This is a sample Lab assignment for Calc III. It is based on a Calc I style optimization problem, and this is intended to show examples of "good" and "bad" lab write-ups. This lab would be considered "bad" and would likely result in a grade in the ' C ' range, or lower. Note: Your lab should be double spaced and have a title page. This is single spaced so it fits on one page

1 Introduction

To celebrate the acquisition of Styria in 1261, Ottokar II sent hunters into the Bohemian woods to capture a unicorn. To display the unicorn at court, the King wants to build a rectangular cage. The material for the three sides of the cage cost 3 ducats per running cubit, while the fourth wall was to be guilded (covered in gold) and cost 51 ducats per running cubit.

In 1261, it was well known that a happy unicorn requires an area of 2500 square cubits. Of course, the King wanted to build a cage that would keep the unicorn happy, but not cost him his whole kingdom!

In this lab we will find the optimal dimensions of a cage for this unicorn's cage. We will use the calculus idea that a function is minimized when its derivative is zero.

2 Body

1) Let x be the length of the longer side, and y be the length of the shorter side.

2) The cage should be a rectangle. Since one side costs more that side will be shorter.
3) The area of a rectangle is $A=x y$. The area of our cage is 2500 , so $x y=2500$. The cost of the cage is the cost of the sum of the 4 sides. As a function of $x, c(x)=6 x+135000 / x$.
4)

5) Since $c(x)=6 x+135000 / x, c^{\prime}(x)=6-135000 / x^{2}$. This is zero when $x=150$. So, the cost of the cage is cheapest when $x=150$.
6) Since the cost of all the sides is the same, the cage should be a square.
7) To have a cage with an area of 2500 , the long side should be 150 , and the short side should be 16.66666.

3 Conclusion

We helped the King find the dimensions of the cheapest possible cage. It is a rectangle. If the cost was the same for all four sides, the cage should be square.

