
Towards the Metropolis-Hastings Algorithm

1 A Brief Primer on Markov Chains

1.1 Definition, Notation and Transition Probabilities

A sequence of random variables X0, X1, X2, . . ., is a Markov chain if

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i). (1)

Equation (1) is called the Markov property.

Imagine a processes transitioning through time. If it’s a Markov chain, where you go next
depends on where you are (and some random model to transition forward), but it does not
depend on where you were.

This is not to say that Xn+1 (for example), is independent of X0. Clearly each value depends
on the last so there is a building dependence. However, Xn+1 is conditionally independent
of X0 (for example) once Xn is known. Actually, it is not the previous value that is important
but rather the last known value. Equation (1) gives us, for example, that

P (X5 = 4|X2 = 1, X1 = 3, X0 = 4) = P (X5 = 4|X2 = 1).

To show this, one would write

P (X5 = 4|X2 = 1, X1 = 3, X0 = 4) =
∑
j

∑
k

P (X5 = 4, X4 = j,X3 = k|X2 = 1, X1 = 3, X0 = 4)

and proceed by rewritting the summand on the right-hand side as products of conditional
probabilities. The sums are taken over the state space for the Markov chain {Xn}n≥0.
The notation used so far here suggests that both time and space are discrete. Either or both
of these could be continuous and we may switch as needed without going through all of the
basics for these different cases.

Suppose that {Xn}n≥0 is a Markov chain. If P (Xn+1 = j|Xn = i) is independent of n, we
say that the Markov chain is time homogeneous.

For this course, all chains will be time homogeneous by default.

We will denote this one-step transition probability by pij. That is,

pij = P (Xn+1 = j|Xn = i).

By our assumed time-homogenity, we also have that

pij = P (X1 = j|X0 = i).



We will denote/define the n-step transition probability by

p
(n)
ij = P (Xn+m = j|Xm = i) = P (Xn = j|X0 = i).

Note that we must have ∑
j

pij = 1 and
∑
j

p
(n)
ij = 1.

1.2 A Chapman-Kolmogorov Equation

The following Chapman-Kolmogorov equation will be useful.

For any 0 ≤ m ≤ n,
p
(n)
ij =

∑
k

p
(m)
ik · p

(n−m)
kj .

Here, the sum is taken over the entire state space of the Markov chain and the zero-step
transition probability is defined as

p
(0)
ij =

{
1 , j = i
0 , j 6= i.

(That makes perfect sense right? You are not going anywhere in zero time steps!)

Let’s prove the C-K equation.

p
(n)
ij = P (Xn = j|X0 = i) =

∑
k P (Xn = j,Xm = k,X0 = i)

=
∑

k P (Xn = j|Xm = k,X0 = i) · P (Xm = k|X0 = i)

M.P.
=

∑
k P (Xn = j|Xm = k) · P (Xm = k|X0 = i)

=
∑

k p
(n−m)
kj · p(m)

ik

√

(The “M.P” denotes use of the Markov property.)

1.3 The Stationary Distribution of a Markov Chain

Let {Xn}n≥0 be a Markov chain living on a state space S with transition probabilities pij.

Consider a probability mass function f over S. That is, consider a function f with f(i) ≥ 0
for all i ∈ S such that

∑
i∈S f(i) = 1.

Markov “people” tend to use the symbol “π” for distributions involving Markov chains. So,
let π be a function with π(i) ≥ 0 for all i ∈ S such that

∑
i∈S π(i) = 1.

We will use the notation πi for π(i).



Definition: The probability distribution π is said to be a stationary distribution for the
chain if

X0 ∼ π ⇒ X1 ∼ π ⇒ X2 ∼ π ⇒ · · ·

That is, if you start this chain according to a draw from π and iterate forward using the
transition probabilities pij, it will maintain this distribution at all fixed time points.

Note that

P (X1 = j) =
∑
i∈S

P (X1 = j,X0 = i) =
∑
i∈S

P (X2 = i|X0 = j) · P (X0 = i).

So, the stationary distribution must satisfy the stattionary equation

πj =
∑
i

πipij.

Since
X0 ∼ π ⇒ X1 ∼ π ⇒ X2 ∼ π,

we have by transitivity that

X0 ∼ π ⇒ X2 ∼ π.

This means that a stationary distribution π must also satisfy

πj =
∑
i

πip
(2)
ij .

Similarly, we can get

πj =
∑
i

πip
(n)
ij .

for any fixed n ≥ 1.

For a given Markov chain, such a stationary distribution may or may not exist and, if it
exists, it may or may not be unique. Since this is not a course on Markov chains, I’d rather
not go into conditions for existence and uniqueness. We are not going to be studying a given
Markov chain but instead will be constructing our own. We will always do so in a way where
there is a unique stationary distribution.

1.4 A Limiting Distribution

Given a Markov chain with n-step transition probabilities p
(n)
ij , suppose that the following

limit exists and is independent of i.
lim
n→∞

p
(n)
ij .

In this case, we will give the limit a name.

γj := lim
n→∞

p
(n)
ij .



Then {γj : j ∈ S} is a probability distribution on S since the values are non-negative and∑
j∈S

γj =
∑
j∈S

lim
n→∞

p
(n)
ij = lim

n→∞

∑
j∈S

p
(n)
ij = lim

n→∞
1 = 1.

This distribution is also stationary with respect to the transition probabilies pij! To see this,
note that ∑

j

γjpji =
∑
j

(
lim
n→∞

p
(n)
kj

)
pji = lim

n→∞

∑
j

p
(n)
kj · pji

C.K
= lim

n→∞
p
(n+1)
ki = γi

(Here, the “C.K.” denotes use of the Chapman-Kolmogorov equation.)

This is the stationary equation, boxed on the previous page, with γ in place of π and different
indices.

1.5 Who Cares?

Suppose we are interested in finding the stationary distribution π for a given Markov chain.
If we can solve the stationary equation

πj =
∑
i

πipij

subject to the constraint that
∑
πi = 1, we absolutely should!

If we can’t, we should take advantage of the fact that (in “nice Markov world”) the limiting
distribution exists and is stationary and (in “nice Markov world”) the stationary distribution
is unique. That is, we should go for the limiting (= stationary) distribution via simulation
of the process “for a long time”.

Defining “a long time” is difficult to do in a general setting (and even in most specific
settings!). This will depend on the process of interest and our method of simulation.


