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− − −

− − −

− − − − −

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

− − − − −

Some FD background          
First derivative

Second derivative

A few historical notes

c 1592 Jost Bürgi (interpolation in
trigonometric tables)

17th century   Calculus (limit of FD approximations)

19th century   ODE solvers in finance and
astronomy 
(e.g., linear multistep methods)

20th century    PDE solvers
(Richardson, 1911)
Led to FEM, FVM, PS methods.
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Complex plane FD formulas          
Analytic functions form a very important special case of general 2-D functions  f(x,y).

Definition: With  z = x + iy complex,  f(z) is  analytic if 

is uniquely defined, no matter from which direction Δz approaches zero.

Cauchy-Riemann’s equations:

Separating f(z) in real and imaginary parts

it holds that

Some consequences:

FD formulas in the complex x,y-plane, applied to analytic functions, are 
vastly more efficient / accurate than classical FD formulas.

- No distinction between         and         ;

- Cauchy’s integral formula:   
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A few examples of complex plane FD formulas          
1 8 1
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40
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i i i
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The weights at location μ + iν, with μ,ν
integers, decay to zero like 2

2 2( )
( )O e

π μ ν− +

Extremely high accuracies already for very small
stencils. Here approximating

As the accuracy order is increased (or goes to the 
PS limit), approximations remain highly local.

0.20.40.60.81
h

10-20

100
25 node stencil along real axis

5x5 node complex plane stencil

4 2
4

0
d x

dx x
e
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Simpson and Newton-Cotes formulas

Simpson’s rule: Fit by succession of quadratics
Simpson (1710-1761); however used by Kepler (1571-1630)

Newton-Cotes idea: Continue by using piecewise cubics, quartics, etc. 
Newton (1642-1726), Cotes (1682-1716)

Orders of accuracy increases (from Trap. Rule) 2, 4, 4, 6, 6, 8, 8, …

Concept flawed for several reasons:
- Essentially ALL errors in Trap. Rule comes from the ends; should do corrections there 

and NOT ‘contaminate’ throughout the whole interior. 
- For periodic problem,  Trap error ≈  (Simpson error)2.
- Becomes very unstable for increasing orders.

Gives weights [ ]1 4 2 4 2 4 2 4 1
3
h 

Trapezoidal rule: Fit by piecewise linear 
functions

Gives weights 
1 11 1 1 1 1 1
2 2

h  
  


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Gregory’s method

[ ]
0

0 1 2 1
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0 0 0 0 02 12 24 720 160

( )Nx

N Nx

N N N N N

f x dx h f f f f f

f f f f f f f f f f
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With notation
0

1

2

( ) ( )
( ) ( ) ( )
( ) ( 2 ) 2 ( ) ( )

f x f x
f x f x h f x
f x f x h f x h f x

Δ =
Δ = + −
Δ = + − + +


0

1

2

( ) ( )
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( ) ( ) 2 ( ) ( 2 )

f x f x
f x f x f x h
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∇ =
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Non-trivial weights at left end; each term increases accuracy order by one.

12
2
5 133

12 12
3 7 234
8 6 24

251 299 211 7395
720 240 240 720
95 317 23 739 1576
288 240 30 720 160

19087 84199 18869 37621 55031 613437
60480 60480 30240 30240 60480 60480
5257 22081 54851 103 89437 16367 239178

17280 15120 120960 70 120960 15120 24

p =

192
1070017 5537111 103613 261115 298951 515677 3349879 36627539
3628800 3628800 403200 145152 725760 403200 3628800 3628800

25713 1153247 130583 903527 6244961 56621 389187710
89600 725760 3628800 403200 3628800 80640 362

797
5670

− 1028617
8800 1036800

          

Non-trivial weights
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James Gregory (1638-1675)
Extract from a letter by 
Gregory to John Collins,
dated November 23, 1670:

Transcribed to print by Oxford 
Univ. Press, 1840
(with them introducing a typo, 164 in 
place of 160)

Gregory’s exact derivation of this particular expansion is unknown, but he did extensive 
work on calculus, Taylor expansions, derivatives and integrals in the 1660’s. He most likely  
obtained the coefficients from their generating function

Note:

The first publications on calculus: Gottfried Leibnitz, 1684,  Isaac Newton, 1687
Taylor expansions: Brook Taylor, 1715.

2 3 4 51 1 1 1 1 19 3 863
log(1 ) 2 12 24 720 160 60480

z z z z z
z z

− = − + − + − + −
+


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Timeline of the pioneers of numerical quadrature
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Methods to reach higher orders of accuracy
Gregory:

Modify p weights at each end. Enforcing accuracy O(h p+1) leads 
to p linear relations for p unknowns.

Accuracy enhanced variation:

Modify N > p weights at each end. For accuracy O(h p+1), obtain 
underdetermined linear system. Use the N – p free parameters 
to ensure all weights positive.     In MATLAB, function quadprog. 
Works up to p = 20 (with then N = 36) 

Example of an O(h10) scheme with all weights rational and positive
The following set of dk ‘correction’ coefficients (weights  wk = 1 + dk) gives an order  p = 10 scheme:

1 26911 628 10421 33487 31441 16873 10567 10451 28613 5099 107, , , , , , , , , ,
96 400 1350 189 840 4725 1512 4200 1080 3024 1400 200

 − − − − − − 
 

Order p = 16 schemes,
Gregory vs. L2-generated
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Illustration of weight sets that will be used in following test             

Corrections from the two sides can overlap.
For example rational coefficient scheme can be used on any equispaced node set of 11 or more nodes.

Weight range in Gregory
schemes of matching order p

[-0.14,  2.24]

[-7.8,  10.2]

[-276,  273]
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Numerical quadrature methods applied to a test function

Test function: ( ) cos(20 )f x x=

1

0

1( ) (cos(20) 20sin(20) 1)
200

f x dx = + −

log-log plot of errors vs. number of subintervals

Test function with N = 68; gives error < 10-16
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0 0.2 0.4 0.6 0.8 1
x
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10-310-2

h

10-20

10-15

10-10

10-5

100

O(h10)

O(h6)

O(h1)

TR,  p = 1
p = 6    (N = 8)
p = 10  (N = 20)

3
1

0 2
5

sin(20 ) , 0 1/ 2
( ) with ( )

cos(10 ) , 1/ 2 1

xe x x
f x dx f x

x x

− ≤ <
= 

− ≤ ≤


Enhanced TR for discontinuous functions 
Work pursued in collaboration with Andrew Lawrence

Suppose we know discontinuity location (not at a grid point)

Example:

Apply same idea as above: Use next to discontinuity N > p, find positive weights by  quadprod. 
This works up to p = 10  in case of using N = 20.



Slide 13 of 27

0
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Combine FD and enhanced TR: The Euler-Maclaurin formula          

- Magnitude of weights in 5x5 stencil case            → → →
Correction weights very small compared to TR weights.

- Accuracy order one above the number of 
stencil points (in figure O(h26))

- For finite interval, matching expansion at 
the opposite end

Trapezoidal rule (TR) approximation:

0

21 1 1 1 1 1 1
2

( ) ( )f x dx h f O h
∞  = + 

  

With 3x3 stencils, one can approximate odd derivatives up through f (7) (0). Doing this gives

0
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403200 100800 403200
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100800 1008

)
00
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2

(1 1(

0
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i

x f

i i i

i

h

i

dx O h
∞

  
  
  

  = +      
 

− − −−

− +

− + + 
    

 
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Easier method to calculate the correction stencil weights

In the case of correcting the trapezoidal rule at the left end   z = 0:

Consider                 and apply to                      . This gives

(1)

Consider a correction stencil with weights wk at N given nodes zk, also applied to 

(2)

Equate coefficients for the leading N terms in the expansions (1), (2). 
This gives a linear system with a Vandermonde coefficient matrix for the weights wk.

The order of accuracy of the resulting quadrature approach will match the number of equated 
coefficients.

For this method, we don’t even need to know that the Euler-Maclaurin formula exists
(method will be utilized again for fractional derivative generlizations)

0
1

1( ) (0) ( )
2 k

f z dz f f k
∞∞

=

 − + 
 

 ( ) zf z e ξ=

0
1 1

1 1 1 ( )coth
2 2 2 !

z k k

k k

ke dz e
k

ξ ξ ξ ζ ξ
ξ

∞ ∞∞

= =

− − + = − = − 
 

 

( ) zf z e ξ=

{ }
1

Taylor expansion in k

N
z

k
k

w e ξ ξ
=

=
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Numerically approximate contour integrals in the complex plane
Test function illustrated:

2 1 1 3( )
0.4(1 ) 0.4(1 ) 1.2 1.6 1.3 2

f z
z i z i z i z i

= − + −
− + + + + − − −

Magnitude and phase angle

Real part Imaginary part

Contours  can be open or closed

We want to only use grid point values
(no other functional information) 

Using 7x7 ‘correction stencils’ at each path corner 
gives accuracy ordrer O(h50).
Grid density shown sufficient for error around 10 -40
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Two main opportunities to improve the trapezoidal rule (TR):
Trapezoidal rule for
periodic problem
Standard version

Trapezoidal rule for
finite interval
Standard version

Can one do better? Can one do better?

Combine the two ideas for 
very accurate integration 
along finite line sections

All required weights can 
be obtained very easily
(5 lines in Mathematica)

Each pair of lines adds as 
many correct digits as 
present in regular TR

Order of accuracy 
one more than 
number of end 
correction entries

Accuracy O(h p) where p = 
(number of nodes in stencil) + 1.
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Test problem 

Log-linear plot below – convergence slightly better than spectral.
Number of correct digits increases as expected with additional TR lines.

Periodic example :
cos( ) zf z e=3-line case; weigh together 

TR sums on adjacent lines by 
2

2

2

1/ (2sinh ) 0.001874
(1 (coth ) ) / 2 1.003749

1/ (2sinh ) 0.001874

π
π

π

 − − 
   + ≈   
   − −  

5-line case

9

9

6.5 10
0.001878
1.003756
0.001878
6.5 10

−

−

 ⋅
 − 
 
 
− 
 ⋅ 
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Regular derivatives: First derivative

Origin of Calculus

Gregory (1670)
Leibniz   (1684),   Newton (1687)

Fractional derivatives:

Origin of Fractional derivatives

1695 l’Hôpital asked Leibnitz about derivatives of order ½ to which Leibniz replied
“This is an apparent paradox from which one day, useful consequences will be drawn”

1823 Abel presented a complete framework for fractional calculus, and a first application

From 1832 Major further contributions by Liouville, Riemann, etc. 
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Some different ways to introduce fractional derivatives

1

0 0

1Let ( )( ) ( ) Cauchy:   ( )( ) ( ) ( )
( 1)!

x xn nJ f x f t dt J f x x t f f dt
n

−= = −
− 

Fractional integral :

Fourier series :

Derivatives of  xm :
( ) ! ( 1)Let ( ) ,   then  ( ) ( 1) ( 1)

( )! ( 1)
m n m n m n m nm mf x x f x m m m n x x x

m n m n
− − −Γ += = ⋅ − ⋅ ⋅ − + = =

− Γ − +


( )    with  .i xf x c e c cν
ν ν νν

∞
−=−∞

= =

Let f(x) be a real-valued  2π – periodic function.  Then

( ) ( ) ( )    One can now make  a fractional number. For example, with 1/ 2 n n i xf x c i e n nν
νν

ν∞

=−∞
= =

1
2(1/2) 1/2 1/2 (1/2)

1
2

| | , 0
  ( ) ( )    with ( ) ( ) also real-valued.

| | , 0

i
i x

i
f x c i e i f xν

νν

ν ν
ν ν

ν ν

+
∞

=−∞ −

 >= = 
<



Fractional derivatives are not unique: 
It was recently (2022) discovered that all main versions belong to a two-parameter family. 
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Two most commonly used types of fractional derivatives

Riemann-Liouville (1832, 1847):

Caputo (1967):

Fractional erivatives of  e t

0 10

1 ( )( ) , 1
( ) ( )

n tRL
t n n

d fD f t d n n
n dt t

α
α

τ τ α
α τ + −= − < <

Γ − −

0 10

( )1( ) , 1
( ) ( )

nd
t nC d

t n

f
D f t d n n

n t
α τ

α

τ
τ α

α τ + −= − < <
Γ − −

- For m integer  Dα+mf(t) = Dm Dα f(t)
- Limit α → integer is continuous

- For m integer  Dα+mf(t) = Dα Dm f(t)
- D(constant) = 0
- Solving fractional ODEs requires easy initial

conditions ICs

- Singularity at t = 0 (branch point if t complex)

-

Note also:

1
( )

0 0
0

( ) ( ) (0).
( 1 )

kn
RL C k

t t
k

tD f t D f t f
k

α
α α

α

−−

=

= +
Γ + −
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What are fractional derivatives useful for? 

- Fractional diffusion
Recall heat / diffusion equation ut = uxx. 

i.  Fractional in time,    Dα
t u = uxx with α ≈ 1, provides ‘memory’

ii.  Fractional in space,  ut = Dα
x u with α ≈ 2, often represents better various

‘anomalous’ diffusion processes (typically with ‘base point’ on each side).

- Frequency-dependent wave propagation
- Random walks
- Active damping of flexible structures
- Gas/solute transport/reactions in porous media
- Epidemiology (incl. asymptomatic spreading)
- Modeling of bone/tissue growth/healing
- Modeling of shape memory materials
- Economic processes with memory
- Modeling of supercapacitors / advanced batteries using nano-materials
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0

( )1( ) , 0 1
(1 ) ( )

d
t d f

D f t d
t

α τ
α

τ
τ α

α τ
= < <

Γ − −

How to numerically compute fractional derivatives,  t real   

Recall Caputo:

Equispaced grid in t-direction

0  t

Grünwald-Letnikov formula: (1868)

Still dominant in computing; only first order accurate – Error O(h1).
Improvements available up to around O(h4). 

Nodes in t-direction at prescribed non-equispaced locations

0  t
Spectral methods reminiscent of Gaussian quadrature possible. 
This type of node sets are  impractical in time for fractional order ODEs / PDEs.

[ ]/

0
0

( ) lim     where    ( 1) ( ).
t h

RL jGL
h GL

j
D f t f t jh

jh
α

α

α
−>

=

 Σ= Σ = − − 
 


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Apply complex plane integration approach to fractional 
derivative calculations
Work pursued in collaboration with Cécile Piret, Caleb Jacobs, Andrew Lawrence, and
Austin Higgins

Recall again Caputo derivative: 

Theorem: If f(z) is analytic, so is Dαf(z)   (typically with branch point at z = 0).

Preliminary step for numerics: Integrate by parts once, to get f(τ) instead of f’(τ).

Key result: One can obtain equally high order accurate TR end correction stencils also 
for the singular end point  τ = z of the integrand.

An additional technicality is needed when the evaluation point  z is close to the base point 0.

Procedure: Follow grid lines with TR and end correct wit 5x5 stencils at base point,
evaluation point, and at any path corner.

0

1 '( )( ) , 0 1
(1 ) ( )

z fD f z d
z

α
α

τ τ α
α τ

= < <
Γ − −
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Fractional derivative illustrations:
Displayed grid densities sufficient for machine precision 10-16 accuracy
Function in complex plane:

Exact: . (1 , )1
(1 )

z z zD e eα α
α

 Γ −= − Γ − 

( ) zf z e=

Fractional derivative,  shown in the case of α = 5/7
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( )2
5/3

3 4 111/3 2
2 2 2 3 6

9 1, ; , ;
5 (2 / 3)

z zD e F z− = − −
Γ

2 2
1 /8

3/8
1 2 8 2 16 4

8

sin (1;1 , ; )
(1 )

zzD z F
π

π π ππ
π

ππ
−

− − −=
Γ −

2( ) zf z e −=

sin( ) zf z π=
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Further fractional derivative research opportunities that are 
currently pursued:

- Change present complex plane method to be applicable along the real axis.

- Solve fractional order ODEs to high orders of accuracy.

- Evaluations of special functions (especially hypergeometric). For example:

( )

1 1
1 1

1 1
2 1

1 1

( )( ; ; ) [ ]
( )
( )( , ; ; ) [ (1 ) ]
( )
simple fractional

( ; ; ) ( ; ; )
function deriv. of

c a c z a
z

c b c b a
z

c
p q p q

cF a c z z D e z
b
cF a b c z z D z z
a

F z z F z

− − −

− − −

+ +

Γ=
Γ
Γ= −
Γ

   
= ×   
   

   
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Some conclusions
Finite differences (FD)
- Derivatives of grid-based analytic functions can be evaluated to very high levels of accuracy already

on coarse grids.

Trapezoidal rule (TR) enhancements:
- Very high levels of accuracy can be reached using only equispaced data within the integration 

interval. The integrand may be discontinuous at some known location(s).
- With grid data in the complex plane, contour integration of analytivc functions readily reach accuracy 

orders such as O(h50).

Fractional derivatives:
- Fractional derivatives of analytic functions  can be computed to machine precision accuracy using 

grids with density comparable to what is needed for typical functional displays.

New opportunities for 3-D harmonic functions:
- Highly accurate FD approximations available.

Two books relevant to this presentation:
B.F. and C. Piret, Complex Variables and Analytic functions: An Illustrated 
Introduction, SIAM (2020). 

B.F.  High Accuracy Finite Difference Methods, Cambridge University Press 
(to be published in 2024).


