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Quadrature Formulas: Some very classical methods

Simpson’s rule: Fit by succession of quadratics
Simpson (1710-1761); however used by Kepler (1571-1630)    ►►►►

Newton-Cotes: Continue the Simpson’s rule concept by using piecewise 
cubics, quartics, etc.   Newton (1642-1726), Cotes (1682-1716)

Newton-Cotes concept is flawed for several reasons:
- Virtually all errors in the Trapezoidal Rule comes from the ends of the interval –

one should do corrections there and NOT damage the accuracy throughout the
interior. 

- For periodic problem,  Simpson gives only half the number of correct digits 
compared to the Trapezoidal rule.

- Newton-Cotes becomes very unstable for increasing orders.

Gives weights [ ]1 4 2 4 2 4 2 4 1
3
h 

Trapezoidal rule: Fit by piecewise linear 
functions    (Babylonian astronomers, 50 BC)

Gives weights 
1 11 1 1 1 1 1
2 2

h  
  


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Gregory’s method: James Gregory (1638-1675) ►►►►

12
2
5 133
12 12
3 7 234
8 6 24
251 299 211 7395
720 240 240 720
95 317 23 739 1576
288 240 30 720 160

19087 84199 18869 37621 55031 613437
60480 60480 30240 30240 60480 60480
5257 22081 54851 103 89437 16367 239178
17280 15120 120960 70 120960 15120 24

p =

192
1070017 5537111 103613 261115 298951 515677 3349879 36627539
3628800 3628800 403200 145152 725760 403200 3628800 3628800
25713 1153247 130583 903527 6244961 56621 389187710
89600 725760 3628800 403200 3628800 80640 362

797
5670

− 1028617
8800 1036800

          

Adjust weighs at the interval ends before all weights become one 
throughout the interior of the interval

Collaboration with Jonah Reeger ►►►►
Weights for the O(h16) Gregory scheme (red) vs. for a wider 
scheme (black) of same order (now with all weights positive)
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Enhanced end correction method applied to a test function

Test function: ( ) cos(20 )f x x=

1

0

1( ) (cos(20) 20sin(20) 1)
200

f x dx = + −

log-log plot of errors vs. number of subintervals

Test function with N = 68; gives error < 10 -14
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order weights
1 12 0
2 2

1 2 2 14 0
12 3 3 12

1 3 3 3 3 16 0
60 20 4 4 20 60

1 4 1 4 4 1 4 18 0
280 105 5 5 5 5 105 280

PS 1 1 1 1 1 11 0 1
limit 4 3 2 2 3 4

−

− −

− − −

− − − −

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

− − − −

2

2 3 2 2 2 2 3 2

order weights
2 1 2 1

1 4 5 4 14
12 3 2 3 12

1 3 3 49 3 3 16
90 20 2 18 2 20 90

1 8 1 8 205 8 1 8 18
560 315 5 5 72 5 5 315 560

PS 2 2 2 2 2 2 2 2
limit 4 3 2 1 3 1 2 3 4

π

−

− − −

− − −

− − − − −

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

− − − − −

Some finite difference (FD) background
First derivative

Second derivative

A few historical notes

c 1592 Jost Bürgi (interpolation in
trigonometric tables)

17th century   Calculus (limit of FD 
approximations)

19th century   Numerical ODE solvers developed
and applied to finance and
astronomy

20th century    Numerical PDE solvers
(Richardson, 1911)
Led to FEM, FVM, PS methods.
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Complex Plane: FD formulas
Analytic functions form a very important special case of general 2-D functions  f(x,y).

Definition: With  z = x + iy complex,  f(z) is  analytic if 

is uniquely defined, no matter from which direction Δz approaches zero.

Virtually all standard and special functions of applied sciences generalize for complex 
arguments to analytic functions.

Some consequences of analyticity:

FD formulas in the complex x,y-plane, applied to analytic functions, are 
vastly more efficient / accurate than classical FD formulas.

- No distinction between         and         ;

- Cauchy’s integral formula:   

0

d ( ) ( )lim
d z

f f z z f z
z zΔ →

+ Δ −=
Δ

f
y

∂
∂

f
x

∂
∂

( )
0 1

0

! ( )( ) , 0,1, 2,
2 ( )

k
k

k f zf z dz k
i z zπ +Γ

= =
− 



Slide 7 of 20 

A few examples of complex plane FD formulas          
1 8 1

1 8'(0) 8 0 8 ( ),
40

1 8 1

i i i
f f O h

h
i i i

− − − − 
 = − + 
 − + + 

1 4( 1 ) 4(1 ) 1
477360 29835 1326 29835 477360
4( 1 ) 8( 1 ) 8 8(1 ) 4(1 )
29835 351 39 351 29835

1 1 8 8 1'(0) 0
1326 39 39 1326

4( 1 ) 8( 1 ) 8 8(1 ) 4(1 )
29835 351 39 351 29835
1 4( 1 ) 4(1 )

477360 29835 1326

i i i i i

i i i i i

f
h

i i i i i

i i i i

+ − − − − +

− − − − − − −

= − −

− + − + + +

− − + − +

24( )

1
29835 477360

f O h

i

 
 
 
 
 
 
  +
 
 
 
 
 − −
 
 

2

8
1 8''(0) 8 0 8 ( ),

20
8

i i
f f O h

h
i i

− − 
 = + 
 − − 

(4)
4

1 16 1
3 8(0) 16 60 16 ( ),

10
1 16 1

f f O h
h

− − 
 = − + 
 − − 

……

……

(8)
8

1 4 1
504 4(0) 4 20 4 ( ),

1 4 1
f f O h

h

 
 = − + 
  

The weights at location μ + iν, with  
μ,ν integers, decay to zero like

2
2 2( )

( )O e
π μ ν− +

Extremely high accuracies already for very 
small stencils

As the accuracy order is increased (or goes 
to the PS limit), approximations remain 
local.
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0

2 4 6 8
(1) (3) (5) (7)

0 0 0 000
( ) ( ) ( ) ( ) ( )

12 720 302
( ) ( )

02 4 1209600x kk

h h h hf hh f x f xx dx f x f x f x f x
∞ ∞

=
= + − + + −− −  

Combine equispaced quadrature with analytic functions:
The Euler-Maclaurin formula (1740  – 70 years after Gregory)

- Magnitude of weights in 5x5 stencil case       ►►►►
Correction weights very small compared to TR weights.

- Accuracy order one above the number of 
stencil points (in figure O(h26))

- For finite interval, matching expansion at 
the opposite end

Recall trapezoidal rule (TR) approximation:

0

21 1 1 1 1 1 1
2

( ) ( )f x dx h f O h
∞  = + 

  

With 3x3 stencils, one can approximate odd derivatives up through f (7) (0). Doing this gives

0

10

821 779 1889 821 779
403200 100800 403200
1511 1511
100800 1008

)
00

821 779 1889 821 779
403200 100800 4032 0

1 1 1 1 1)
2

(1 1(

0

f

i

x f

i i i

i

h

i

dx O h
∞

  
  
  

  = +      
 

− − −−

− +

− + + 
    

 
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Numerically approximate contour integrals in the complex plane
Test function illustrated:

2 1 1 3( )
0.4(1 ) 0.4(1 ) 1.2 1.6 1.3 2

f z
z i z i z i z i

= − + −
− + + + + − − −

Magnitude and phase angle

Real part Imaginary part

Contours  can be open or closed

We want to only use grid point values
(no other functional information) 

Using 7x7 ‘correction stencils’ at each path corner 
gives accuracy ordrer O(h50).
Grid density shown sufficient for error around 10 -40
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Fractional derivatives:

Origin of Fractional derivatives

1695 l’Hôpital asked Leibnitz about derivatives of order ½ to which Leibniz replied
“This is an apparent paradox from which one day, useful consequences will be drawn”

1823 Abel presented a complete framework for fractional calculus, and a first application

From 1832 Major further contributions by Liouville, Riemann, etc. 

There are many ways to define fractional derivatives. It was recently (2022) discovered that all 
main versions belong to a two-parameter family. 
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Two most commonly used types of fractional derivatives

Riemann-Liouville (1832, 1847):

Caputo (1967):

Fractional erivatives of  e t

0 10

1 ( )( ) , 1
( ) ( )

n tRL
t n n

d fD f t d n n
n dt t

α
α

τ τ α
α τ + −= − < <

Γ − −

0 10

( )1( ) , 1
( ) ( )

nd
t nC d

t n

f
D f t d n n

n t
α τ

α

τ
τ α

α τ + −= − < <
Γ − −

- For m integer  Dα+mf(t) = Dm Dα f(t)
- Limit α → integer is continuous

- For m integer  Dα+mf(t) = Dα Dm f(t)
- D(constant) = 0
- Solving fractional ODEs requires easy initial

conditions ICs

Fractional derivatives (as defined above) typically
singular at t = 0.

Note also:
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Recall the Caputo derivative: 

Theorem: If f(z) is analytic, so is D α f(z)   (typically with branch point at z = 0).

Preliminary step for numerics: Integrate by parts once, to get f(τ) instead of f’(τ).

Key novel result:
Collaboration with Cécile Piret, Caleb Jacobs, Andrew Lwrence and Austin Higgins.

The integral end correction methods just described generalize immediately to the 
singular integral that arises for fractional derivatives.

0

1 '( )( ) , 0 1
(1 ) ( )

z fD f z d
z

α
α

τ τ α
α τ

= < <
Γ − −
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Vast amount of other applications of fractional derivatives 

- Fractional diffusion
Recall heat / diffusion equation ut = uxx. 

i.  Fractional in time,  Dα
t u = uxx with α ≈ 1, provides ‘memory’

ii.  Fractional in space,  ut = Dα
x u with α ≈ 2, often represents better various

‘anomalous’ diffusion processes (typically with ‘base point’ on each side).

- Frequency-dependent wave propagation
- Random walks
- Active damping of flexible structures
- Gas/solute transport/reactions in porous media
- Epidemiology (incl. asymptomatic spreading)
- Modeling of bone/tissue growth/healing
- Modeling of shape memory materials
- Economic processes with memory
- Modeling of supercapacitors / advanced batteries using nano-materials
- Solving the 3-D Laplace equation as an initial value problem

Mathematically ill-posed, but central to mineral prospecting based on aerial gravity
and magnetic measurements.
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Two novel ways to continue aerial survey data downwards
Collaboration with Jeff Thurston
1. Fractional Laplacian
Gravity and magnetic potentials (and their gradients) satisfy the3-D Laplace equatuion

Data is recorded on undulating surface (flown by airplane or helicopter)
1. Computationally transfer data to flat surface (RBF-based fractional derivative-based method – unpiublished)
2. Continue downward (knowing that u should decay upwards)

- Write the 3-D Laplace equation as (fractional 2-D Laplacian)

- Next, solve ODE system towards negative z.

Example of recorded surface z = 0 data                Contunied downwards to z = -100 meters as described

2 2 2

2 2 2 0u
x y z

 ∂ ∂ ∂+ + = ∂ ∂ ∂ 

2 2 2
1 1/2

2 2 2 ( ) ( )u uu u u v
z x y z

 ∂ ∂ ∂ ∂= − + = −Δ  = −Δ = ∂ ∂ ∂ ∂ 
u vd
v udz
   

=   −Δ   

Left figure:

Magnetic 
recording, 
Central BC, 
Canada



Slide 15 of 20 

2. Padé continuation
An entirely different (also novel) approach to again extract seemingly non-present data from magnetic 
or gravity aerial survey recordings.  

Mathematical background:
Given a truncated Taylor series convert it to Padé rational form

Algorithm:
Put the two expressions equal, multiply up denominator and equate coefficients
Relatively straightforward to convert   {ck}   to   {ak , bk}  and vice versa.

Mathematical Padé Example:
Given only a small number of leading Taylor coefficients for

approximate f(2)     (with analytical value ).

Note: The evaluation point z = 2 is well outside the region of convergence |z| < 1  for the
Taylor series. 

0
( ) m n k

m n kk
T z c z+

+ =
= 0

0

( )
m k

km k
n n k

kk

a z
P z

b z
=

=

= 


2 4log(1 ) 1 1 1( ) 1
2 3 4

zf z z z z
z
+= = − + − +

log3(2) 0.549306144
2

f = ≈
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Mathematical Padé example - continued

Real part of log(1 )( ) zf z
z
+= Real part of 20 ( )T z

Real part of 10
10 ( )P z Error in              for m = n = 10 approximately 10 -12. (2)n

nP
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Downward continuation via Padé approximations

Make the line of data the x-axis in 
an imagined vertical complex x,y-
plane. 

Perform a numerical Hilbert 
transform on the data. This gives 
an analytic function that satisfies 
the 2-D Laplace equation and 
decays upward.

Evaluate at sequence of elevations. 
By 1-D interpolation, get 
equispaced data around a circle. 
FFT gives Taylor coefficients, 
convert to Padé. 
Evaluate this below ground.
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Padé continuation – Two examples of downward continuation
‘State-of-the-art’ continuation Padé continuation

Gravity data, 
central BC, 
Canada

Gravity data, 
Victoria, 
Australia

Figures to the right 
from FitzGerald, 
Thurston, Cottew, 
EAGE 2022.
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Example of detecting underground
voids - The SSC 
(Superconducting Super Collider)

LEB – Low energy booster

2010 ‘Falcon’ aerial survey



Slide 20 of 20 

Some conclusions
Regular derivatives and integrals:
- Derivatives and Contour integrals of grid-based analytic functions can be evaluated to very high levels 

of accuracy already on coarse grids.

Fractional derivatives:
- Fractional derivatives of analytic functions  can also be computed to machine precision accuracy using 

grids with density comparable to what is needed for typical functional displays.

Mineral prospecting:
Research on the topics above has led to two novel approaches for continuing aerial gravity and magnetic 
recordings downwards
- Fractional Laplacian together with finite differences (FD)
- Padé continuation

Some papers relevant to this presentation:
B.F. and J.A. Reeger, An improved Gregory-like method for 1-D quadrature, Numer. Math. 141 (2019), 1-19. 
B.F., Improving the accuracy of the trapezoidal rule, SIAM Review 63 (2021), 167-180. 
B.F.,  Generalizing the trapezoidal rule in the complex plane, Numerical Algorithms 87 (2021), 187-202.
B.F., Finite difference formulas in the complex plane, Numerical Algorithms 90 (2022), 1305-1326. 
B.F. and C. Piret, Computation of fractional derivatives of analytic functions, J. of Sci. Comp, 96 (2023), No. 79.
J.B. Thurston and B.F., Analytic continuation: A tool for aeromagnetic data interpretation, The Leading Edge (2024), 154-160.

Two books relevant to this presentation:
B.F. and C. Piret, Complex Variables and Analytic Functions: An Illustrated Introduction, SIAM (2020).  
B.F.  High Accuracy Finite Difference Methods, Cambridge University Press (2024).


