . . , yN(ε), such that

T (B(0, 1)) ⊂
N(ε)⋃

1
B(yj, ε). (11)

Now, define V = span
{
y1, . . . , yN(ε)

}
, and let PV be the orthogonal projector onto V .

The operator
Tε

def= PV ◦ T, (12)
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has finite rank (≤ N(ε)). Let x ∈ B(0, 1), because of (11), ∃yj such that ∥Tx−yj∥ ≤ ε.
But yj ∈ V , and therefore distTx, V ≤ ε. We conclude that ∥Tx − PV Tx∥ ≤ ε, and
thus

∀x ∈ B(0, 1),
∥∥∥(T − Tε)(x)

∥∥∥ ≤ ε. (13)

Whence ∥T − Tε∥ ≤ ε.
(b) Because T is compact, T (B(0, 1)) has compact closure and therefore the sequence

{
Tfn

}
admits a convergent subsequence. Without loss of generality, we denote by

{
Tfn

}
this

subsequence, which converges to y ∈ T (B(0, 1)).

Let x ∈ H , we have ⟨Tfn, x⟩ = ⟨fn, T
∗x⟩. Also, since

{
fn

}
is an orthonormal

family, it converges weakly to 0,

lim
n→∞

⟨fn, T
∗x⟩ = 0, (14)

and therefore
lim

n→∞
⟨Tfn, x⟩ = 0 = ⟨y, x⟩. (15)

We conclude that y = 0. To wit, any convergent subsequence of
{
Tfn

}
converges to

the same limit 0. We conclude that limn→∞ Tfn = 0.
(c) Let T ∈ B(H ) such that ∑∞

n=0 ∥Ten∥2 < ∞. We will prove that T is the limit of
a sequence of finite rank operators. We consider the sequence of truncated operators
defined by their action on the basis

{
en

}
,

TNx =
N∑

n=0
xnTen =

N∑
n=0

⟨x, en⟩Ten. (16)

TN is a finite rank operator in B(H ). We verify that TN converges to T in B(H ). We
have∥∥∥(T − TN)x∥ =

∥∥∥ ∞∑
n=N+1

⟨x, en⟩Ten

∥∥∥ ≤
∞∑

n=N+1

∣∣∣⟨x, en⟩
∣∣∣∥∥∥Ten

∥∥∥ (17)

≤
[ ∞∑

n=N+1

∣∣∣⟨x, en⟩
∣∣∣2]1/2[ ∞∑

n=N+1

∥∥∥Ten

∥∥∥2
]1/2

≤ ∥x∥
[ ∞∑

n=N+1

∥∥∥Ten

∥∥∥2
]1/2

,

(18)

whence ∥∥∥(T − TN)
∥∥∥ ≤

[ ∞∑
n=N+1

∥∥∥Ten

∥∥∥2
]1/2

. (19)

We conclude by observing that limN→∞
∑∞

n=N+1

∥∥∥Ten

∥∥∥2
= 0, since it is the tail of a

convergent series, and thus TN converges to T in B(H ). T is therefore compact, since
it is the limit of finite rank operators.

See also Theorem 9.21 in Hunter and Nachtergaele
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Problem 3 (20 points)

(a) Let T be the standard 1D torus T = R/(2πZ). For which natural numbers k is Ck(T)
dense in L2(T) (that is, with respect to the norm on L2(T))? Justify your answer.

Solution: It’s dense for all k ∈ N .
You could do this by mollifying a function, or you could use Fourier series. With

Fourier series, if we truncate them to be finite, then we’re a trigonometric polynomial (a
finite sum of C∞ functions) and hence C∞, and since the Fourier series tail converges,
we have the density.

(b) Suppose f ∈ L2(T) has the property that ∃M such that

∀φ ∈ C1(T)
∣∣∣∣∣
ˆ
T
fφ′

∣∣∣∣∣ ≤ M∥φ∥L2 .

Prove that there exists a function g such that (1) g ∈ L2(T) , and (2)

∀φ ∈ C1(T)
ˆ
T
gφ = −

ˆ
T
fφ′.

Solution: By the assumption, we have that the linear functional φ 7→ −
´

T
fφ′

is bounded (it’s obviously linear since both differentiation and integration are linear
operators). Thus via the
Bounded Linear Transformation theorem, since C1(T) is dense in L2(T), we can ex-

tend this functional to be defined on all of L2(T). Then since this is a bounded linear
functional on a Hilbert space, we can identify it with an element g inside the same
Hilbert space using the Riesz Representation theorem.

This is discussed in the Hunter and Nachtergaele book in between Definition 7.6
and 7.7, though it’s not explicitly proved (but it is outlined).

Problem 4 (20 points) Let M be a linear subspace of a normed linear space X, and let
x0 ∈ X with dist(x0,M) = δ > 0 where dist(x, V ) def= infv∈V ∥x − v∥. Prove that there is a
bounded linear functional φ ∈ X∗ such that ∥φ∥ ≤ δ−1, φ(x0) = 1, and φ(m) = 0 ∀m ∈ M .

Solution: The key trick to this problem is appropriately using the Hahn-Banach theorem .
There are several standard variants of the Hahn-Banach theorem. Here’s the one from Hunter
and Nachtergaele (Thm. 5.58) that will be sufficient for our purposes: if Y is a linear sub-
space of a normed linear space X and ψ : Y → R is a bounded linear functional on Y , then
ψ can be extended to a bounded linear functional φ on all of X that has the same norm.

A common corollary (exercise 5.6 in Hunter and Nachtergaele, or theorem 4.3-3 in
Kreyszig) is that for any 0 ̸= x0 ∈ X there is a φ ∈ X∗ that has unit norm and φ(x0) = ∥x0∥.
This problem is a generalization of that.

Let’s start by considering δ = 0. In that case, we can simply define φ = 0 and clearly
this satisfies the requirements.

Now assume δ > 0. Let N = span(x0) = {αx0 | α ∈ R} which is a subspace. Then let
Y = M + N which is obviously a subspace, and in fact we can write it as the direct sum
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Y = M ⊕ N meaning that any decomposition y = m + n with m ∈ M,n ∈ N is unique.
This is true if M ∩ N = {0} (cf. section 8.1 in Hunter and Nachtergaele; quick proof via
contradiction), which is true in our case since δ > 0.

Recalling that if n ∈ N then we can (uniquely) write n = αx0, we define ϕ on Y as

ϕ(y = m+ αx0) = α

and note that ϕ(x0) = 1. Consider y′ = m′ + α′x0, then y + y′ = (m + m′) + (α + α′)x0
and since m+m′ ∈ M since it’s a subspace, we have ϕ(y + βy′) = α + βα′ = ϕ(y) + βϕ(y′)
showing that ϕ is linear. Is it bounded? Yes. To show this, we want to show ∃C def= ∥ϕ∥ such
that for all y ∈ Y we have |ϕ(y)| ≤ C∥y∥. So pick any nonzero y = m + αx0 ∈ Y . Then
either α = 0 which gives the result, or else we can write

|ϕ(y)|
∥y∥

= |α|
∥y∥

= |α|
|α| · ∥α−1y∥

= 1
∥α−1m+ x0∥

≤ δ−1 = C

since ∥α−1m + x0∥ ≥ dist(x0,M) = δ. Hence ∥ϕ∥ = δ−1 showing that ϕ is bounded on Y .
To finish, we invoke the Hahn-Banach theorem to extend ϕ to some φ on all of X.

Problem 5 (20 points)
Let Ω = [0, 1] and let the kernel κ : Ω × Ω → C be a symmetric function, meaning that
κ(x, y) = κ(y, x).
Assume that κ is positive-definite meaning that for all n ∈ N and all complex numbers
(c1, . . . , cn) and points (x1, . . . , xn) ⊂ Ω, then

n∑
i=1

n∑
j=1

cicjκ(xi, xj) ≥ 0.

In other words, the matrix K(n) with entries K(n)
i,j = κ(xi, xj) is a Hermitian positive semi-

definite matrix. Note: you may assume all fields are real rather than complex if you wish.
We assume κ is (jointly) continuous and not identically equal to 0. Let H

def= L2(Ω). Asso-
ciated with κ is the linear operator Tκ : H → H defined by

(
Tκf

)
(x) =

´
Ω κ(x, y)f(y) dy.

We’ll prove parts of the classic Mercer’s Theorem.

(a) Prove that Tκ has at least one nonzero eigenvalue.
Solution: First, observe that Tκ defines a linear, self-adjoint operator (self-adjointness

follows from the symmetry of κ) on a Hilbert space, and furthermore, since κ is contin-
uous on the compact domain Ω × Ω, it follows κ ∈ L2(Ω × Ω), which means that Tκ is
a Hilbert-Schmidt operator (Example 9.23 in Hunter and Nachtergaele), and therefore
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compact (Thm 9.21). Thus the spectral theorem applies, which guarantees that H has
an orthonormal basis of eigenvectors of Tκ. If all these eigenvectors have an eigenvalue
of 0, then Tκ is the zero operator, but since κ is not identically zero, Tκ ̸= 0 so this is a
contradiction. Hence at least one eigenvalue is nonzero.

(b) Prove that all eigenvalues of Tκ are nonnegative.
Solution: Let e be an eigenvalue of Tκ with eigenvalue λ, so Tκe = λe. Since κ

is continuous, it follows that all functions in the range of Tκ are continuous, and in
particular e is continuous.

Taking the inner product of the equation Tκe = λe with e we see λ⟨e, e⟩ = ⟨e, Tκe⟩
and since ⟨e, e⟩ > 0, it suffices to prove that ⟨e, Tκe⟩ ≥ 0. In order to exploit the
positiveness of κ, we’re going to do something like Riemann sums. For any n ∈ N
define

en(x) = e

(
⌊nx⌋
n

)
, i.e., en =

n∑
j=1

e(xj)χ[ j−1
n

, j
n) where x(n)

j = j/n

where ⌊x⌋ is the floor operator (the largest integer less than or equal to x) and χA is
the standard indicator function. We defined en in this way so that

´ 1
0 en is the left

Riemann sum.
Note that en → e pointwise due to the continuity of e.
Let f = Tκe (i.e., f = λe) so f is also continuous and we can define fn = λen and

fn → f pointwise as well. We can also do the same for κ, defining κn(x, y) = κ
(
x, ⌊ny⌋

n

)
,

which also converges pointwise. Now we claim that for any x ∈ Ω,

f(x) def=
ˆ
κ(x, y)e(y) dy

=
ˆ

lim
m→∞

κm(x, y)em(y) dy

= lim
m→∞

ˆ
κm(x, y)em(y) dy via the Lebesgue DCT

= lim
m→∞

1
m

m∑
j=1

κ
(
x, x

(m)
j

)
e(x(m)

j )

where the Dominated Convergence Theorem (DCT) applied because y 7→ |κm(x, y)em(y)|
is uniformly (in m and y) bounded by ∥κm(x, ·)em(·)∥∞ and the integral of this is finite
since these are continuous functions on a compact domain.
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Then

⟨e, Tκe⟩ = ⟨e, f⟩ =
ˆ
e(x)f(x) dx

=
ˆ

lim
n→∞

en(x)fn(x) dx

= lim
n→∞

ˆ
en(x)fn(x) dx via DCT

= lim
n→∞

1
n

n∑
i=1

e(x(n)
i )f(x(n)

i )

= lim
n→∞

1
n

n∑
i=1

e(x(n)
i ) lim

m→∞

1
m

m∑
j=1

κ
(
x

(n)
i , x

(m)
j

)
e(x(m)

j )

= lim
n→∞

lim
m→∞

1
mn

n∑
i=1

m∑
j=1

κ
(
x

(n)
i , x

(m)
j

)
e(x(n)

i )e(x(m)
j )

Finally, we note that (x, y) 7→ κ(x, y)e(x)e(y) is jointly continuous on a compact
domain Ω × Ω so uniformly bounded, hence integrable, i.e.,

´ ´ ∣∣∣κ(x, y)e(x)e(y)
∣∣∣ < ∞.

As this is a continuous function (absolute value is continuous, so it’s the composition
of two continuous functions), it is Riemann integrable also. Hence any Riemann sum
(that has the spacing of nodes go to zero) converges. That means that

lim
n→∞

lim
m→∞

∣∣∣∣∣∣ 1
mn

n∑
i=1

m∑
j=1

κ
(
x

(n)
i , x

(m)
j

)
e(x(n)

i )e(x(m)
j )

∣∣∣∣∣∣
is bounded (uniformly in m and n), hence we can take a discrete version of Fubini’s the-
orem (cf. Example 12.42 in Hunter and Nachtergaee), i.e., using the counting measure,
and therefore write

lim
n→∞

lim
m→∞

1
mn

n∑
i=1

m∑
j=1

κ
(
x

(n)
i , x

(m)
j

)
e(x(n)

i )e(x(m)
j ) = lim

m,n→∞

1
mn

n∑
i=1

m∑
j=1

κ
(
x

(n)
i , x

(m)
j

)
e(x(n)

i )e(x(m)
j )

= lim
n→∞

1
n2

n∑
i=1

n∑
j=1

κ
(
x

(n)
i , x

(n)
j

)
e(x(n)

i )e(x(n)
j )

≥ lim
n→∞

0

≥ 0

using the positivity.
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