1. (30 points) Consider the set of equations $-3 x+4 y-6 z=-5 / 2, \quad 6 x-8 y+12 z=c$, where c is some real number.
(a) Write the system in matrix form $A \mathbf{x}=\mathbf{b}$.
(b) Define the fundamental subspaces range and cokernel for an arbitrary matrix. Find these spaces for A.
(c) Define the Fredholm compatibility conditions (Fredholm alternative) for a general system $A \mathbf{x}=\mathbf{b}$. Find a value of c that satisfies these conditions for the system in (a).
(d) For this c value, find the general solution to (a). Write the solution as $\mathbf{x}=\mathbf{w}+\mathbf{z}$, where $\mathbf{w} \in \operatorname{corng}(A)$ and $\mathbf{z} \in \operatorname{ker}(A)$.
(e) Of the solutions in (d), which has the smallest Euclidean norm?

Solutions:

(a) $[A \mathbf{x} \mid \mathbf{b}]=\left[\begin{array}{rrr|r}-3 & 4 & -6 & -5 / 2 \\ 6 & -8 & 12 & c\end{array}\right]$
(b) $\operatorname{range}(A)=\{\mathbf{b} \mid \mathbf{b}=A \mathbf{x}$ for some $\mathbf{x}\}$ and $\operatorname{cokernel}(A)=\left\{\mathbf{y} \mid A^{T} \mathbf{y}=0\right\}$

Note here,

$$
\left[\begin{array}{rrr|r}
-3 & 4 & -6 & b_{1} \\
6 & -8 & 12 & b_{2}
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
-3 & 4 & -6 & b_{1} \\
0 & 0 & 0 & 2 b_{1}+b_{2}
\end{array}\right]
$$

so $\operatorname{rng}(A)=\operatorname{span}\left\{\binom{-3}{6}\right\}=\left\{\mathbf{b} \in \mathbb{R}^{2} \left\lvert\,\binom{ b_{1}}{b_{2}} \cdot\binom{2}{1}=0\right.\right\}$ and since the range is orthogonal to the cokernel we have $\operatorname{coker}(A)=\operatorname{span}\left\{\binom{2}{1}\right\}$
(c) Fredholm: The linear system $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is orthogonal to the cokernel of A.
From part (b) with $\mathbf{b}=\binom{-5 / 2}{c}$, we need $\binom{-5 / 2}{c} \cdot\binom{2}{1}=0$, that is, $-5+c=0$, so we need $c=5$ for consistency.
(d) Note ,
$\left.\left[\begin{array}{rrr|r}-3 & 4 & -6 & -\frac{5}{2} \\ 6 & -8 & 12 & 5\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}-3 & 4 & -6 & -\frac{5}{2} \\ 0 & 0 & 0 & 0\end{array}\right] \rightarrow \begin{array}{rl}-3 x+4 y-6 z & =-\frac{5}{2} \\ y & =y \\ z & =z\end{array} \rightarrow \begin{array}{l}x\end{array}\right)=5 / 6+4 / 3 y-2 z$
so a general solution is $\mathbf{x}=\left(\begin{array}{l}5 / 6 \\ 0 \\ 0\end{array}\right)+\left(\begin{array}{l}4 / 3 \\ 1 \\ 0\end{array}\right) t+\left(\begin{array}{l}-2 \\ 0 \\ 1\end{array}\right) s=\left(\begin{array}{c}5 / 6+4 / 3 t-2 s \\ t \\ s\end{array}\right)$ Now to find a solution in the corange, we need

$$
\left(\begin{array}{c}
5 / 6+4 / 3 t-2 s \\
t \\
s
\end{array}\right) \cdot\left(\begin{array}{l}
4 / 3 \\
1 \\
0
\end{array}\right)=0 \text { and }\left(\begin{array}{c}
5 / 6+4 / 3 t-2 s \\
t \\
s
\end{array}\right) \cdot\left(\begin{array}{l}
-2 \\
0 \\
1
\end{array}\right)=0
$$

since the corange is orthogonal to the kernel. So we get

$$
\begin{array}{r}
10 / 9+16 / 9 t-8 / 3 s+t=0 \\
-5 / 3-8 / 3 t+4 s+s=0
\end{array} \rightarrow \begin{array}{r}
25 / 9 t-8 / 3 s=-10 / 9 \\
-8 / 3 t+5 s=5 / 3
\end{array} \rightarrow \begin{array}{r}
t=-10 / 61 \\
s=15 / 61
\end{array}
$$

so the solution in the corange is $\mathbf{w}=\left(\begin{array}{r}15 / 122 \\ -10 / 61 \\ 15 / 61\end{array}\right)$, and so we have,

$$
\mathbf{x}=\mathbf{w}+\mathbf{z}=\left(\begin{array}{r}
15 / 122 \\
-10 / 61 \\
15 / 61
\end{array}\right)+\left(\begin{array}{l}
4 / 3 \\
1 \\
0
\end{array}\right) t+\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) s, \forall t, s \in \mathbb{R}
$$

(e) The solution in the corange, $\mathbf{w}=\left(\begin{array}{r}15 / 122 \\ -10 / 61 \\ 15 / 61\end{array}\right)$, has the smallest norm.
2. (30 points) State the fundamental theorem of linear algebra, then, for each property given below, write down a matrix F with that property or explain why no such matrix exists.
(a) $\operatorname{rng}(F)=\operatorname{span}\left\{\binom{1}{0}\right\}$, and $\operatorname{corng}(F)=\operatorname{span}\left\{\binom{0}{1}\right\}$.
(b) $F=F^{-1}$.
(c) The vector $\left(\begin{array}{r}10 \\ 6 \\ 90\end{array}\right)$ is in the kernel of $F,\left(\begin{array}{r}-6 \\ 10 \\ 0\end{array}\right)$ is in the corange of F, and $\operatorname{det} F=1$.
(d) F is real and symmetric with eigenvalues $1+i$ and $1-i$.
(e) F has an eigenvalue 2 with multiplicity two, but only one eigenvector.

Solutions:

Fund. Thm. of Linear Algebra:
Let A be an $m \times n$ matrix or rank r. Then

$$
\operatorname{dim}(\operatorname{corng}(A))=\operatorname{dim}(\operatorname{rng}(A))=\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)=r
$$

and $\operatorname{dim}(\operatorname{ker} A)=n-r$ and $\operatorname{dim}(\operatorname{coker}(A))=m-r$.
(a) Here any matrix of the from $F=\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ where $b \neq 0$ will suffice.
(b) Let $F=I$.
(c) Not possible, if the kernel is nontrivial then $\lambda=0$ is an eigenvalue of the matrix and so $\operatorname{det} F=0$ since the determinant is the product of the eigenvalues.
(d) Not possible, if F is real and symmetric then F has to have real eigenvalues.
(e) Let $F=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$, then 2 is a repeated eigenvalue but there will be only one free variable in the eigenvalue equation and thus only one eigenvector.
3. (30 points) Let $q(x, y, z)=x^{2}+2 x y+3 y^{2}+4 y z+4 z^{2}$ be a quadratic form.
(a) Write $q=\mathbf{x}^{T} K \mathbf{x}$ for a matrix K.
(b) Compute the $L U$ decomposition of K.
(c) Define what it means to be a positive definite matrix. Is q a positive definite quadratic form? Explain.
(d) What do (a)-(c) allow you to conclude about the eigenvalues of K ? (DO NOT COMPUTE the λ 's)
(e) $\lambda_{1}=2$ is an eigenvalue of K. Find its associated eigenvector.
(f) What is the sum of the other two eigenvalues, $\lambda_{2}+\lambda_{3}$? (Hint: You DO NOT compute λ_{2} and λ_{3} separately.)

Solutions:

(a) $q=\mathbf{x}^{T}\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 3 & 2 \\ 0 & 2 & 4\end{array}\right) \mathbf{x}$
(b) $L=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ and $U=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right)$
(c) K is positive definite if it is symmetric and if $\mathbf{x}^{T} K \mathbf{x}>0$ for all $\mathbf{x} \neq 0$.

Yes, since $q=\mathbf{x}^{T} K \mathbf{x}$, then $q>0$ for all $\mathbf{x} \neq 0$, and so q will be a positive definite quadratic form by definition.
(d) The eigenvalues of K must be real and positive since the eigenvalues of a positive definite matrix are positive. We know from (a) that K is symmetric and we know from (b) that K is regular with positive pivots and therefore is positive definite. The eigenvalues are also complete since K is symmetric and real. Finally, note that the eigenvalues can't all be the same since $\operatorname{det} K=4$ and $\operatorname{tr}(K)=8$
(e) The associated eigenvector is $\mathbf{v}=\left(\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right)$.
(f) The sum of the other two eigenvalues is 6 since the sum of the eigenvalues is the trace of the matrix, which is 8 , and so if one eigenvalue is 2 , the sum of the other two eigenvalues must be 6 .
4. (20 points) Let $S=\operatorname{span}\left\{(x-1),(x-1)^{2}\right\}$.
(a) Define vector subspace.
(b) Show that S is a vector subspace of $P^{(2)}$, the space of quadratic polynomials.
(c) What is $\operatorname{dim}(S)$?
(d) Define the L^{2} inner product on the interval $(0,2)$.
(e) Find the orthogonal complement S^{\perp} to S in $P^{(2)}$ using the inner product in (d).

Solutions:

(a) A vector subspace is a subset of a vector space that is closed under the addition and scalar multiplication of the vector space.
(b) In $P^{(2)}$, the addition and scalar multiplication are the usual additional and scalar multiplication of polynomials and the set span $\left\{(x-1),(x-1)^{2}\right\}$ is, by definition, closed under addition and scalar multiplication and so S is a subspace of $P^{(2)}$.
(c) Note that $c_{1}(x-1)+c_{2}(x-1)^{2}=0$ implies $c_{1}=c_{2}=0$ and so the vectors $p_{1}=(x-1)$ and $p_{2}=(x-1)^{2}$ form a basis of S and thus $\operatorname{dim} S=2$.
(d) For any $f(x), g(x) \in C((0,2))$ we have $\langle f, g\rangle=\int_{0}^{2} f(x) g(x) d x$
(e) Note that $S^{\perp}=\left\{f \in P^{(2)} \mid\langle f, p\rangle=0, \forall p \in S\right\}$ and so,

$$
S^{\perp}=\operatorname{span}\left\{x^{2}-2 x-\frac{1}{5}\right\}=\operatorname{span}\left\{5 x^{2}-10 x-1\right\}
$$

5. (20 points) Let $L[\mathbf{x}]=\left(\begin{array}{r}x_{1}+3 x_{2} \\ -x_{1}+x_{2} \\ 2 x_{2}\end{array}\right)$ be a linear transformation.
(a) Which vector space is the domain of L ? Which vector space is the co-domain of L ?
(b) Suppose $\left\{\mathbf{v}_{i}: i=1, \ldots n\right\}$ is a basis for the domain of L. What is n ? Why? (DO NOT FIND \mathbf{v}_{i}.)
(c) If $L\left[\mathbf{v}_{1}\right]=\left(\begin{array}{l}7 \\ 1 \\ 4\end{array}\right)$, what is \mathbf{v}_{1} ?
(d) Find a basis for the range of L.

Solutions:

(a) Note, $L \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$
(b) $n=2$ since the domain of L is \mathbb{R}^{2} and $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.
(c) $\mathbf{v}_{1}=\binom{1}{2}$
(d) $\operatorname{rng}(L)=\operatorname{span}\left\{\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)\right\}$
6. (20 points) Let Q be the matrix

$$
Q=I-2 \frac{\mathbf{v}^{T}}{\mathbf{v}^{T} \mathbf{v}}
$$

where \mathbf{v} is an n-dimensional vector. This type of matrix is called a Householder reflection matrix.
(a) What is the size of the matrix $\mathbf{v}^{T} \mathbf{v}$? Of the matrix \mathbf{v}^{T} ?
(b) Suppose the vector $\mathbf{v}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$. Show that $Q^{T} Q=I$.
(c) For an arbitrary \mathbf{v}, show that $Q=Q^{T}$.
(d) Show that $Q^{T} Q=I$ for any arbitrary \mathbf{v}.

Solutions:

(a) $\mathbf{v}^{T} \mathbf{v}$ is a scalar (1×1) and $\mathbf{v v}^{T}$ is an $n \times n$ matrix.
(b) Note $\mathbf{v}^{T} \mathbf{v}=2$ and so

$$
Q=I-\frac{2}{2}\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \text { and finally, } Q^{T} Q=I
$$

(c) Note that since $\mathbf{v}^{T} \mathbf{v}$ is a scalar we have $Q=I-\frac{2}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v}^{T}$ and so,

$$
Q^{T}=\left(I-\frac{2}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v} \mathbf{v}^{T}\right)^{T}=I^{T}-\frac{2}{\mathbf{v}^{T} \mathbf{v}}\left(\mathbf{v}^{T}\right)^{T}=I-\frac{2}{\mathbf{v}^{T} \mathbf{v}}\left(\mathbf{v}^{T}\right)^{T} \mathbf{v}^{T}=I-\frac{2}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v}^{T}=Q
$$

(d) Using part (c) $Q^{T} Q=Q^{2}$ and now,

$$
\begin{aligned}
Q^{2}=\left(I-\frac{2}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v} \mathbf{v}^{T}\right)\left(I-\frac{2}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v v}^{T}\right) & =I-\frac{4}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v} \mathbf{v}^{T}+\frac{4}{\left(\mathbf{v}^{T} \mathbf{v}\right)^{2}} \mathbf{v} \underbrace{\mathbf{v}^{T} \mathbf{v}}_{\text {scalar }} \mathbf{v}^{T} \\
& =I-\frac{4}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v} \mathbf{v}^{T}+\frac{4}{\left(\mathbf{v}^{T} \mathbf{v}\right)^{2}}\left(\mathbf{v}^{T} \mathbf{v}\right) \mathbf{v} \mathbf{v}^{T} \\
& =I-\frac{4}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v} \mathbf{v}^{T}+\frac{4}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v} \mathbf{v}^{T}=I
\end{aligned}
$$

