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Abstract The role of the Laplace transform in scientific computing has been
predominantly that of a semi-numerical tool. That is, typically only the inverse
transform is computed numerically, with all steps leading up to that executed
by analytical manipulations or table look-up. Here we consider fully numerical
methods, where both forward and inverse transforms are computed numeri-
cally. Because the computation of the inverse transform is one of the most
well-studied problems in scientific computing, this paper focus mainly on the
forward transform. Existing methods for computing the forward transform
based on exponential sums are considered along with a new method based
on the formulas of Weeks. Numerical examples include a nonlinear integral
equation of convolution type, a fractional ordinary differential equation, and
a partial differential equation with an inhomogeneous boundary condition.
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1 Introduction

Let f(t) be defined on [0,∞). Its forward Laplace transform is defined by

F (z) =

∫ ∞
0

e−ztf(t) dt, (1)

and the Bromwich contour integral for the inverse is defined by

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
eztF (z) dz. (2)

The assumption is that both integrals are well-defined. This means, among
other things, that σ > σ0, with σ0 the convergence abscissa of the transform.
That is, all singularities of F (z) are located in the half-plane Re z < σ0.

When used to solve differential or integral equations these formulas are
typically applied as follows: The forward transform of all terms in the equation
is taken, thereby reducing the problem to an algebraic equation in the variable
z. If this can be solved, an explicit expression for the inverse is obtained which
then needs to be inverted. More often than not, however, this expression is
unwieldy and defies analytical inversion, table look-up, and symbolic software.
At this point numerical methods are used to compute the inverse for specified
values of t. When used in this manner, the Laplace transform can be viewed as
a semi-numerical tool, as only the last step involves numerical computation.

In this paper we consider the use of the Laplace transform as a fully numer-
ical tool, i.e., with both the forward and inverse formulas computed numer-
ically. The computation of the inverse transform has attracted an enormous
body of literature. (The bibliography of [6] has no fewer than 267 entries.)
For this reason we shall just skim the details of some of the most well-known
numerical inversion strategies, namely methods based on Laguerre expansion,
contour deformation, or rational approximation. Instead, the main focus here
will be on the computation of the forward transform.

If (1) cannot be computed by analytical methods or table look-up, then one
option for evaluating it is by a quadrature rule appropriate for the half-line.
When used in combination with one of the inversion methods cited above,
however, it becomes necessary to compute it for z in various regions of the
complex plane. This is usually not a problem if Re z > σ0 but in several good
inversion methods (particularly those based on contour deformation of (2))
the integral (1) will have to be computed for values Re z < σ0, i.e., outside
the domain of convergence of the integral. This amounts to a form of analytic
continuation, which can pose a challenge to numerical computations. Even
inversion methods that stay within the domain of convergence can face a chal-
lenge if Im z gets large (the well-known Dubner & Abate and Weeks methods
are both in this class [12,29]). The problem here is the oscillatory nature of
the integrand of (1).

In this paper we consider two methods for the computation of the forward
transform (1), one new and and one old (but improved here). The new method
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proposed here is a reversal of the Weeks method for the inversion problem.
The old method is the use of exponential sums, already proposed two decades
ago [24]. In that paper the use of de Prony’s method was suggested (among
others). This is updated here with more recent and more stable methods for
computing the coefficients in an exponential sum.

The outline of the paper is as follows: In section 2 we review some of the
more popular inversion methods, as well as the two methods for the forward
problem mentioned in the previous paragraph. Three model problems, ranging
from integral equations and fractional differential equations to a partial dif-
ferential equation are solved in section 3. The performance of the new Weeks
method for the forward transform is assessed in this section. In section 4 this
method is compared to the existing but newly updated method based on ex-
ponential sums. Our findings are summarized in section 5.

2 The Methods

Because of the vast number of methods that have been proposed for the in-
verse Laplace transform in particular, we limit ourselves here to just a small
selection. The first group is methods based on Laguerre functions, which have
become associated with the name of Weeks [29] (but who built on earlier work
of Tricomi, Widder, and others). We reverse Weeks’ inversion method here to
compute the forward transform. The second set of methods (for the inverse
transform only) is based on path deformation of the contour integral (2). These
methods have become associated with the name of Talbot [26] (but Butcher [4]
seems to have proposed the basic idea two decades earlier). The third set of
methods are based on exponential sum expansions, maybe less familiar for the
inversion problem compared to the above two methods, but more familiar for
computing the forward transform.

2.1 Laguerre expansions

These methods are based on finite truncations of the following two series [15,
20,30]. (We follow the notation of the latter reference.) The expansion for f(t)
is in terms of scaled Laguerre functions

f(t) = eσt
∞∑
n=0

ane
−btLn(2bt), (3)

where the Ln are the Laguerre polynomials, and σ and b are parameters (σ >
σ0, b > 0). The connection to F (z) is

F (z) =
(1− w)

2b

∞∑
n=0

anw
n, (4)



4 J.A.C. Weideman, Bengt Fornberg

where the variables w and z are related by the conformal map

w =
σ + b− z
σ − b− z

. (5)

The efficiency of these series for computational usage depends on the rate
of decay of the expansion coefficients an as n→∞. It is a standard exercise to
estimate this from power series like the one on the right of (4). Those results
then have to be transplanted from the w-plane to the z-plane. Now (5) is a
bilinear transformation that maps (generalized) circles in the z-plane to circles
in the w-plane and vice versa; for a diagram we refer to [30]. Specifically, the
line Re z = σ gets mapped to the unit circle |w| = 1 in the w-plane. The half-
planes Re z > σ (resp. Re z < σ) get mapped to the interior (resp. exterior)
of |w| = 1. Because σ > σ0, F (z) is analytic in the half-plane Re z > σ, and
this means analyticity in the closed disk |w| ≤ 1. The power series in (4)
therefore converges with radius of convergence R, where R > 1. The larger R,
the quicker the an decay to zero, which follows from the Cauchy estimates [5,
p. 52]

|an| ≤
M(r)

rn
, n = 0, 1, 2, . . . (6)

Here M(r) is the maximum of |2bF (z)/(1 − w)| on the circle |w| = r, with
r < R.

Example: Consider the case f(t) = sin t, F (z) = 1/(z2 + 1), and choose
parameters σ = b = 1

2 . For these choices the expansion coefficients are known
explicitly, namely [16, p. 42]

an = 2−(n+1)/2 cos
(π

4
(n+ 1)

)
, n = 0, 1, 2, . . . (7)

On the other hand, the exponential behaviour an = O(2−n/2) could have been
predicted from the estimates (6) and the fact that the poles of F (z) are at
z = ±i. This corresponds to w = 1 ± i, and the circle that passes through
these two points is |w| = R, with R =

√
2.

In summary, the convergence of the series (3)–(4) therefore hinges on
whether the convex hull of all singularities of F (z) can be covered by a circle
in the z-plane. If so, the an will decay to zero at the geometric rate determined
by (6). The smaller the circle in the z-plane, the larger the circle in the w-
plane, which means a more rapid geometric convergence rate. Optimal choices
of σ and b will maximize the radius of the critical circle in the w-plane. When
the convex hull of singularities of F (z) cannot be covered by a circle, however,
the rate of convergence switches from geometric to algebraic or worse, in which
case these series are no longer attractive from a computational point of view.
One example in this class is F (z) = 1/

√
z, which corresponds to the singular

f(t) = 1/
√
πt.

The use of these expansions for computing the forward transform is the
main novelty of this paper. We assume that f(t) is a known function defined
on [0,∞). The first step is to choose suitable parameters σ and b and then to
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compute the an from (3). Probably the most straightforward way to do this
is to use the orthogonality properties of the Laguerre functions to obtain

an =

∫ ∞
0

e−
1
2 t(1+σ/b)f

(
t/(2b)

)
Ln(t) dt, n = 0, 1, 2, . . . (8)

These integrals can be evaluated by quadrature, and the Gauss-Laguerre rule
seems a natural candidate. (A code is included in the appendix.) For an alter-
native way of computing Laguerre coefficients, which may also be of use when
f(t) is known only through sampled values, see [27].

Once the an are available, the right-hand side of (4) can be evaluated by
direct summation. One cannot expect accuracy in the entire z-plane, how-
ever, only in the region away from the singularities of F (z) (corresponding to
|w| < R). Relatedly, the pole at z = σ − b of (5) should not be a concern for
computations. Values of z near this point correspond to values of w outside
the region of convergence.

To improve the region of accuracy of (4), one could sum the series not
directly but with Padé summation. Here it means that if 2M + 1 terms in
the power series (4) is retained, it is converted to a type (M,M) rational
Padé approximant of the series, which is then evaluated. This is a well-known
technique for summing power series beyond their radius of convergence. Not
only does this give better approximation near the singularities of F (z), but it
also improves accuracy elsewhere. The numerical results of section 3 will show
the effectiveness of Padé summation in the current situation.

Going in the other direction, the use of (3)–(4) for the inversion problem
is the well-established method of Weeks [15,20,29]. Here it is assumed that
F (z) on the left of (4) is available and can be evaluated on the unit circle in
the w-plane. In this case the expansion coefficients an can be computed by a
discrete Fourier transform (computed directly by Weeks, and by an FFT by
later practitioners). This then defines the original function f(t) via (3).

A final word about selecting the parameters σ and b. For the inversion
problem, i.e., when F (z) is available, algorithms for computing optimal values
of these parameters were suggested in [30]. For the forward problem, however,
F (z) is not known and these algorithms do not apply. One could use trial-and-
error in order to maximize the decay rate of the an (as computed by (8)) over
a range of n, but in the examples below the singularity structure of the F (z)
is such that we could get good results with the generic choice σ = b = 1.

2.2 Contour deformation

It is unclear whether methods for the forward transform can benefit from the
ideas of this section, so we discuss only the inversion problem here.

Butcher [4] was the first to suggest that judicious deformation of the con-
tour in (2) could lead to efficient methods for Laplace transform inversion.
Specifically, the contour should be of Hankel type, i.e., starting at infinity
in the third quadrant and ending at infinity in the second quadrant while
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avoiding all singularities of the transform; see Fig. 1. It is also assumed that
|F (z)| → 0 uniformly in Re z ≤ σ as |z| → ∞ (which disqualifies transforms
like F (z) = e−z, f(t) = δ(t− 1).)

Fig. 1 Contour deformation for the computation of (2). The Bromwich line B is deformed
into the Hankel contour H to force rapid decay of the integrand in the left half-plane. No
crossing of singularities such as poles (dots) or branch cuts (dashes) is allowed.

If the Hankel contour is parameterized by z = z(φ), −∞ < φ < ∞, then
the integral (2) transforms into

f(t) =
1

2πi

∫ ∞
−∞

ez(φ)tF (z(φ))z′(φ) dφ. (9)

The power of the deformation technique should now be apparent: the integrand
of (9) is a rapidly decaying function and hence suitable for efficient approxi-
mation by the truncated trapezoidal or midpoint quadrature rules [28].

Butcher suggested a parabola as the simplest type of contour. Later, Tal-
bot [26] came up with essentially the same idea, except for a different type of
contour defined in terms of the cotangent function. For the results reported in
this paper we shall use a parabola, taken in the form used in [32], namely

z = µ
(
iφ+ 1)2. (10)

Here µ is a positive constant. The contour intersects the real axis at z = µ
and the imaginary axis at z = ±2µi.

The integral (9) is approximated by a midpoint sum with step size h, and
then truncated to 2J terms, symmetrically placed around φ = 0. (We use the
terms midpoint sum and trapezoidal sum interchangeably as these two rules
are equally accurate in the current situation.) By using up-down symmetry
it means a sum of length J has to be evaluated; see [32]. The question is,
for a given J , what are good choices for µ and the step size h? By balancing
the various errors in the trapezoidal/midpoint rule, optimal values for these
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parameters can be found for the contour (10) in the case where all singularities
of the transform F (z) lie on the negative real axis [32]. These values are

h =
3

J
, µ =

πJ

12 t
, (11)

and the associated rate of convergence is geometric, namely of the formO(e−2πJ/3).
Other types of contours, including Talbot’s, can give slightly faster rates

but the optimal parameters are not explicitly computable as in (11) [9]. Even
when the singularities are not restricted to the real axis the choice (11) can
give good results even if not perfectly optimal. Below, we shall just use (11)
without regard to the particular singularity structure of F (z), which is often
unknown anyway. This is especially true in the situation of this paper where
F (z) is available only in numerical form.

Depending on the singularity structure of F (z), the convergence rate of
the Weeks method can be faster or slower than the rate achieved by contour
deformation. However, for a transform such as F (z) = 1/

√
z, with branch cut

defined along the entire negative real axis, the convergence rate of Weeks will
no longer be geometric as explained in section 2.1. By contrast, the contour
deformation method will invert this with the geometric rate cited below (11).

It should be noted that the optimal contour (10)–(11) depends on the value
of t. This means that a new contour is used for every new t, and transform
evaluations cannot be re-used. In the Weeks case the Laguerre expansion (3)
can be evaluated for new values of t without additional cost. This should
be taken into account if the transform F (z) is expensive to compute. (One
example is the problem of section 3.3 below, where a large linear system has
to be solved in order to compute F (z) at each midpoint node.)

In terms of simplicity and generality the method described in this section is
currently among the top Laplace inversion techniques, and therefore we shall
use it for most of our computations in section 3. It is not always guaranteed
to be effective, however, particularly when the transform to be inverted has
singularities that extend far from the real axis. This will not be the case in
our examples, but if the situation occurs different inversion techniques should
be considered.

2.3 Exponential sums

Laplace transform methods in many areas of engineering (particularly control
theory [1]) are based on exponential sums of the form

f(t) =

M∑
n=1

αne
λnt (12)

with

F (z) =

M∑
n=1

αn
z − λn

. (13)
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For the forward transform, the coefficients (αn, λn) can be computed from (12)
by any of the methods descended from the original (unstable) de Prony’s
method (such as the matrix pencil method, ESPRIT, ESPIRA, MUSIC, etc.
[2,3,7,22,23]). These methods differ in details, but they all sample the function
f(t) on some interval [0, T ] specified by the user. The significant frequencies
λn are then obtained by an SVD or similar, upon which the corresponding am-
plitudes αn are found by solving (12) as an overdetermined system. In some
variations the number of terms, M , on the right of (12) is prescribed, and in
others a target accuracy. In all cases M is much smaller than the number of
samples of f(t).

Once the (αn, λn) are available, the forward transform (13) can then be
evaluated anywhere in the complex plane where the inversion algorithm re-
quires it, excluding at the poles. This procedure was suggested in [24] for
dealing with differential equations with inhomogeneous terms.

Inversion methods based on (12)–(13) compute the coefficients (αn, λn)
from (13) by using, for example, Padé approximation [19, sect. 16.4] or best
approximation [18]. The original function can then be approximated via (12).
We shall not use this inversion technique in our comparisons of section 4,
however. Instead, in order to use the same inversion method for all forward
transform methods, we shall use the contour deformation technique of sec-
tion 2.2.

3 Three Illustrative Examples

Since we consider the Weeks method for computing the forward transform as a
novelty of the present paper, we start with a demonstration of its capabilities.
Comparisons with the exponential sum method will follow in the next section.

3.1 A nonlinear integral equation

This is a text book example, taken from [25, p. 126]:

u(t)−
∫ t

0

u(s)u(t− s) ds = f(t), 0 ≤ t <∞. (14)

Let U(z) and F (z) denote the Laplace transforms of u(t) and f(t), respectively.
By taking Laplace transforms of the equation and using the convolution the-
orem and quadratic formula one finds that

U(z) =
1

2

(
1±

√
1− 4F (z)

)
. (15)

With f(t) = 1
2 sin 2t, i.e., F (z) = 1/(z2 + 4), and by taking the minus sign one

obtains

U(z) =
1

2

(√z2 + 4− z√
z2 + 4

)
. (16)
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Inversion by table look-up produces a solution in terms of Bessel functions,
namely u(t) = J1(2t). (The other branch of the square root gives a singular
solution.) The forcing function f(t) and response u(t) are shown in Fig. 2.

Fig. 2 Solution to the integral equation (14) on the interval [0, 10]. The forcing function f
is shown in blue and the solution u in red.

In order to demonstrate the accuracy of the Weeks approach, the exact
forward transform formula F (z) = 1/(z2 + 4) is disregarded and instead F (z)
is approximated by the method of section 2.1. The first step is to compute
the Laguerre coefficients in (3), which is done here by approximating the inte-
gral (8) by Gauss-Laguerre quadrature. If N is the number of terms retained
in (3), then we use 2N -point quadrature to allow for oversampling. Parame-
ters were taken as σ = b = 1, for which the exact coefficients can be deduced
from the example below (6). (We have used this information as an accuracy
check only, the coefficients that were used in the results below were computed
numerically.) Once the coefficients are available, the transform F (z) can be
computed for any z by summation of (4), which then gives the value of the
transform U(z) via (15). At this point one can proceed with the inverse trans-
form. The new expansion coefficients, say a′n, can be computed by an FFT
from (4) (with U(z) on the left). The final solution u(t) can then be computed
by inserting the coefficients a′n into (3).

In Fig. 3 the errors, defined by

Error = max
0≤t≤T

|u(t)− uLT (t)|, (17)

are shown as a function N , the number of terms in the expansions (3)–(4). Here
u(t) and uLT (t) are the exact and numerical solutions, respectively. Evidently
the convergence rate is geometric, more specifically of the form O(2−N/2),
which is directly related to the decay rate of the expansion coefficients; cf. (7).
The implied constant in this convergence rate grows exponentially with T ,
however, so this method is probably only practical on relatively short t inter-
vals.

In the computation of Fig. 3, direct summation was used in (4). Padé
summation offered no improvement, because the errors were dominated by
the inverse transform rather than the forward.

The choice σ = b = 1 was a generic one. By varying one or both these
parameters faster convergence can be achieved. For example, by keeping σ = 1
but allowing b to vary, one could use the methods of [15,30] to show that
b =
√

5 is optimal. (The calculations assumes knowledge of the fact that the
singularities of the transform are branch points located at z = ±2i.) With this
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Fig. 3 Numerical results for the integral equation (14), with f(t) = 1
2

sin 2t. Shown are
sup-norm errors (17) on intervals of various lengths as a function of the number of terms in
the series (3)–(4).

parameter choice the convergence rate improves from O(2−N/2) ≈ O(0.71N )
to O(ϕ−N ) ≈ O(0.62N ), where ϕ is the golden ratio.

Although the results of Fig. 3 are encouraging, it should be emphasized that
this example is particularly well suited to using Weeks inversion. The reason
becomes clear if one looks at the transform (16), the approximate version of
which that gets inverted. This transform has singularities at z = ±2i, and
they can be connected by a short branch-cut. This is the favourable situation
in which Weeks inversion converges geometrically, as described below (4). The
examples of the next two sections involve transforms that are more challenging
to Weeks inversion and therefore require a different method.

3.2 A fractional differential equation

The Bagley-Torvik equation is a well-known model problem in the field of frac-
tional differential equations [8,21]. It represents a driven harmonic oscillator
with fractional damping

u′′(t) + u(ν)(t) + u(t) = f(t), (18)

where u(ν) represents a fractional derivative in the sense of Caputo. With initial
conditions u(0) = u′(0) = 0, Laplace transformation produces the transform

U(z) =
F (z)

z2 + zν + 1
. (19)

From a numerical perspective the difference between the ordinary and frac-
tional differential equation lies in the following fact. In the ordinary case the
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denominator of the transform defines pole singularities, while in the fractional
case there is a branch point (ν integer vs noninteger).

With f(t) = J0(2t), i.e., F (z) = 1/
√
z2 + 4, numerical inversion of the

transform (19) produced the solution graphs shown in Fig. 4. (The exact so-
lution can, in fact, be expressed as an infinite sum involving Mittag-Leffler
functions [8, p. 184].)

0 2 4 6 8 10
-0.5

-0.25

0

0.25

0.5

Fig. 4 Solutions to the Bagley-Torvik equation (18), with f(t) = J0(2t), ν = 1
2
, 1, 3

2
, and

initial conditions u(0) = u′(0) = 0.

For the numerical computations below, we have not used the exact trans-
form F (z) = 1/

√
z2 + 4 like we did in Fig. 4 but instead computed it by

the forward Weeks method described in section 2.1. The results are shown in
Fig. 5.

The error curve A corresponds to using the Weeks method for both the
forward and the inverse transform. Unlike the error curves in Fig. 3, which were
computed by the same method, the convergence rate is no longer geometric but
has deteriorated into a slow algebraic rate. The reason for this is clear from the
transform (19). When ν is noninteger (here ν = 1

2 ), the transform has a branch
point at z = 0, with a branch cut along the entire negative real axis (in our
implementation of the transform). This causes the Weeks inversion method to
converge slowly. Switching from direct summation to Padé summation in (4)
does not help because the dominant contribution to the overall error comes
from the inverse.

By contrast, the error curves B and C show geometric convergence. For
both of these the inverse was computed not with the Weeks method but with
contour deformation, the convergence of which is not adversely affected by a
branch cut on the entire negative real axis. (To be specific, we used the method
based on the contour (10), with parameters (11), and 60 terms in the midpoint
sum.)
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Fig. 5 Numerical results for the Bagley-Torvik equation (18), with f(t) = J0(2t), u(0) =
u′(0) = 0, and ν = 1

2
. Shown are sup-norm errors defined by (17), with T = 10, as a function

of the number of terms in the series (3)–(4). In all cases the forward transform was com-
puted by the Weeks method with parameters σ = b = 1. Both direct summation and Padé
summation was used in (4). The inverse was computed by (A) the Weeks inversion method,
(B) contour deformation (direct summation), (C) contour deformation (Padé summation).
Further details on (A)–(C) are given in the text.

The difference between error curves B and C is caused by us having used
direct summation in (4) for B, and Padé summation in C. Evidently the dom-
inant contribution to the overall error here comes from the forward transform,
not the inverse. The superiority of Padé summation is clear.

3.3 A partial differential equation

Consider the heat equation

ut = uxx, 0 < x < 1, t > 0 (20)

with initial and boundary conditions

u(x, 0) = 0, u(0, t) = f(t), u(1, t) = 0. (21)

A standard way of dealing with such an inhomogeneous boundary condition
is to define a new function

v = u+ f(t)(x− 1). (22)

This leads to the new problem

vt = vxx + f ′(t)(x− 1), 0 < x < 1, t > 0,
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subject to

v(x, 0) = f(0)(x− 1), v(0, t) = 0, v(1, t) = 0.

We shall use Laplace transforms to deal with the time variable. Discretization
of the space variable is by the Chebyhev pseudospectral method, which leads
to the system of ordinary differential equations

vt = D2v + f ′(t)(x− 1), (23)

with initial condition
v(0) = f(0)(x− 1). (24)

Here x is the vector of nodes, the Chebyshev points of the second kind scaled to
[0, 1]. The v is the vector of function values corresponding to these nodes, and 1
is a vector of ones, of the same size as x. D2 is the second derivative Chebyshev
matrix with the homogeneous boundary conditions on v enforced [31].

The semi-discrete system (23) can be solved by any standard ODE solver
(the so-called method-of-lines). Indeed, we shall use this as reference solution to
test the Laplace based solution method. For this purpose we used MATLAB’s
stiff-solver ode15s, with error tolerances set to 10−12.

Taking the Laplace transform of (23) and making use of the fact that the
Laplace transform of f ′(t) is zF (z)− f(0), one gets

(zI −D2)V (z) = zF (z)(x− 1). (25)

If F (z) can be computed at the values of z required by the inversion scheme,
this linear system can then be solved for the corresponding value of V (z).
In this way v can be computed and hence the solution to (20)–(21) can be
recovered via (22).

Consider as test case a function with a known transform, namely

f(t) =
1

1 + t
, F (z) = ezE1(z), (26)

where E1 is the exponential integral defined by [10, eq. (6.2.1)]. This trans-
form has a branch point at the origin, and is defined with branch cut along
the entire negative real axis. This means that the Weeks method for inversion
is bound to converge slowly and we have not considered it. Instead, the con-
tour deformation method based on (9)–(11) should be tailor made since the
transform is analytic everywhere off the branch cut. Because of this, we could
get away with as few as 12 nodes in the midpoint sum when t = 1. The errors
for this example are shown in Fig. 6.

We ignored the availability of the explicit formula for F (z) and instead
computed it by the Weeks method (4). The coefficients, an, were computed
from (8), with parameters σ = b = 1. The errors are shown as a function of the
number of terms, N , in the series (4). We have used both direct summation
and Padé summation to evaluate this series, with the Padé method yielding
distinctly superior results.
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The error norm in Fig. 6 is defined as follows. If vSD(t) is the solution to
the semi-discrete system (23) and vLT (t) the solution obtained by inverting
V (z) defined by (25), then

Error = ‖vSD(t)− vLT (t)‖∞. (27)

The solution vSD(t) was computed by ode15s as mentioned above. For the
space discretization 100 Chebyshev points were used, which is more than suf-
ficient to guarantee that spatial errors are subdominant to temporal errors.
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Fig. 6 Numerical results for the heat equation (20)–(21), with f(t) = 1/(t+1). In (a) t = 1
and in (b) t = 10. Shown is the error defined by (27) as a function of N , the number of terms
used in the series (4). Direct and Padé summation of this series corresponds, respectively,
to curves A and B. J is the number of nodes in the midpoint sum for the inversion; cf. (11).

Regarding the convergence rate observed in Fig. 6, it seems to be sub-
geometric in (a). (In (b) it is harder to say). By contrast, the straight line
convergence curves in Figs. 3 and 5 implied geometric convergence. In the lat-
ter two test cases the forcing functions f(t) were entire functions (sine and
Bessel), whereas the function of Fig. 6 has a singularity at t = −1. This causes
the decay of the coefficients an to turn from exponential decay (cf. (7), for ex-
ample) to root-exponential O(e−c

√
n). (An empirical fit yielded c ≈ 2.9 for this

example. The exact value of c can probably be obtained from [13, example 1],
but we have not pursued it.) The convergence curves in Fig. 6(a) reflect this
subgeometric trend. Estimates of the rate of decay of Laguerre coefficients in
various function classes are derived in [13,33].

A question that may be raised is why use Laplace transforms if an ODE
solver is all that is required? The attractive feature of the Laplace transform
is that if the solution is required only at a particular value, say t = T , the
method can compute it directly. By contrast, the ODE solver steps through
the entire interval [0, T ]. For example, to compute the reference solutions of
Fig. 6 to the accuracy desired here, the solver ode15s executed over 400 LU
decompositions in each case. By contrast, the Laplace method required only
12 in Fig. 6(a), one for each node in the midpoint sum (with further improve-
ments possible if a Hessenberg decomposition is considered rather than an
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LU [17].) (In Fig. 6(b) we had to increase the number of nodes to 48 when
direct summation is used, as will be explained below.) Moreover, the linear
solves (25) can be done in parallel, which would be a major advantage when
going from the one dimensional heat equation to two dimensions or higher.
To be fair, the Laplace transform technique is only applicable to linear ODEs
with constant coefficients, while methods based on ODE solvers impose no
such restrictions.

The aim of the final figure of this section, Fig. 7, is to shed some light on
the results shown in Fig. 6. The figure shows contour plots of the error in the
computed transform F (z) in a square in the complex plane (this time making
use of the exact formula F (z) = ezE1(z) to be able to compute errors). Super-
imposed on that plot are the actual contour and quadrature nodes used in the
inversion formula in the case t = 1. Padé summation yields an improvement
over direct summation that is quantitatively in agreement with the improve-
ment in accuracy observed in Fig. 6. Also, by increasing the value of t from 1 to
10, the contour of integrations moves closer to the origin; cf. (11). In Fig. 7(a)
the contour then passes close to the high error area (yellow), and the method
diverges. Therefore, the value of J had to be increased from J = 12 to J = 48
to obtain the results of Fig. 6(b). No such increase was necessary with Padé
summation.
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Fig. 7 Contour plot of absolute errors (log base-10) in the computation of the transform
F (z) defined by (26). The series (4) with N = 23 terms was summed directly in (a) and
with Padé summation in (b). In each figure the white curve is the contour (10) and the
white dots the corresponding midpoint nodes, for the case J = 12. In both (a) and (b) the
contours pass through the high accuracy areas just to the right of the origin (dark blue),
which corresponds to terms that make the biggest contribution to the integral. This feature
contributes to the success of these methods. Looking also at the errors along the length of
the contour into the left half-plane, one sees that the contour traverses regions where the
errors in (b) are about 4 to 5 orders of magnitude smaller than in (a). This accounts for the
difference in accuracy observed at N = 23 in Fig. 6.

We now turn to comparisons of the Weeks method and the method of
exponential sums for computing F (z) in the complex plane.
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4 Errors in the complex plane

Ideally, one would like to compare the Weeks and exponential sum methods on
model problems such as those solved in section 3. A fair comparison is no simple
task, however. First, there is a multitude of methods available for computing
the parameters in the exponential sum; recall the list in section 2.3. We have
implemented here just one of these, namely the algorithm described in [2,
3]. Second, the exponential sum methods come from a different background
than the Weeks method, namely, signal processing vs approximation theory.
In practice the difference is that in the exponential sum methods the user
specifies a sampling interval and an accuracy tolerance (or the number of
terms in the sum), while in the Weeks method scaling parameters (b and σ)
are specified. Third, the combination with an inversion method complicates
things further. A good inversion method for Weeks may not be optimal for
exponential sums and vice versa. Fourth, the computational complexities of the
two methods are quite different. The Weeks method requires the computation
of the quadratures (8) and, if Padé summation is used, the equivalent of solving
a linear system. The various methods for computing exponential sums typically
require an SVD or similar plus a least-squares solver, as explained below (13).

We shall therefore remove the complications of computational cost and
inversion techniques completely from the comparisons, and simply look at
errors in the forward transform in the display format of Fig. 7. To make the
comparisons somewhat meaningful, we decided on the following rules:

(a) All functions f(t) are sampled at precisely 102 values. For the Weeks
method this means the series (3) has 51 terms, in order to allow a fac-
tor of two oversampling in the quadratures of (8). The Padé summation of
(4) is therefore based on a type (25, 25) approximant.

(b) For the parameter choices we used the generic σ = b = 1 in the Weeks
method. For the exponential sum method f(t) was sampled at equidis-
tant points on [0, 1] and the tolerance parameter was set to 10−12 in the
algorithm of [2,3].

As test problems we considered the following, in decreasing order of regu-
larity of f(t). In the first, f(t) is an entire function, in the second it is analytic
everywhere except for a singularity on the negative t-axis, and in the third
f(t) has a singularity at the origin.

Test 1: f(t) = J0(t), F (z) = 1/
√
z2 + 1 (branch cut between z = ±i)

Test 2: f(t) = 1/(t+ 1), F (z) = ezE1(z) (branch cut on negative real axis)

Test 3: f(t) = sin(
√
t), F (z) = 1

2

√
πe−1/(4z)/z

3
2 (essential singularity at the origin

and branch cut on negative real axis)

The results of Figs. 8–10 should merely give an indication of the accuracy
that can be achieved by these methods with rather generic parameter choices.
Although the results do not appear to be super sensitive to changes in these
parameters, smaller errors can no doubt be achieved with more careful tuning.
For this reason one should resist drawing too many conclusions regarding the
superiority of one method over the other just based on these plots.
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Fig. 8 Contour plot of absolute errors (log base-10) in the computation of the transform
F (z) defined by Test 1. In (a) the Weeks method (with Padé summation) was used and in
(b) an exponential sum. Parameters are defined in the text.

Fig. 9 Same as Fig. 8 but for Test 2.

Moreover, as mentioned above the difference in computational cost is not
reflected in these results. To compute the coefficients, the Weeks method is
cheaper than the method of exponential sums, as outlined in the first para-
graph of this section. Once the coefficients of the exponential sum are available,
however, the approximate formula for F (z) defined by the right side of (13) is
cheaper to evaluate than (4). The reason for this is that even if the number
of samples of f(t) on the left of (12) is large, the effective number of terms
on the right can be relatively small. (For example, the results of Figs. 8–10 all
sampled the function at 102 values, but the exponential sums generated were
respectively of lengths 5, 6, and 13.) This advantage is not a deciding factor,
however, as the computational cost of computing the forward transform dom-
inates that of the inverse (when the latter is based on efficient methods such
those discussed in section 2.2).

As remarked in the caption of Fig. 7, the Weeks-Padé method seems ex-
cellent for approximating near and to the right of the singularities of the
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Fig. 10 Same as Fig. 8 but for Test 3. (Note that the colour scale in this plot is different
from that in Figs. 8–9.)

transform. If the inversion scheme samples the transform in those areas high
accuracy can result. Fig. 11 shows the results when the forward transform as
computed in Fig. 8 is inverted by the method described in section 2.2. With
the parameter values chosen as in (11) with J = 20, the contours are indeed
located in the good regions for the Weeks-Padé method. For example, for
t = 1 the contour crosses the real axis at x = 20π/12 ≈ 5.2 and the imaginary
axis at y = ±10.4. Consequently the contour passes through regions where
the accuracy is near machine precision, and this is reflected in the results of
Fig. 11.
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Fig. 11 Absolute errors when the forward transform of f(t) = J0(t) is computed and the
result then inverted to return to f(t). The inversion is by the contour deformation method of
section 2.2. In (a) the Weeks-Padé method was used to compute the forward transform and
in (b) exponential sums. Because the inversion method samples the transforms in regions
where the Weeks-Padé errors are smaller (cf. Fig. 8), higher accuracy of about two orders
of magnitude is achieved.
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5 Conclusions

This paper focused on the computation in the complex plane of the forward
Laplace transform formula (1). The novel method proposed here is based on
the Weeks method, a well-known method for computing the inverse but re-
versed here for computing the forward transform. Previously suggested meth-
ods for the forward problem based on exponential sums are also considered,
here with attention to techniques developed relatively recently for computing
the coefficients in such expansions.

For reasons outlined in the first paragraph of section 4 a head-to-head,
quantitative comparison of the Weeks and exponential sum methods is no
simple task. On a qualitative level, however, a few comparisons can be made.
Regarding the theory, there seems to be very few convergence results for expo-
nential sums of the form (12). By contrast, convergence in the Weeks method
depends on the decay of the expansion coefficients in (3), for which there
exist plentiful results in the literature; see [13,33] for example. Such infor-
mation should give an a priori indication of the possible success or failure of
the method, something that does not seem to exist for exponential sums. Re-
garding practical issues, the coefficients in the Weeks method is cheaper to
compute. The main work comes from the computation of (8) by quadrature.
Assuming the nodes and weights of the rule have been pre-computed, this is
equivalent to a matrix vector multiplication (see the code in the appendix). If
Padé summation is used for accuracy enhancement, the equivalent of solving
a linear system (of half size) has to be added to that cost. By contrast, the
methods based on exponential sums typically compute an SVD followed by the
solution of an overdetermined linear system of Vandermonde type. Regarding
numerical stability, methods based on exponential sums are notoriously unsta-
ble, although the method implemented here [2,3] seems to have overcome that
issue largely. Experiments such as those of sections 3 and 4 have not revealed
any similar instability issues in the Weeks method.

Because we wished to illustrate the concept of the Weeks method for a
fully numerical Laplace transform approach, the examples presented here were
nontrivial but of academic type. In all cases but one, the functions f(t) were
analytic in a wide region about [0,∞), which meant rapidly decaying expansion
coefficients an and hence fast convergence. When faced with more challenging
problems, such as Test 3 in section 4 or more complicated cases, it is unclear
whether this method (or the method of exponential sums, for that matter)
will be up to the challenge. The development of new methods that can handle
such difficult cases seems like a fruitful area for future research.
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A Appendix: MATLAB code for computing Laguerre coefficients

The following code computes the expansion coefficients (8). It uses Gauss-Laguerre quadra-
ture, the computation of which is done here by a function from Chebfun [11]. The Laguerre
polynomials are computed by the well-known three-term recursion [10, sect. 18.9], which is
stable in the forward direction. For large n the improved methods of [14] should be consid-
ered.

function an = LaguerreCoefficients(f,sigma,b,N,M)

% Function to compute the first N Laguerre coefficients

% of the function f. M-point Gauss-Laguerre quadrature is used,

% where M > N (oversampling). M = 2*N should be sufficient in

% many cases.

% First, compute Gauss-Laguerre nodes and weights. Here Chebfun is used,

% but any equivalent function can be substituted.

[x,w] = lagpts(M);

% Compute the Laguerre polynomials by 3-term recursion.

L0 = ones(size(x)); L1 = 1-x;

L = [L0 L1];

for k = 1:N-2

L2 = 1/(k+1)*(2*k+1-x).*L1-k/(k+1)*L0;

L = [L L2];

L0 = L1; L1 = L2;

end

% Define the integrand

ff = @(x) exp(x*(b-sigma)/(2*b)).*f(x/(2*b));

% Compute the integrals

an = L’*(ff(x).*w’);

end
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