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Abstract

Subsampling of node sets is useful in contexts such as multilevel methods, computer graphics, and machine
learning. On uniform grid-based node sets, the process of subsampling is simple. However, on node sets with
high density variation, the process of coarsening a node set through node elimination is more interesting. A
novel method for the subsampling of variable density node sets is presented here. Additionally, two novel
node set quality measures are presented to determine the ability of a subsampling method to preserve the
quality of an initial node set. The new subsampling method is demonstrated on the test problems of solving
the Poisson and Laplace equations by multilevel radial basis function-generated finite differences (RBF-FD)
iterations. High-order solutions with robust convergence are achieved in linear time with respect to node set
size.
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1. Introduction

Subsampling of variable density node sets has applications in polynomial approximation, numerical in-
tegration, artificial intelligence, machine learning, multilevel methods, and computer graphics. For each of
these applications, algorithms exist in 1D, 2D, and even N -D space, but their utility is often application
specific.

Subsampling methods have been specifically developed to choose points optimized for global polynomial
approximation and numerical integration [1, 2, 3, 4]. Node sets have been optimized for global RBF colloca-
tion methods using multi-objective optimization [5]. However, the coarse node sets which these algorithms
produce do not, in general, preserve the variable density of the initial, fine node sets.

In the context of data driven artificial intelligence and machine learning, the process of tuning data
rather than tuning model parameters has driven research on subsampling [6, 7, 8, 9]. With the exception
of the generalized diversity subsampling algorithm in [8], these algorithms are either designed for uniform
subsampling or statistical learning techniques such that they are not well-suited to the preservation of variable
density data sets.

Research in computer graphics has led to considerable developments in the area of Poisson disk sampling
which serves to subsample variable density node sets, producing resultant node sets with desirable statistical
and minimum spacing properties [10, 11]. The process of Poisson disk sampling is recast as a weighted sample
elimination or weighted subsampling problem in [12]. Other efforts have employed Poisson disk sampling to
produce heirarchical node sets for multilevel methods using RBFs [13], albeit on uniform density node sets.

Subsampling algorithms are an integral part of multilevel methods. Algebraic multilevel methods (AMM)
provide robust and scalable linear solvers for a wide class of problems. They are in principle a natural choice
for meshfree domain discretizations since the constituent hierarchical levels are a natural byproduct of the
inter-level transfer and coarse level operators. In the context of meshfree systems, AMM has been applied
to methods that don’t use RBF-FD [14] [15] and those that do [16]. For solvers which use RBFs, it has been
shown that geometric multilevel methods (GMMs) converge in fewer iterations [16]. Additionally, the set-up
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1 INTRODUCTION

time for AMM is higher overall [17] [18]. The construction of the coarse levels themselves is higher in GMM,
but that cost is reduced for a meshfree domain and motivates the need for a fast subsampling algorithm as
explored in the following sections. Tests run in [18] demonstrate that AMM is sensitive to the mesh variation
and resolution on the coarsest level. The proper choice of parameters (the strength parameter in particular)
for AMM can reduce the total computation time by 15–40%, per [18]. The GMMs have no such parameter
sensitivity and have less sensitivity to mesh variation. According to [19], when using GMM and AMM as
preconditioners for Krylov methods, the scheme will converge more quickly for preconditioned matrices for
which the spectrum is more heavily clustered toward one. This corresponds to coefficient matrices1 with
spectra clustered at zero. In the problems considered in [16], the spectra for GMM were more clustered
around one than the compared AMM method (PyAMG [20]) in all cases. For these reasons, AMMs are not
considered here.

Additionally, the use of a GMM over a variable density node set requires a subsampling routine which
maintains the variable density of the original node set. AMMs coarsen the operators themselves and each
coarsened level beyond the original has no intuitive geometric meaning or interpretation [21, 22, 23]. As
such, coarsening methods for AMMs are not useful for GMMs [24].

The combination of GMMs with meshfree solvers for partial differential equations have become increas-
ingly popular. Meshfree methods such as radial basis function-generated finite differences (RBF-FD) dis-
cretize at scattered (quasi-uniform2 nodes rather than with meshes. RBF-FD methods, in particular, allow
for high geometric flexibility and can benefit from high density variation but require the underlying node
sets to meet certain quality constraints in order to ensure stability and accuracy of the solution [25, 26, 27].
Robust algorithms for generating such node sets exist [28, 29, 30] and are utilised in this paper. The appli-
cation of meshfree partial differential equation (PDE) solvers within a multilevel scheme requires a similarly
robust algorithm for coarsening node sets [31, 32]. When implementing a multilevel algorithm, one typically
starts with the initial, fine node set. Given a desired level of refinement, the task of producing a coarse
node set from a fine node set can be accomplished in one of two ways: one can either select a subset of
the fine node set or generate a node set that is independent of the fine node set. Many methods exist to
create coarse node sets which are visually and geometrically representative of the original node set and are
not subsets of the initial, fine node set [33, 34, 35]. However, the operators to coarsen and refine between
independent node sets require more memory. Alternatively, selecting a subset simplifies the coarsening and
refining operators and requires less memory. The combination of a multilevel method with RBFs has been
explored before, however, primarily on uniform (Cartesian grid) or uniformly distributed scattered node sets
[13, 14, 15, 36, 37, 38, 39]. The use of multilevel techniques on RBF-FD meshfree solvers for PDEs over
variable density node sets is explored in [40], however the subsampling routine used therein, based on [41],
is not adjustable to coarse node sets of any size; it is limited to coarsening by factors of 1/n, n ∈ N. Due
to this limitation, it is not considered in this paper. Though not applicable in it’s original form (as it relies
on information from a mesh at the fine level), an extension of the algorithm found in [42] can be applied
to meet the outlined needs for a variable density node set subsampling algorithm. However, it also suffers
from inflexible coarsening factors and, as such, is not considered here. The multilevel meshfree PDE solver
presented here achieves high-order solutions with robust convergence in linear time with respect to node set
size.

In contrast to the process of generating coarser node set from an initial fine node set, one might consider
an initial coarse node set and the generation of finer node sets. Most refining algorithms use some residual
function to determine if refinement should take place [43, 44, 45]. Most refinement techniques require user-
supplied criteria in the form of a residual or principle function [46] at which some set of test nodes are
evaluated based on the residual to determine where an how to refine. These function evaluations are an
increased computational cost. Additionally, the goodness of the refinement depends heavily on the proposed
test nodes. Simple ways of determining these nodes, such as using the halfway points between existing nodes
[47], may not apply well enough to variable density node sets. On the other hand, more robust methods
such as determining the Voronoi nodes [48] or the centroids of a node and it’s K nearest neighbors [49] may

1Those representing the application of one V-cycle of either GMM or AMM
2Quasi-uniform is here used to refer to node sets which may vary in density globally yet are near-uniform locally, i.e. there exists

some c > 0 such that for any discretization of the domain, h
(n)
max/h

(n)
min < c where h

(n)
max and h

(n)
min are the maximum and the

minimum distances, respectively, to the nearest neighbor for some discretization n.
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2 SUBSAMPLING ALGORITHMS

still be ill suited for variable density refinement and introduce more significant increases in computational
cost. Other refinement methods are limited to uniform refinement which is not appropriate for our current
applications [34, 35]. Ultimately, refinement techniques will not be considered here.

Throughout this paper, the terms subsampling and coarsening will be used to refer to the process of
selecting a subset from a collection of nodes or points. The subsampling algorithms considered in this
paper are outlined in Section 2, boundary considerations for subsampling routines are covered in Section 4,
numerical tests and comparisons between those presented earlier are presented in Section 3. Additionally,
Section 5 includes two examples of a meshfree multilevel RBF-FD PDE solver utilizing the novel moving
front node subsampling method from Section 2.1.

2. Subsampling Algorithms

This section surveys the methodology of four subsampling algorithms. In addition to a novel moving front
method presented in Section 2.1, a weighted subsampling method based on [12], a method based on Poisson
disk sampling, and the generalized diversity subsampling method found in [8] are presented in Sections 2.2,
2.3, and 2.4 respectively.

2.1. Moving Front

The novel subsampling algorithm presented here is a streamlined application of a ’moving front’ strategy
akin to those found in the node generation algorithms in [30] and [28]. Algorithm 1 begins by sorting all
nodes in the fine node set according to an arbitrary direction3; for example, from the bottom to the top.
Then, the k nearest neighbors to each node are determined4. For each node in the fine node set and working
in the chosen direction, first check if the node has already been marked. If it has been marked, continue
on to the next node. If it has not been marked, mark each of the k nearest neighbors that is both above
the present node in the sort and within a distance c ∗D1 (for example c = 1.5) of the present node, where
D1 is the distance to the first nearest neighbor. All marked nodes are then removed to produce the coarse
node set. The value k = H(n+ 1)− 1 = 3n(n+ 1) where H(n) is the nth centered hexagonal number, and
n = ⌈c⌉. This value of k represents the maximal number of nodes which can be packed into a ball of radius
n ∗D1 excluding the central node such that no more that k nodes could be within a distance of n ∗D1 of
the center node. The moving front algorithm generalizes immediately to any number of space dimensions:
nodes are sorted based upon chosen directions, nearest neighbors are found, and nodes are marked based on
proximity. A Python code for the moving front algorithm can be found in Appendix Appendix A.1.

Algorithm 1 Moving Front Algorithm

1: function MFSub(X fine = {x1, ..., xN}, c)
2: k = H(⌈c⌉)
3: Sort the nodes in X fine
4: Find the indices and distances of the k nearest neighbors for each point in X fine
5: for i = 1 : N do
6: if the node xi has not already been marked then
7: Determine which nearest neighbors are within a radius of c times the distance to the nearest

neighbor
8: Of those, determine which are ’above’ xi in the sort order
9: Mark these nodes

10: end if
11: end for
12: Remove the marked nodes from X fine to produce X coarse return X coarse
13: end function

3The directional sorting and progression of the algorithm enables a cost savings in that only the nodes above the present one
need to be searched

4Achieved for k neighbors and N nodes in O(N logN) operations by the kd-tree algorithm when k << N as is true for this
algorithm.
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Here it should be reiterated that intrinsic to the moving front algorithm is a directional bias. More
specifically, as the algorithm proceeds across a node set, the resultant node set will differ based on the
direction in which the moving front travels. The effects of this directional bias are insignificant, however, as
shown in the Sections 4.2 and 5.3.

2.2. Weighted Subsampling

The weighted subsampling compared with here is based on the work presented in [12], but modified for
variable density node sets.5 Each node is assigned a weight based on its distance to its nearest neighbors.
The algorithm then iterates to remove the node with the highest weight, adjust the remaining weights
accordingly, and repeat until the desired number of nodes remain. The code for this implementation can be
found on the author’s GitHub, [50].

2.3. Poisson Disk Subsampling

Given a radius of exclusion for each node (such that the radii of exclusion are spatially variable), a node
is randomly selected from the fine node set and accepted into the coarse node set if its radius of exclusion
does not overlap with that of any of the previously accepted nodes. The first node in the coarse node set
is chosen randomly. The radii of exclusion are the product of the distance of the nearest neighbor in the
fine node set and a hyperparameter h, re(xi) = h ∗ rmin(xi). While the choice of exclusion radii is the
same as that of the moving front algorithm, the Poisson disk subsampling algorithm requires that for each
nearest neighbor, an overlap of exclusion radii be checked. Additionally, the moving front algorithm sorts the
nodes so as to only check the distance of those nodes which have not already been iterated through, thereby
improving efficiency. This algorithm is similar to the thinning method presented in [29] and the Poisson
thinning method presented in [13]. The use of a nearest neighbor search to support spatially variable radii of
exclusion limits the computational complexity to being no better than O(N logN) in contrast to the O(N)
algorithm in [51]. The code for this implementation can be found on the author’s GitHub, [50].

2.4. Generalized Diversity Subsampling

The generalized Diversity Subsampling algorithm as found in [8] selects a subsample from the fine node
set according to an arbitrary, specified distribution. The distribution utilized in this paper is a function of
the distance to the nearest neighbor of each node.

3. Comparisons of Subsampling Methods

This section compares the performance in preserving node density variation through iterative coarsening
of the four subsampling algorithms found in Section 2. For each example, the primary node set has been
generated from the trui image, see Figure 1(a), using the node generation algorithm from [30], see Figure 1(b).
While this initial node set does not have immediate application to solving PDEs, its radically varying node
densities make the trui image a good test problem for visually spotting any algorithmic artifacts. The trui
image also contains regions of uniform density, thus illustrating subsampling capabilities on regions of both
locally variable and locally uniform node densities.

5A sampling example presented in [12] should, in principle, serve to subsample variable density node sets. However, after repeated
attempts, the example was not reproducible.
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3.1 Heuristic Comparison 3 COMPARISONS OF SUBSAMPLING METHODS

(a) Original trui.png image (b) Dithered trui image

Figure 1: The original trui.png image and a dithered version with 36,303 nodes, obtained by the algorithm in [30].

3.1. Heuristic Comparison

This section provides visualizations of the subsampled node sets of each algorithm. Each algorithm is
applied twice to the dithered trui image as seen in Figure 2. The original node set contains 36303 nodes,
the first subsample contains 10553 nodes, and the second subsample contains 3404 nodes. Each algorithm
discussed, excluding the generalized diversity subsampling algorithm6, requires a parameter, c, to control
the level of coarsening. To reproduce the subsamples in Figure 2, the values of c used in each algorithm are
listed in Table 1. The moving front algorithm also relies on a choice of nearest neighbors which was k = 10
for these tests.

Method First Subsampling Second Subsampling
MF 1.50976 1.515
W 3.44 3.1
PD 1.51 1.521

Table 1: The parameters, c, for reproducing the node sets in Figure 2 for the moving front (MF), weighted (W), and Poisson
disk (PD) subsampling algorithms. The generalized diversity subsampling algorithm explicitly relies on the desired number
of nodes in the coarse node set and thus has no parameter listed here. The moving front algorithm also relies on a choice of
nearest neighbors which was k = 10 for these tests. These values are arbitrary, having been chosen only to achieve the same
node count across methods.

A heuristic comparison between the subsamplings iterations primarily demonstrates the visual goodness
of the first three algorithms over the generalized diversity subsampling algorithm. Among the remaining
three, the woman’s nostrils are more distinct in the moving front and Poisson disk algorithms than in the
weighted subsampling while the Poisson disk algorithm seems to preserve the mouth slightly more clearly by
the second subsampling. Additionally, the moving front and Poisson disk algorithms preserve a higher level
of clarity in the patterns7 in the trui scarf than the weighted subsampling algorithm. Again, the moving front
and Poisson disk subsampling algorithms each better preserve the density disparity between areas of low
and high node density in the original dithering8 than do the weighted or generalized diversity subsampling
algorithms. Finally, the Poisson disk algorithm may have a tendency to subsample too aggressively in places9.

6The generalized diversity subsampling algorithm explicitly requires a target number of nodes as input rather than a parameter.
7The checkered pattern in the scarf on the woman’s right is a clear example.
8The disparity is most notable between the woman’s left cheek and hair and between the light stripe in the scarf on the woman’s
right and any of the surrounding regions.

9The light stripe on the scarf’s right side (left side of the image) is much sparser than in the moving front or weighted subsampling
algorithms
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It should be noted that no direction bias of the moving front algorithm is visible.

3.2. Node Quality Measures

While visually comparing the results of each algorithm is useful, ultimately a more rigorous and quan-
titative comparison is desirable. As such, a variety of node quality measures are commonly discussed when
comparing uniform subsampling methods [8, 30]. However, metrics which describe the quality of spatially
variable node densities are less common [30]. One way of evaluating the quality of a variable density node
set on its own is through local regularity distribution of distance to the nearest k neighbors δi,j , i = 1, 2, ...k
for each node xj .

It is here considered given that the node generation algorithm will produce an initial node set which is
sufficiently good10. The responsibility of a subsampling algorithm is then to preserve the characteristics of
the original node set. A natural way to determine how well any subsampling preserves the quality of the
initial node set is to measure the coarse node set in comparison to the fine node set.

The two novel measures presented here are straightforward extensions of the commonly accepted measures
of local regularity for evaluating the quality of variable density node sets and are referred to as measures
of comparative local regularity (CLR). These CLRs contrast the average or standard deviation of distances
to the k nearest neighbors of the fine node set from those of the coarse node set. For each node set X, the
Euclidian distance between each node xj ∈ X and its k nearest neighbors is calculated as δi,j = ∥xj − xi,j∥.
The average δj or standard deviation σj of these distances is then found for each node xj ∈ X. These
are typical measures of local regularity. However, the present goal is measure how similar the initial and

subsampled node sets are. To this end, the distributions of δ
fine

j and δ
coarse

j over each of the fine and coarse
node sets, respectively, are first normalized to be between 0 and 1. Then the difference between these values
is calculated at each of the nodes which is collocated in both the coarse node set and the fine node set11.
Finally, the standard L2 norm is taken to produce a measure of CLR, which will depend on k. The same
process can be applied using the standard deviation σj of those distances δi,j .

Given that these CLRs measure the difference between a given initial node set and a subsampling of
it, it is ideal to minimize these measures across algorithms. The presented CLRs should only be compared
between subsamplings of the same size and from the same initial node set. Upon comparison of the average
and standard deviation CLRs for each algorithm across various values of nearest neighbors as seen in Figure
3, it is clear that the moving front and Poisson disk algorithms preserve the characteristics of the initial
dithered trui image better than the other two algorithms. This behavior is consistent across various sizes of
node sets. Between them, however, it is not clear which one is qualitatively better.

3.3. Computational Cost

When evaluating any numerical scheme, computational cost must be considered as much as any other
aspect of performance. The moving front, weighted, and Poisson disk subsampling algorithms presented in
this paper were coded in MATLAB12 The generalized diversity subsampling algorithm is coded in Python
as presented in [8]. A comparison of the computational complexity can be found in Figure 4. The average
execution times in Figure 4 are calculated based on ten repetitions of each algorithm subsampling from the
node set size of the previous data point to the node set size for the given point using the timeit commands
native to MATLAB and Python. The moving front algorithm is clearly the fastest algorithm of those
compared here. The significant computational cost savings secures the moving front algorithm as the best
overall performing algorithm. The computations were performed on an AMD Milan, 2.8 GHz processor with
Linux operating system.

4. Boundary Considerations

Before the moving front algorithm is applied in test problems in Section 5 this section will illustrate
the potential pitfalls that can occur if boundary nodes are included in the domain node set without being

10Where goodness is determined by any number of node quality measures chosen based upon context.
11Effectively, δ

fine
j needs only be calculated at those nodes xj in the fine node set which also belong to the coarse node set

12The code for the moving front algorithm included in Appendix Appendix A.1 is provided in Python for the readers convenience.
Code is available in both MATLAB and Python on the authors GitHub [50].
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Figure 2: A visualization of the initial dithered trui image (36303 nodes), the first subsampling (10553 nodes), and the
second subsampling (3404 nodes). From top to bottom, the rows demonstrate the moving front, weighted, Poisson disk, and
generalized diversity subsampling algorithms. The first column of the figure contains a redundant image of the initial dithering
for convenience in comparison.
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Figure 3: The comparative local regularity (CLR) of the average distance and standard deviation of distances for k = 2, 3, ..., 14
nearest neighbors of various subsampling methods (weighted, moving front, Poisson disk, and generalized diversity subsampling)
applied once and twice to the dithered trui image. For both measures of CLR, a lower value is better.
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Figure 4: The computation time of each subsampling algorithm. The node set size is that of each resultant subsample.
Each subsampling is serial in nature such that the coarse node set of the previous iteration is the fine node set of the next.
The execution time was averaged over ten iterations of the moving front, weighted, Poisson disk, and generalized diversity
subsampling algorithms. Note the logarithmic scales. The moving front algorithm is significantly faster than any of the other
algorithms.

handled separately and to propose methods for overcoming those pitfalls. Initial node sets are generated by
[30] and nodes near the boundary have been repelled13 prior to any subsampling.

4.1. Subsample Boundary with Domain

When applying the moving front algorithm naively to a set for which the boundary nodes are included in
the domain, the top boundary nodes are undesirably subsampled faster than the ones at the lower boundary,
as demonstrated in Figure 5(a). One way to reduce the subsampling inconsistencies is to include nodes
interior and exterior to each boundary as seen in Figure 5(b).

Another way to reduce the inconsistencies in subsampling which may be due to the inherent direc-
tional bias of the moving front algorithm is to alternate the direction between subsampling iterations. This
technique of alternating direction is unsatisfactory, however, because an ideal method would be effective
independent any inherent directional bias. To further improve robustness of the moving front method in the
presence of boundaries, the following section considers subsampling boundaries separately.

4.2. Subsample Boundary Separately

First, the given boundary nodes are subsampled. Then, any domain nodes within a prescribed distance
of the boundary nodes are removed. Finally, the domain nodes are subsampled. The effects of this two-step
process can be seen in Figure 6. Figure 6(a) alternates direction of the moving front algorithm while Figure
6(b) does not. A significant improvement in how consistently the algorithm behaves across the node set is
apparent, independent of any direction bias in the subsampling algorithm.

5. Meshfree multilevel RBF-FD solver

Traditionally, multigrid solvers have been used to accelerate the solution of large systems of equations
[22, 52]. Multigrid methods, however, require structured grids as the name indicates. In this section, it

13Following the repel methodology described in [28]
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(a) Naive algorithm (b) Nodes included interior and exterior to boundaries

Figure 5: The moving front subsampling algorithm applied to a test node set with two boundaries. The initial node set is
subsampled three times. The boundary node set is included in the domain node set such that they are subsampled collectively
and simultaneously. Subsampling performance along the boundary is improved by including nodes interior and exterior to all
boundaries. The method parameters for this example are k = 10 and c = 1.5.

(a) Alternating direction (b) No alternating direction

Figure 6: The moving front subsampling algorithm applied to a test node set with two boundaries. The initial node set
is subsampled three times. In these figures, the boundary node set is subsampled separately from the domain node set.
Subsampling performance along the boundary is improved by subsampling boundary nodes independently. Additionally, no
directional bias is detectable even when the algorithm does not alternate direction. The method parameters for this example
are k = 10 and c = 1.5.
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is illustrated how to utilize the geometric flexibility of RBF-FD in combination with the proposed node
subsampling strategy to setup a GMM. Each example uses spatially varying node sets that seek to match
the solutions. Consider the two-dimensional Poisson problem,

∇2u = f, x ∈ Ω

u = g, x ∈ ∂Ω
(1)

where u = u(x) = u(x, y) ∈ R is the exact solution in a disk with unit diameter, i.e., Ω = {(x, y), x2 + y2 ≤
0.5}, g = g(x) ∈ R specifies Dirichlet boundary conditions on ∂Ω and f = f(x) ∈ R specifies the source term.
Two different problems are solved using variable density node sets in order to test the applicability of the
proposed node subsampling strategy. The first problem considered is the Poisson problem for which g = 0
and f = 200e−100r (100r − 1) /r such that the solution given in polar coordinates is u(r, θ) = 2 exp(−r/0.01),
while the other is a Laplace problem (i.e. f = 0) for which g = cos(10θ) such that the solution given is
u(r, θ) = 1024 cos(10θ)r10 (see Figure 7).
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(b) u(r, θ) = 1024 cos(10θ)r10

Figure 7: The analytical solutions used for the (a) Poisson and (b) Laplace test problems.

5.1. Radial basis function-generated finite differences

To discretize the problem in (1) using RBF-FD [26, 53, 54] we approximate the exact solution to (1) as

u(x) ≈ uh(x) =
n∑

i=1

κiϕ (∥x− xi∥2) +
ℓ∑

j=1

γjpj(x) (2)

where ϕi(r) = ϕ (∥x− xi∥2) = ∥x−xi∥2k+1
2 are polyharmonic spline (PHS) radial basis functions and pj(x)

are bivariate monomials. The solution and approximation are required to match at n nodes, i.e., at spatial
points {xi}ni=1,

u(xi) = uh(xi), for i = 1, 2, ..., n. (3)

and the following constraints must hold:

n∑
i=1

κipj(xi) = 0, for j = 1, 2, ..., ℓ, (4)

where ℓ = (m + 1)(m + 2)/2 is the number of monomial terms in a bivariate polynomial of degree m. The
above equations can be arranged in a linear system of equations,

Ã

[
κ
γ

]
=

[
A P
PT 0

] [
κ
γ

]
=

[
u
0

]
, (5)

where κ,u ∈ Rn, γ ∈ Rℓ, Aij = ϕ (∥xi − xj∥2) is an entry of the RBF collocation matrix A ∈ Rn×n and
Pij = pj(xi) is an entry of the supplementary polynomial matrix P ∈ Rn×ℓ. Now, the linear operation L

can be approximated at an evaluation point xe as,

11
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Lu|xe
≈

n∑
i=1

κiLϕ (∥x− xi∥2) |xe
+

ℓ∑
j=1

γjLpj(x)|xe
, (6)

which again can be arranged in matrix-vector format,

Lu|xe
≈

[
aT bT

] [κ
γ

]
=

[
aT bT

]
Ã-1

[
u
0

]
=

[
wT vT

] [u
0

]
= wTu (7)

where ai = Lϕ (∥x− xi∥2) |xe corresponds to the ith entry of a ∈ Rn and bj = Lpj(x)|xe corresponds to
the jth entry of b ∈ Rℓ. The weights necessary for the multilevel solver, i.e. w ∈ Rn, can equivalently be
computed by solving the linear system, [

A P
PT 0

] [
w
v

]
=

[
a
b

]
. (8)

The weights, which approximate the operator L at point xe, can then be found for each point in the domain.
These weight vectors wi can then be assembled into an approximation of the operator L over the whole
domain which we shall call L:

L =


wT

1

wT
2
...

wT
n

 . (9)

The linear system can then be represented as

Lu = f (10)

where u is a vector of function values and f is a vector of the right hand side of the PDE for all spatial
points, including boundary points. In the following two examples, the weights are adjusted for all boundary
nodes to reflect the Dirichlet conditions. Dirichlet boundary conditions are expressed by setting all of the
weights on row ib corresponding to boundary node xib to zero except for that weight on the diagonal which
is one. Then the system can be solved using a GMM method.

5.2. Geometric multilevel elliptic solver

The meshfree GMM introduced here is based on ideas similar to those of the meshfree GMM found in [16]
which is used for solving PDEs on surfaces, although some parts differ. In this study, no Krylov subspace
methods will be used to increase the rate of convergence [55]. Furthermore, the coarse grid difference
operators are computed explicitly on each node set level. Finally, all restriction operations are performed
as injection (i.e. directly using values from the fine node set). For further details on multilevel methods,
the reader is referred to literature on the topics of multilevel approximation [36, 37] and multilevel solvers
[16, 40].

A pseudocode for the proposed GMM is given in Algorithm 2, where u1 is the solution at the finest node set
level, L = {Lj}pj=1 are the difference operators computed for each level, I = {Ijj+1}

p−1
j=1 are the interpolation

operators for each level and R = {Rj+1
j }p−1

j=1 are the restriction (injection) operators for each level. The

multilevel solver performs up to imax iterations (V-cycles) unless the relative residual ||ri1||2/||r01||2 = ||f1 −
L1u

i
1||2/||f1 − L1u

0
1||2 of the ith iteration becomes less than a predefined tolerance tol.

The basis of the GMM is the geometric multilevel V-cycle, which is described in Algorithm 3. During
the V-cycles, pre- and post smoothing operations are performed using (ν1, ν2) Gauss-Seidel relaxations,
respectively. At the coarsest node set level, a sparse LU solver is used.

The pseudocode for performing the geometric multilevel preprocessing, i.e., establishing all the different
subsets of nodes, X = {Xj}pj=1, and the discrete operators L, I,R, is given in Algorithm 4. The necessary
input for this algorithm are two node sets, {Xbg, Xb}, which describe the scattered node set covering Ω and
boundary nodes on ∂Ω at the finest node set level, respectively. Finally, the parameter Nmin is used to
control the minimum number of boundary nodes at the coarsest node set level.

12
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Algorithm 2 Geometric multilevel solver

1: function mlsolver(u1, f1, L, I, R, ν1, ν2, tol, imax)
2: i← 0
3: while i < imax and ||ri1||2 > ||r01||2 · tol do
4: i← i+ 1
5: ui

1 ← mlvcyc(ui−1
1 , f1, L, I, R, ν1, ν2)

6: ri1 ← ||f1 − L1u
i
1||2

7: end while
8: return u
9: end function

Algorithm 3 Geometric multilevel V-cycle

1: function mlvcyc(u1, f1, L, I, R, ν1, ν2)
2: u1 ← relax(u1, f1, L1, ν1)
3: r2 ← R2

1(f1 − L1u1)
4: for j = 2 to p− 1 do
5: ej ← relax(0, rj , Lj , ν1)

6: rj+1 ← Rj+1
j (rj − Ljej)

7: end for
8: ep = lusolve(Lp, rp)
9: for j = p− 1 to 2 do

10: ej ← ej + Ijj+1ej+1

11: ej ← relax(ej , rj , Lj , ν2)
12: end for
13: u1 ← u1 + I12e2
14: u1 ← relax(u1, f1, L1, ν2)
15: return u1

16: end function

Algorithm 4 Geometric multilevel preprocessing

1: function mlpre(Xbg, Xb, Nmin)
2: [X,R, p]← mlmfsub(Xbg, Xb, Nmin)
3: L1 ← rbffd(X1, X1)
4: for j = 1 to p− 1 do
5: Ijj+1 ← rbffd(Xj+1, Xj)
6: Lj+1 ← rbffd(Xj+1, Xj+1)
7: end for
8: return X,L, I,R, p
9: end function

13
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The multilevel solver is tested on node sets that have been generated with variable node densities as
illustrated in Figure 8, where Nmin = 60 for the Poisson problem and Nmin = 120 for the Laplace problem.
The node density function used in this study is defined by a linear transition between two prescribed node
densities as,

ρ(d) =


ρ1, d < dlim

ρ1 + (ρ2 − ρ1)(d− dlim)/dbl, dlim ≤ d ≤ dlim + dbl

ρ2, otherwise

(11)

where d = ||x||2 is the distance to the origin according to Figure 7, ρ1 is the node density in region 1, dlim
is a distance within which ρ1 is kept constant, whereas dbl is the distance over which ρ1 linearly blends into
ρ2. It should be noted that the nodes in the vicinity of boundary have been adjusted by means of repulsion
only at the finest node set level [28]. It should be noted that the node density function, ρ(d), is chosen such
that node density can be matched with the characteristics of the solutions.

Figure 8: Example of the multilevel node subsampling process for the Poisson problem node set (top) and the Laplace problem
node set (bottom). Only nodes within the first quadrant of the Cartesian coordinate system are shown.

The numerical test setups have been chosen to showcase the applicability of the node subsampling strat-
egy for multilevel solvers using RBF-FD and to test whether the high-order accuracy will still be dictated by
the degree of the augmented polynomials as shown, e.g., in [53]. Thus, the parameters used for computing
the difference operators, L, of polynomial degree mL are chosen to be (k, n) = (1, 2ℓ), while the parameters
(mI , k, n) = (0, 0, 5) are used for computing the interpolation operators, I. The parameters for the inter-
polation operators are kept fixed for all choices of mL. Finally, the multilevel solver settings are defined as
(ν1, ν2, imax, tol) = (2, 1, 50, 10−16) for both test problems, whereas the polynomial degree mL ranges from 2
to 8. All reported wall clock times include only the execution of the multilevel schemes. They do not include
those actions which are considered pre-processing, including the generation of the coarse levels and coarse
level operators14.

14The calculation of all RBF-FD operators is considered a preprocessing step which can be fully parallelized

14
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5.3. Poisson Equation Test Problem

0 10 20 30 40 50
10

-16

10
-12

10
-8

10
-4

10
0

0 10 20 30 40 50

10
-12

10
-8

10
-4

10
0

0.0010.01

10
-12

10
-8

10
-4

10
0

1e4 1e5 1e6
10

0

10
1

Figure 9: Poisson problem performance indicators of the implemented GMM for polynomial degrees of mL = {2, 4, 6, 8} from
top to bottom. The mean node density is defined as ρmean = 1/

√
N .

First, it can be seen from Figure 9 that the wall clock time15 scales linearly with the number of nodes,
which is in accordance with expectations for any multigrid or multilevel solver [16, 22, 52]. Furthermore, the

15For these tests, the algorithm achieved a relative residual within the prescribed tolerance before the maximum number of
iterations was reached. The latter would produce a trivially linear plot of wall clock time versus number of nodes.
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maximum relative error (||u − uh||∞/||u||∞) decreases as function of node set resolution (ρmean = 1/
√
N)

and the slope is dictated by the polynomial degree of the difference operator, mL. This is in agreement with
previous RBF-FD studies [53].

In this study, the low-order interpolation operators are chosen in order to accelerate the convergence of
the multilevel solver. However, this choice is not aligned with the rule of thumb for the transfer operators,
i.e. mI + mR > 2, which is used in traditional multigrid methods for the Poisson problem [22]. In this
work, the order of the restriction operators are mR = 0 because injection is used as the restriction operation
between all node set levels. Nevertheless, no detrimental effects have been noticed in any of the numerical
tests conducted.

Finally, the proposed multilevel solver should provide solutions without any directional bias. Hence, to
identify whether any directional bias is present, the relative errors for all node set resolutions have been
normalized and depicted in Figure 10. Thus, the scale factors used in Figure 10 refer to the plateau of the
maximum relative error plots in Figure 9. As no particular directional pattern is noticed in Figure 10, it can
be concluded that the subsampling process used for setting up the multilevel solver does not introduce any
directional bias.

Figure 10: Normalized relative error distributions for various orders of the difference operators and node set resolutions for the
Poisson problem. The color scale factors refer to the plateau of the maximum relative error plots in figure 9.

5.4. Laplace Equation Test Problem

The performance indicators of the multilevel solver for the Laplace problem are illustrated in Figure
11. The same overall conclusions that were made for the Poisson problem can be made for the Laplace
problem, i.e. high-order accuracy and linear scaling of the computation time16. For mL = 8, note that the
convergence factor (||ri1||2/||ri−1

1 ||2) of the multilevel solver is less for N = 14419 and N = 28279 compared
with the other values of N . The decrease in convergence factors is most likely caused by a stencil size that

16For these tests, the algorithm achieved a relative residual within the prescribed tolerance before the maximum number of
iterations was reached.
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is too large as compared to the relatively low node density near the boundary at the most coarse level since
localized error peaks are present for both N = 14419 and N = 28279 (mL = 8) in Figure 12. This decrease in
convergence factor does not occur if the node resolution is increased to N = 55966 or above. Furthermore, if
the multilevel V-cycle is used as a preconditioner for a Krylov subspace method, e.g. the generalized minimal
residual method or biconjugate gradient stabilized method, fewer iterations will be needed for the solution
to converge and the solver will be more robust compared to the standalone multilevel solver. However, each
iteration will become more computational expensive. Thus, whether the multilevel V-cycle should be used
as a standalone solver or a preconditioner is a trade-off between computational cost and robustness.

The normalized relative error distributions in Figure 12 illustrate that no directional bias seems to be
introduced by the subsampling process, which is the same conclusion as for the Poisson problem.

17
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Figure 11: Laplace problem performance indicators of the implemented GMM for polynomial degrees of mL = {2, 4, 6, 8} from
top to bottom. The mean node density is defined as ρmean = 1/

√
N .
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6 CONCLUSION

Figure 12: Normalized relative error distributions for various orders of the difference operators and node set resolutions for the
Laplace problem. The color scale factors refer to the plateau of the maximum relative error plots in figure 11.

6. Conclusion

A novel method for subsampling quasi-uniform node sets of highly variable density with sharp gradients
is presented along with boundary preservation techniques and two novel measures for evaluating node quality
of subsamplings. The moving front subsampling algorithm demonstrates the capability to coarsen a node
set with high contrast and detail. Additionally, the moving front algorithm maintains the characteristics of
the original node set as outlined by the comparative local regularity of the average distance and standard
deviation of distances to the k nearest nodes. It is also faster, both by a constant and in the limit as node
set size increases, than any other algorithm considered in this paper for subsampling variable density node
sets.

The utility of the moving front algorithm for the purpose of subsampling node sets in a meshfree multi-
level PDE solver is demonstrated by solving both the Poisson and Laplace problems on variable density node
sets. In both test cases, the meshfree PDE solver with the multilevel method and the proposed subsampling
algorithm achieves the fast linear scaling of computational cost with node set size expected from a multilevel
scheme. At the same time, this combination has no adverse impact on the expected high-order accuracy
of the RBF-FD method when the node set is large enough relative to the variation in the node set. The
meshfree multilevel PDE solver has been tested up through eighth order convergence and also demonstrates
robust performance with minimal limitations based on node set size and density variation as seen in Section
5.4.

Acknowledgments: Andrew Lawrence acknowledges support from the US Air Force17.
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the Department of Defense or the U.S. Government.
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Appendix A. Subsampling Algorithms

Appendix A.1. Moving Front Subsampling

The Python code for the moving front subsampling algorithm. The code can also be found on the author’s GitHub
repository in both MATLAB and Python along with examples of implementation [50].

import numpy as np

from sklearn.neighbors import NearestNeighbors

def MFNUS(xy, fc=1.5):

"""

Moving Front Non-Uniform Subsampling

Args:

xy (array): initial node set to be subsample

fc (float): coarsening factor algorithm

Returns:

xy_sub (array): subsampled node set

"""

if xy.shape[0] < xy.shape[1]:

xy = xy.T

hexRing = lambda n: (n+1).^3 - (n).^3 - 1

K = hexRing(np.ceil(fc))

# algorithm

N = xy.shape[0] # Get the number of its dots

sort_ind = np.lexsort(xy.T,axis=0)

xy = xy[sort_ind, :] # Sort dots from bottom and up

# Create nearest neighbor pointers and distances

nbrs = NearestNeighbors(n_neighbors=K+1, algorithm=’auto’).fit(xy)

distances, indices = nbrs.kneighbors(xy)

for k in range(N): # Loop over nodes from bottom and up

if indices[k, 0] != N+1: # Check if node already eliminated

ind = np.where(distances[k, 1:] < fc*distances[k, 1])[0]

ind2 = indices[k, ind+1]

ind2 = np.delete(ind2,ind2 < k) # Mark nodes above present one, and which

indices[ind2, 0] = N+1 # are within the factor fc of the closest one

elim_ind_sorted = indices[:, 0] != N+1

xy_sub = xy[elim_ind_sorted]

return xy_sub
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