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Abstract. A fast adaptive algorithm for the solution of elliptic par-
tial differential equations is presented. It is applied here to the Pois-
son equation with periodic boundary conditions. The extension to
more complicated equations and boundary conditions is outlined.

The purpose is to develop algorithms requiring a number of op-
erations proportional to the number of significant coefficients in the
representation of the r.h.s. of the equation. This number is related
to the specified accuracy, but independent of the resolution. The
wavelet decomposition and the conjugate gradient iteration serve as
the basic elements of the present approach.

The main difficulty in solving such equations stems from the
inherently large condition number of the matrix representing the lin-
ear system that result from the discretization. However, it is known
that periodized differential operators have an effective diagonal pre-
conditioner in the wavelet system of coordinates. The condition
number of the preconditioned matrix is O(1) and, thus, depends
only weakly on the size of the linear system.

The nonstandard form (nsf) is preferable in multiple dimen-
sions since it requires O(1) elements to represent the operator on all
scales. Unfortunately, the preconditioned nsf turns out to be dense.
This obstacle can be avoided if in the process of solving the linear
system, the preconditioner is applied separately before and after the
operator (to maintain sparsity).

A constrained version of the preconditioned conjugate gradient
algorithm is developed in wavelet coordinates. Only those entries of
the conjugate directions which are in the set of significant indices are
used.

The combination of the above-mentioned elements yields an
algorithm where the number of operations at each iteration is pro-
portional to the number of elements. At the same time, the number
of iterations is bounded by a constant.

§1 Introduction

In this paper we describe the components of a fast adaptive method for
solving elliptic equations with periodic boundary conditions as well as de-
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velop a framework for solving problems with general boundary conditions.
Let us consider the partial differential equation

Lu=f zeDcRY, (1.1)

with the boundary condition

Bulsp = 9, (1.2)
where L is an elliptic operator,
Lu=— 3 (ay() Us,),, + b(z) U, (1.3)
i,j=1,..,d

and B is the boundary operator,
Ju

We assume that the boundary 8D is “complicated.” As a practical matter
we are interested in dimensions d = 1,2, 3 though our considerations are
valid in higher dimensions as well.

We adopt a classical approach to this problem which, until now, was
not practical from the numerical point of view. We consider the following
steps for solving the problem in (1.1) and (1.2):

1. We generate a function fe,;, a smooth extension of f outside the

domain D, such that feys is compactly supported in a rectangular
box B, D ¢ BCRY, and f = foy for z € D.

2. We solve the problem
Lu=for TEB (1.5)
with periodic boundary conditions.
3. Given the solution uey; of (1.5), we look for the solution of (1.1) as
U= Uext +V (1.6)
which yields the homogeneous equation
Lv=0 z€D (1.7)
with the boundary condition
Bu|yp = 9 — Buext|yDs (1.8)

which we solve by boundary integral methods.




Multiscale Inversion of Elliptic Operators 343

In order to realize the preceding steps we need to develop:
1. An algorithm for extending the function f outside the domain D.
2. An efficient method for solving (1.5).

3. An efficient method for solving the boundary integral equation de-
rived from (1.7) and (1.8).

4. An effective algorithm for generating a representation of the solution
v of (1.7) and (1.8) once the boundary integral equation is solved.

It is only recently that fast methods for solving the problem (1.7) and
(1.8) using boundary integral equations have been developed, namely, Fast
Multipole Method (FMM) in [9, 8, 7] and BCR algorithm in [6]. It is our
understanding that 1 and 4 are solvable and the main difficulty resides with
2. We will address the algorithmic issues of 1, 3, and 4 elsewhere; and in

this paper, we will concentrate on constructing an algorithm for solving
(1.5).

§2 Approach

Our goal in solving (1.5) is to develop an adaptive algorithm where the
number of operations will be proportional to the number of significant
coefficients in the representation of fey. The usual solution procedure by
current numerical methods requires discretization of the r.h.s. and of the
solution in terms of a grid or a basis, such that the representations will
resolve all features of interest. This might require a large number of grid
points or elements not only near the singularities of the functions involved
but also in the regions of smooth behavior, thus requiring proportionally
large number of operations. Current adaptive procedures (for example,
adaptive grids or irregular elements) are cumbersome, especially in higher
dimensions and imply a considerable overhead both on the algorithmical
and programming levels.

Our approach is based on using properties of representations of func-
tions in wavelet bases and allows us to obtain a simple adaptive algorithm.

Let us illustrate it by considering Poisson’s equation

Au=f z€B (2.1)

with periodic boundary conditions where (with a slight abuse of notation)
we used f instead of fe. to denote the source term. The source term f
may be discontinuous in the domain B.

Let us consider an MRA of L?(R9),

.CVaCViCcVoCc Vo CV_aC-r (2.2)
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where V; is a subspace of an MRA spanned by translations of the scaling
function,

¢, x(@) = 27792¢(27 90y — k1) $(277 20 — k) ... (277 za — ka),  (2.3)

where z = (x1,...,24) and k = (ky,...,k4) € Z‘{. The function ¢ is the
scaling function of MRA of L2(R).

Let us define the subspaces W as orthogonal complements of V; in
Vj—l)

Vj_l = Vj > Wj, (24)
and represent the space L2(RY) as a direct sum
L*RY) =V.PW;, (2.5)
j<n

where V,, is the subspace corresponding to the coarsest scale n. Let us
define wavelets w;’k(a:) which form an orthonormal basis of the subspaces

W;, j <n. We consider

v@={ 40 ol (2:)

where ¢ and ¢ are the scaling function and the wavelet of the MRA of
L2(R). The wavelet v typically has several vanishing moments. Then it
follows that

W7y (@) = 2794207 (272 k1) P (2T ma—Ka) .. P4 (2 zq —Ka), (2.7)

where the multi-index ¢ = {p1,p2,...,p4), ¢ # 0 and px, k = 1,2,...,d,
take values of either one or zero.
We also define projection operators on the subspaces V;, j < n,

P;: L2(R) -V, (2.8)
as follows
(Bif) (@) = 34F, 8,106, 1) (2.9)
k

while on the subspaces W, 7 <n,
Q; : L*(R) - W, (2.10)

we define

Q;=Pi—-P =33 (f Tk k(@) (2.11)
k ¢
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where

o= [ " f(z) g(x)dz. (2.12)

The sum over ¢ is finite and the number of terms is 29 — 1 for each k.
Let us represent the source term f and the solution v in (2.1) in the
wavelet basis,

f@) =Y S S @ + D sy dak(@),  (213)
o k .

isn k

wz) =D D D u W@ + st ydxle),  (214)
g k

jgn k

where

f;k = (f’ w;k>7 u';’k = (u, w;k>7 st,k = <f7 ¢n,k>’ and S:,k = (U, (’bn,k)‘

(2.15)

We now define the e-accuracy subspace for f to be the subspace on
which f may be represented with accuracy e, namely,

fne= Vol Jlopen (0} | Gikoo) = If 0> ¢l (216)
and observe that the e-accuracy subspace for the solution
Mg, = Vo | J{span{uZ) H (G k,0) = |ufy| > €} (2.17)

may be estimated given Mg, .. It may be verified that

Proposition 1. Let
u(z) = Z Z Z “;kw;k(x) + constant (2.18)
i K .o

be the solution of )
Au= 1/);.’, x TEB (2.19)

with periodic boundary conditions. For any e > 0 there exist A\ >0 and pp >

0 such that all indices (j,k, o) corresponding to the significant coefficients
of the solution, lu;’k| > ¢, satisfy |k —K|<Aand|j—j| < p

The size of 4 > 0 and A > 0 depends on the particular choice of basis and,
of course, on €. Given M) , we may construct the set My, as a (A, p)-
neighborhood of M¢, .. According to Proposition 1, Mg, C My,. We

note that estimating the subspace amounts to constructing a mask which .

contains indices of significant coefficients.
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Instead of estimating M), , directly, we may use an iterative approach.
For example, solving directly on My, s produces a solution @ with accuracy
€ > €. Applying the Laplacian to i, we generate f. Estimating the e-
accuracy subspace for f, we may use it to continue the iteration to improve
the-accuracy of the solution. In other words, the mask for MY, may be
generated iteratively.

There are three main features in our approach to solve (2.1):

1. Estimation of the e-accuracy subspace for the solution. Our
first step is to explicitly estimate the subspace M, given M¢, . For
elliptic operators, the dimension of MS, is proportional to that of

€
r.hs"

2. Preconditioning of the operator. A simple diagonal precondi-
tioner is available for periodized differential operators in the wavelet
bases [4, 5] which yields a condition number of O(1). We will show
below how to construct simple preconditioners in wavelet bases for
more general operators.

3. Constrained iterative solver. We use the preconditioned Con-
jugate Gradient (CG) method which we constrain to the subspace
estimated at Step 1, e.g. M) ,. The CG method requires only a con-

* stant number of iterations due to preconditioning at Step 2, whereas
the cost of each iteration is proportional to the dimension of M, pro-
vided we succeed to limit the number of operations required for the

application of the operator (matrix) in the CG method (see below).

Steps 1-3 constitute an adaptive algorithm for solving Poisson’s equa-
tion.

§3 Outline of the algorithm

Let us consider the projection Lg of the periodized operator A on Vy, the
finest scale under consideration,

Lo = P A P, (3.1)

and L, and Ly, its standard (s-form) and non-standard forms (ns-form)
[6].

- One of the difficulties in solving (1.5) stems from the inherently large
condition number of the linear system resulting from the discretization of
(1.5). As was shown in [4] and [5], using a diagonal preconditioner in the
wavelet system of coordinates yields a linear system with the condition
number typically less than 10, independently of its size. Let P denote such
a diagonal preconditioner.
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In [5] the s-form is used to solve the two-point boundary-value problem.
Alternatively, we may use the ns-form. Some care is required at this point
since the preconditioned ns-form is dense unlike the s-form, which remains
sparse. Thus, in the process of solving the linear system, it is necessary to
apply the preconditioner and the ns-form sequentially in order to maintain
sparsity. The ns-form is preferable in multiple dimensions since, for exam-
ple, differential operators require O(1) elements for representation on all
scales (see e.g. [4]).

We develop a constrained (see below) preconditioned CG algorithm for
solving (1.5) in an adaptive manner. Both the s-form and the ns-form
may be used for this purpose but it appears that using the ns-form is
more efficient, especially if compactly supported wavelets are used and
high accuracy is required.

Let us consider (1.5) in the wavelet system of coordinates

Lty = fu, (3.2)

where f,, and u,, are representations of f and u in the wavelet system of
coordinates. This equation should be understood to include the rules for
applying the ns-form (see [6]).

Let us rewrite (3.2) using the preconditioner P as

P Lns Pv= Pfun (33)

where Pv = u. For example, for the second derivative the preconditioner
P is as follows:

Py = 6427 (3.4)
where 1 < j < n is chosen depending on i,/ so that n -n/27l 41 <40 <
n—n/2, and P,, = 2"

The periodized operator A has the null space of dimension one which
contains constants. If we use the full decomposition (over all n scales)
in the construction of the ns-form, then the null space coincides with the
subspace V,,, which in this case has dimension one (see [5]). This allows
us to solve (3.3) on the range of the operator,

P w; (3.5)

1<j<n

where the linear system (3.3) is well conditioned.

Remark. Operators with variable coefficients. As in the case of the
Laplacian, the e-accuracy subspace for the solution may be estimated using
corresponding subspaces for the r.h.s and the coefficients. Essentially, we
consider the union of such subspaces as a starting point for constructing
M), .. These estimates may be revised in the process of iteration.
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§4 Preconditioner for the operator —A + Const

An “efficient” preconditioner is an essential element in the present ap-
proach. In a more restricted sense, “efficient” means insensitive to the size
of the problem.

Let us demonstrate how to construct a diagonal preconditioner for the
sum of operators —A + Const in the wavelet bases. We observe that if
A and B are diagonal operators with diagonal entries a; and b;, then the
. diagonal operator with entries 1/(a; + b;) (provided a; +b; # 0) is an ideal
preconditioner.

In our case, the operator —A is not diagonal but we know a good
diagonal preconditioner for it in wavelet bases (3.4). Let us use this pre-
conditioner instead of —A for the purpose of constructing a preconditioner
for —A + Const, where Const > 0. We note that in wavelet bases the
identity operator remains unchanged. We restrict Const - I, where I is the
identity operator, to the subspace

P w; (4.1)

1<j<n

and construct a preconditioner on this subspace.
‘We obtain
8at
Vv2-27 + Const

where 1 < j < n is chosen depending on i, so that n —n/2/-14+1 < 4,1 <
n—n/27, and Pnn, = 1/v/2-2% + Const. The square root appears in (4 2)
in order to symmetrize the application of the preconditioner as shown in
the previous sectlon In Table 1 we illustrate the effect of preconditioning
of the operator ————g + Const by the diagonal matrix (4.2).

Pu= (4.2)

Remark. If we consider an operator —A + V, where V is an operator of
multiplication by a function V(z), a similar construction may be obtained
on fine scales. On fine scales where the function V(z) does not change
significantly over the support of wavelets, we may consider the diagonal
operator V4128,

(vieyry ) = Viw; 109 (43)

where x| ik is a point within the support of the wavelet 1/1"k Using Vdieg

instead of V', we obtain the preconditioner in a manner outhned above. We
will address the problem of constructing preconditioners for operators of
the form —A + V elsewhere.
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Const K Kp
7.1.10-0 24100 | 21
7.1-10~} 1.5-10! 6.3
7.1-10~2 1.4-102 9.4
7.1.1073 1.3.10% 9.5 |
7.1.10~4 6.7-10% 7.5
7.1:107% 1.5-10% 5.0

Table 1. Condition numbers x before and x, after preconditioning of the operator

-—di:g + Const in the basis of Daubechies’ wavelets with six vanishing moments.
There are 8 scales and the matrix size is 256 x 256.

§5 Initial numerical experiments

Several numerical experiments have been performed in one dimension to
verify the main points of the procedure outlined in this paper. A two-
and three-dimensional version of an adaptive Poisson solver is being imple-
mented and the results will be reported elsewhere.

In our one-dimensional experiment we set out to verify that using the
CG method we can: (1) maintain the sparsity of the conjugate directions
(and all other auxiliary vectors) used in the method, this is essential for
establishing the sought for operation count, and: (2) solve the problem
with a number of iterations that do not depend on the size of the problem.

In order to be able to make a convergence test independently of dis-
cretization errors, we first construct the solution and then apply the op-
erator to obtain the right-hand side of the equation. We then solve the
equation with a given accuracy € and compare the results with the exact
solution to verify the performance of the algorithm.

As the solution we chose initially the vector

u; = sin(27i)/N, (5.1)

where i = 0,..., N — 1, the size N = 2" represents the size of the vector in
the ordinary system of coordinate and n indicates the maximum number of
scales in the problem. A more interesting problem is given by the solution
vector

u; = tanh(w sin(274)/N), (5.2)
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where w is a parameter. By choosing w we control the steepness of the
slope of the function and, thus, the necessary number of scales to represent
this vector in a wavelet basis up to some accuracy e.

The initial experiments with very smooth solution vectors demonstrated
a severe problem in the algorithm which is exhibited in Figures 1-5. For
example, consider the wavelet coefficients of the solution vector for w =
0.8, N = 1024, analyzed with Daubechies’ basis with 10 vanishing moments.
Obviously, both the solution and the initial approximation have s, very
small number of significant coefficients concentrated in the coarse scales.
(The wavelet coefficients are usually exhibited by plotting the magnitude
against the number of the coefficient in the following sequence: the fine-
scale wavelet coefficients numbered (in the present case) 1 to 512 appear
first in the plot of the wavelet decomposition, immediately followed by the
coarser scale with 256 coefficients, 513 to 768 followed by the third level
with 128, from 769 to 896 then the levels containing the next 64, 32, 16,
8, 4, 2, 1 coefficients respectively, bringing us to 1023; the last coefficient,
1024, is the mean.)

Figure 1 shows only the largest coefficients (1010-1024), other coeffi-
cients are not visible on this scale. The other four figures show the behav-
for of the 64 coefficients in level four (897-960). The first iteration result,
ans._l.iter, vanishes for this level, iteration 3 shows a significant growth, it-
. eration five is even larger, iteration seven drops by an order of magnitude,
iteration nine has again vanishingly small coefficients on this scale. We can
summarize this behavior and our solution in the following way:

Constrained iterative solver. In order to solve (3.3) we apply the Con-
jugate Gradient method constrained to the subspace M. A Without such
constraint the conjugate directions become “dense” at early stages of the
iteration only to become small outside the subspace M . later. Thus, con-
straining the solution to a subspace is critical for an adaptive algorithm.
In applying this “constrained” conjugate gradient method in the wavelet
coordinates, we generate only those entries of conjugate directions which
are in the set of significant indices which define the subspace M. Ap- Lhis
yields an algorithm where the number of operations at each iteration is
proportional to the number of elements of M An- The number of iterations
is O(1) and, thus, the overall number of operations is proportional to the

number of significant coefficients of f, i.e. the dimension of M, o
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Figure 1. Compare the final result with the result after 1 iteration for w = 0.8,
1024 points, Daubechies 20, no skip.
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Figure 2. Compare the results after 1 and 3 iterations for w = 0.8, 1024 points,

Daubechies 20, no skip.
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Figure 3. Compare the results after 3 and 5 iterations for w = 0.8, 1024 points,

Daubechies 20, no skip.
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Figure 4. Compare the results after 5 and 7 iterations for w = 0.8; 1024 points,

Daubechies 20, no skip.
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Figure 5. Compare the results after 7 and 9 iterations for w = 0.8, 1024 points,
Daubechies 20, no skip.
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# scales
to skip | # iterations I oo I Ke
0 36 10713 10714
1 36 | 0.45x107% | 0.32 x 109
2 34 | 0.96 x 1078 | 0.52 x 108
3 32 (0.17x%x107% | 0.83 x 10-7
4 27 1 0.30 x 107% | 0.13 x 105
5 17 | 048 x 104 | 0.21 x 104
6 91 0.80x1073 | 0.34 x 103

Table 2. Coiflet 12, 219 x 21° matrix.

§6 Further numerical experiments

In the second set of one-dimensional experiments we verify that using the
“constrained CG” method we can maintain the sparsity of the conjugate
directions. At the same time we must check that the convergence rate of
the method was not damaged by the restriction of the search directions
to a small subspace. In general we cannot expect success, however in the
present case there are a number of special “mitigating circumstances.”

For the smooth problems considered in the previous set of experiments
the coefficients are concentrated in the coarse scales, so a very effective
“mask” is obtained by setting to zero a number of fine scales. We demon-
strate the results in Tables 2, 3, and 4 where we show the number of
iterations of the constrained CG method as a function of the number of
scales skipped (where 0 means all levels are used, 1 means the fine level
was skipped, 2 means the two finest levels were skipped, etc.) and the
accuracy achieved as measured against the exact solution. In the present
approach skipping some levels means that the answer itself is represented
with a small number of scales and the accuracy will be affected adversely.
A more elaborate mask is used in our later experiments [1].

We observe that the number of iterations did not increase at all as a
consequence of the constraint. Furthermore, in all cases checked it was
a monotonically decreasing function of the number of scales skipped. We
can conclude that at least for the case of smooth-forcing functions and

" constant coefficient operators the CPCG (constrained preconditioned con-
jugate gradient approach) results in a number of operations proportional to
the number of significant coefficients of the forcing. More elaborate masks
appropriate for non-smooth functions are explored in the next paper in this
sequence [1].
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# scales

to skip | # iterations I oo I iz
0 29 0= 10-5
1 28 |1 020 x 10— { 0.13 x 10~ 13
2 28 | 0.17 x 1071 | 0.81 x 1012
3 26 | 0.97 x 1071° | 0.52 x 10710
4 23| 064x10"8 | 033x10-8
5 16 | 0.40x107% | 0.20x 10°%
6 9| 025%x107%| 0.12x10™*
7 5] 014x1072 | 0.77 x 10~3
8 3] 065x10-!| 0.38x10°1!
Table 3. Daubechies 12, 2!° x 21° matrix.

# scales

to skip | # iterations Il oo Ioll2
0 22 10~ 10714
1 22 10~ 14 10-14
2 22 1014 10714
3 21 10-14 10714
4 19 | 0.36 x 10713 | 0.17 x 1013
5 14 | 0.34 x 10710 | 0.17 x 10~10
6 9 033x10°7| 0.17x1077
7 5| 027x107%| 0.15x 104
8 3] 013x10"t | 0.77 x 1072

Table 4. Daubechies 20, 21° x 21° matrix.
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