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Abstract

The Korteweg-de Vries (KdV) equation is extensively studied in the field of nonlinear waves, with
one key tool for this being fast and accurate numerical algorithms. Finite difference (FD) and
pseudo-spectral (PS) methods are commonly used. We discuss here the pros and cons in this
application area for a new class of Hermite-based finite difference (HFD) methods. Their most
notable characteristic is to remain more ‘local’ than FD approximations for increasing orders of
accuracy, translating into smaller error constants.
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1. Introduction

Finite difference stencils gain accuracy orders in proportion to their stencil widths. Pseudo-spectral
(PS) methods can be seen as the infinite order FD limit, or alternatively, as obtaining derivative
approximation through trigonometric interpolation [4]. Although highly accurate, this limit comes
with some disadvantages that include: (i) approximations to physically ‘local’ operators becoming
global, (ii) difficulties implementing non-periodic boundary conditions, and (iii) limited options for
local refinement.

Hermite-based FD (HFD) formulas can have about half as wide stencils as FD approximations for
the same order of accuracy and, for the same order, feature significantly lower error constants.
HFD approximations go a long way towards meeting the concerns (i) - (iii) listed above. The goal
of this paper is to clarify the strengths and possible weaknesses of this HFD approach when applied
to the KdV equation. Although a potential benefit of more compact stencils could be the handling
of boundary conditions, this study is entirely focused on the initial value problem.

‘Hermite interpolation’ - using both function and derivative values at node points - has a long
history, going back at least to Hermite in 1878 [9]. ‘Hermite-based’ finite difference (HFD) formulas
are of more recent origin. After Salzer described an algorithm to obtain HFD weights in 1960 [12],
only few efforts were made to use these for numerical solutions of PDEs. Most notable were
certain non-oscillatory (HWENO) methods [11], which also consider the system created by the
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governing PDE and its space derivative. While WENO methods are primarily used as limiters for
non-smooth solutions, HFD is designed to be used for several times differentiable solutions. HFD
concepts have also been used previously in different time independent settings, such as for ODE
two-point boundary value problems [7], for PDEs in mathematical finance [10], and together with
radial basis functions [13, 14].

The Hermite methods introduced in [8] are for time dependent PDEs, but are of quite different
character than HFD approximations. Typically, these methods use very narrow stencils, include
very high derivative orders, and are then usually evolved in time using a Taylor expansion-based
evolution operator.

Our present effort originates from the recent HFD weights algorithm described in [5]. Straightfor-
ward application of HFD for spatial derivatives in combination with standard ‘Method-of-Lines’
(MOL) time stepping was in this reference tested only in some constant coefficient linear convection
cases. In this present study, we extend this in several directions:

i Applications of HFD to the Korteweg-de Vries (KdV) equation. This equation is strongly
nonlinear, and of significant interest,

ii Providing accuracy comparisons against matching order FD approximations (using both linear
points per wavelength (PPW) and non-linear (side-band growth) comparison measures),

iii Time stepping stability constraints and memory costs when using explicit time stepping meth-
ods.

However, in order to keep the present study reasonably short and focused, we need to leave certain
aspects for follow-up investigations. These include:

iv HFD implementation of boundary conditions in time dependent settings,

v Opportunities for local noe refinement (HFD vs. FD),

vi Stability conditions in case of implicit rather than (as here, in the more demanding case of)
explicit time stepping.

As will be explained later in this study, present indications are that the HFD approach will prove
highly attractive (compared to regular FD) also in these three aspects.

The remainder of this paper is organized as follows. In Section 2, the general procedure of generating
and applying HFD stencils to the KdV equation is discussed. This is followed by discussion of
accuracy, stability, linearized dispersion, and points-per-wavelength. In Section 3, we describe some
KdV test problems and compare results against standard FD stencils. Section 4 contains closing
remarks followed by the appendix that includes tables for stencil weights and other information to
reproduce the results of this paper1.

1The numerical calculations were performed in MATLAB together with the Advanpix extended precision package
[3].
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2. Description of procedure

This section explains the procedure of using Hermite-based finite difference stencils in the context
of numerically solving the KdV equation.

2.1. Stencil calculation

Given a spatial differential operator L = ∂p

∂xp , the idea is to find a set of finite difference weights
acting on function and derivative values to approximate L. The approximation will take the form

Lu
∣∣
x=xc

≈
M∑
m=0

n∑
i=1

wi,mu
(m)
i (1)

where n is the stencil size and M < p is the highest derivative of u to include. For example, the
M = 1 case will include function and first derivative values

Lu
∣∣
x=xc

≈
n∑
i=1

wi,0ui +
n∑
i=1

wi,1
dui
dx

(2)

Finite difference stencils with M > 0 have beneficial characteristics over their M = 0 counterparts
when solving partial difference equations, as noted in [5] and discussed further in this paper. Since
HFD stencils are based on Hermite interpolation, one benefit is that they are less prone to spurious
oscillations introduced by Lagrange interpolation on equidistant node sets [2]. The calculation of
the weights wi,m can be done via a Vandermonde system or, in the M = 0 and M = 1 cases, by

the algorithm in [5]. For example, the centered 3-node wide M = 1 stencil approximating ∂3

∂x3
and

∂4

∂x4
for use in the KdV equation are

d3f
dx3

∣∣
x=xc

=
[
−15

2 0 15
2

] f
h3

+
[
−3

2 − 12 − 3
2

] f ′
h2

+O
(
h4
)

d4f
dx4

∣∣
x=xc

= [−12 24 − 12] f
h4

+ [−6 0 6] f
′

h3
+O

(
h2
) (3)

Here, xc is the center point of the stencil on a grid with spacing h. In the context of this paper the
same stencil width (s.w.) will be used when approximating both the third and fourth derivatives
with HFD. We introduce the notation HFD4/2 to indicate that the third and fourth derivative are
fourth and second order accurate respectively. A table of weights for some different derivatives and
accuracy orders is given in the Appendix.

2.2. System derivation

In order to apply HFD stencils to PDEs, one typically needs to differentiate the governing PDE in
space. To be specific, we consider here the KdV equation in the form,

ut(x, t) + uxxx(x, t) + 6

(
u(x, t)2

2

)
x

= 0 (4)

In a similar approach to the cases described in [5], this equation is differentiated in space once

utx = −uxxxx − 6

(
u2

2

)
xx
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By letting v = ux, the system to solve becomes[
u
v

]
t

=

[
−uxxx − 6uv

−uxxxx − 6
(
u2

2

)
xx

]
(5)

Separating the linear and nonlinear terms and considering u and v as column vectors, the semi-
discrete system for use with M = 1 HFD stencils becomes[

u
v

]
t

= −
[
wxxx,0 wxxx,1
wxxxx,0 wxxxx,1

] [
u
v

]
− 6

[
uv(
u2

2

)
xx

]
, (6)

where the blocks wk,i denote the differentiation matrices approximating the corresponding derivative

k using equation (2). The
(
u2

2

)
xx

term is implemented as(
u2

2

)
xx

=
[
wxx,0 wxx,1

] [u2
2
uv

]
.

Further differentiating the system allows for higher derivatives M > 1 to be included in each HFD
stencil.

2.3. Discussion of accuracy and stability

In this section we look at the order of convergence of using HFD stencils of the form (1) to
approximate the right hand side (RHS) of (6) on the single soliton solution of (4)

u1(x, t) =
c

2
sech2

(√
c

2
(x− ct− a)

)
(7)
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Figure 1: The max error of −uxxx − 6
(

u2

2

)
x

using similar order FD and M = 1 HFD stencils applied to an initial

soliton in double precision (dotted lines) and extended precision (solid lines) displayed on different vertical scales.
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Figure 2: The max error of −uxxxx−6
(

u2

2

)
xx

in the same case as in Figure 1 using HFD for double precision (dotted

lines) and extended precision (solid lines).

Figure 1 shows the convergence rates of the centered three, five, and seven point wide M = 1
HFD stencils in comparison to corresponding order FD stencils when acting on the soliton (7) at
t = 0 with c = 1 and a = 0 on the domain x ∈ [−25π, 25π]. The error is the largest difference

in −uxxx − 6
(
u2

2

)
x

compared to an exact evaluation. Figure 2 illustrates the convergence of the

HFD stencils on −uxxxx−6
(
u2

2

)
xx

from (6). Each error curve is shown with calculations in double

precision (dotted line) and extended precision (solid line). The order of convergence for HFD jumps
by four by increasing the stencil size by two. Heuristically, this is due to including four new degrees
of freedom.

The dashed lines representing double precision rise to the right in Figure 1 (and similarly Figure 2).
This is inevitable for any accurate approximations of uxxx. With a spatial step size h, the Fourier
modes ν(x) = eiωx that are present on the grid satisfy −π

h ≤ ω ≤ π
h and are in double precision

uncertain to about 10−16. The third derivative ν ′′′(x) of the highest Fourier modes become of size
π3

h3
, implying an uncertainty of around 3·10−15

h3
. It is notable that the present re-formulation of (4)

into the system (5) (that also includes a fourth derivative) does not turn this into O
(

1
h4

)
, but

preserves the optimal O
(

1
h3

)
level. The value where the decreasing truncation errors meet the

increasing rounding errors depend on the smoothness of the test function that is considered. The
highest accuracy achieved by HFD before double precision error occurs is on par, if not slightly
better, than the FD counterpart.

The solid curves in Figures 1 and 2 depend on the smoothness (decay rate of Fourier coefficients) of
the test function (7), while the dashed lines eventually do not (instead resulting from limiatations
of double precision and the presence of uxxx(x, t) in (4)).
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2.3.1. Time stepping stability

One potential concern is that the differentiation matrix formed in (6) might introduce a stability
constraint like O

(
k
h4

)
due to the introduction of the fourth order spatial derivative. However, this

does not occur, since the largest eigenvalue of the linear term differentiation matrix formed scales
like O

(
k
h3

)
regardless of including weights approximating higher spatial derivatives. This can be

seen via a similarity transform. Since the differentiation matrix in (6) can be expressed as a 2x2

block matrix with element sizes

[
1
h3

1
h2

1
h4

1
h3

]
, a similarity transform yields

[
1
h 0
0 1

h2

] [
1
h3

1
h2

1
h4

1
h3

] [
h 0
0 h2

]
=

[
1
h3

0
0 1

h3

]
This argument carries through similarly when including even higher derivatives in the HFD stencils.

2.3.2. Differentiation matrix size and sparsity

Another potential drawback of differentiating the governing PDE is that the system size increases
and enlarges the differentiation matrix to scale like O

(
M2N2

)
. However, these matrices are highly

sparse, so actual cost and memory scales only like O(MN). Furthermore, to match the accuracy of
explicit FD, much fewer nodes are required for the same stencil size. To illustrate this, we consider
the single soliton again. Figure 3 shows the required approximate step needed to time step with
explicit fourth order Runge-Kutta (RK4). HFD not only requires fewer nodes in space to match
the accurate of FD, but also needs fewer time steps.
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Figure 3: The relationship for the approximate largest time step k allowed for time stepping KdV with RK4 and a
given error for the single soliton for 2nd, 6th, and 10th order stencils displayed on different vertical scales.
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Figure 4: The relationship for the number of non-zero elements of the differentiation matrix and a given error for the
single soliton for 2nd, 6th, and 10th order stencils displayed on different vertical scales.

Figure 4 shows the differentiation matrix size (measured as the number of non-zero entries of sparse
matrices) as a function of error for the single soliton. The DM size of HFD required to match the
same error of FD is much lower.

2.4. Linearized error analysis

2.4.1. Dispersion

Dispersion analysis is widely used to assess different schemes in the context of solving wave equa-
tions. We use as a test equation the standard 1-D wave equation

∂u

∂t
+
∂u

∂x
= 0 (8)

with the single Fourier mode solution u(x, t) = eiωx−iα(ω)t. Analytically, it should hold that
α(ω) = ω. HFD can be applied to (8) by differentiating once in space, as considered in [5].
By substituting the single Fourier mode solution into (8) or the appropriate system for HFD and
discretely approximating any spatial derivatives a relation for α(ω) can be found 2.

2For example, in the FD, order p = 4 case, one obtains α(ω) = 1
ih

(
1
12
e−2iωh − 2

3
e−iωh + 2

3
eiωh − 1

12
e2iωh

)
=

4
3h

sin(ωh) − 1
6h

sin(2ωh) = ω − h4ω5

30
+ h67

252
+ · · · .
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Scheme Order α(ω)

FD

4 ω − h4ω5

30 + h6ω7

252 + · · ·

8 ω − h8ω9

630 + h10ω11

2310 + · · ·

12 ω − h12ω13

12012 + h14ω15

27720 + · · ·

16 ω − h16ω17

218790 + h18ω19

366795 + · · ·

HFD

4 ω − h4ω5

1080 −
h6ω7

54432 + · · ·

8 ω − h8ω9

441000 −
h10ω11

22638000 + · · ·

12 ω − h12ω13

155387232 −
h14ω15

7888890240 + · · ·

16 ω − h16ω17

50684891400 −
h18ω19

2549151891000 + · · ·

Table 1: The α(ω) relationship for standard FD and HFD for varying orders.

Table 1 shows the series expansions of the α(ω) function for standard FD and HFD. It is clear
that, for corresponding order, the coefficient of the leading error term is significantly smaller in the
HFD case. This can be explained partially by that the highest frequency ωmax resolved accurately
by HFD on the grid is 2π

h as opposed to π
h for standard FD seen in Figure 5.
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Figure 5: The graphical representation of α(ω) for FD and HFD compared to the ideal case α(ω) = ω.

2.4.2. Points per wavelength

In order to compare FD and HFD approximations in terms of ‘Points per wavelength’ (PPW), we
consider the simple convective model (8) over the periodic interval 0 ≤ x ≤ 2π, and let the time
increase from t = 0 to t = 2π. Any initial condition and, in particular, every Fourier mode eiωx,
should then have traveled once over the spatial domain. As can be inferred from Figure 5, each
(non-zero) mode will travel too slowly and, at some time, therefore have become in error by a phase
angle of π

4 . We take this as indicating that the mode no longer contributes meaningfully to the
PDE solution (since, if it was ‘off’ by π, it would be of the wrong sign, and do the opposite to what
it ought to).

With the above as background, we can explain how to read the information in Figure 6. Consider
the highest Fourier mode that we require to meet the accuracy requirement at the final time. The
horizontal axis indicates the number of full wavelengths of this highest mode that fit into the period
0 ≤ x ≤ 2π. For each of these ‘Number of Wavelengths’ values, and each approximation order, we
can then compute how many points per wavelength (PPW) this requires. This produces the solid
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curves in Figure 6. The higher the order (i.e., higher approximation accuracy), we naturally see
lower PPW needed. Also, the higher accuracy we request (further to the right in these figures),
the needed PPW increase. In these charts, one can additionally draw curves for the total number
of grid points (N) over 0 ≤ x ≤ 2π that are needed to meet the required accuracy.

The scales on the axes differ between the two subplots of Figure 6. In order to simplify the PPW
comparison between the FD and HFD approaches, the key curves from the subplots are placed in
the same diagram in Figure 7.
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Figure 6: PPW versus Number of wavelengths withing the spatial period of highest wave mode which remains accurate
in the test problem, displayed for different node numbers N and accuracy orders. Results are for FD (left) and HFD
(right).
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Figure 7: PPW versus Number of wavelengths withing the spatial period of highest wave mode which remains accurate
in the test problem, displayed for different node numbers N and accuracy orders. Results are for FD and HFD on
the same plot.

Figure 6 and 7 illustrate PPW versus the number of wavelengths in the computational domain which
of the highest wave mode we consider accurate. Since the HFD stencils are only approximating one

derivative
(
∂2u
∂x2

)
we utilize the simpler notation of listing the only order of accuracy here. While

the PPW for FD tend towards PS limit of two, the HFD limit is one. Heuristically, this behavior
is to be expected as one ‘doubles’ up on information present at each node location. This will be
analyzed further in the follow-up study [1].

3. Additional test problems

Here we apply the method described in Section 2 for various test problems for the KdV equation.
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3.1. Time stepping two solitons

We now consider a two soliton solution given by

u2(x, t) = −
2(c1 − c2)

[
c1 sech2

(√
c1
2 (x− 2c1t)

)
+ c2 csch2

(√
c2
2 (x− 2c2t)

)][√
2c1 tanh

(√
c1
2 (x− 2c1t)

)
−
√

2c2 coth
(√

c2
2 (x− 2c2t)

)]2 (9)

on the domain x ∈ [−25π, 25π] and t ∈ [−20, 20] with the c1 = 1
2 and c2 = 1.

Figure 8: Numerical solution with the two soliton initial condition using HFD.

N 256 512 1024 2048 4096 8192

Error∞
FD 1.0522 0.6129 0.1688 4.2093e-2 1.0503e-2 2.6251e-3

HFD 0.4218 0.1007 2.5001e-2 6.2263e-3 1.5550e-3 3.8871e-4

Error2
FD 9.5670e-3 3.5608e-3 6.6731e-4 1.1762e-4 2.0764e-5 3.6690e-6

HFD 3.4934e-3 5.6951e-4 9.8930e-5 1.7416e-5 3.0755e-6 5.4368e-7

Error I
FD 3.8552e-3 8.5486e-4 1.7434e-4 3.3881e-5 3.6031e-6 4.1491e-7

HFD 1.4758e-3 2.2313e-4 3.5536e-5 3.9718e-6 4.2650e-7 3.6889e-7

Time Step k
FD 0.2012 2.5150e-2 3.1437e-3 3.9296e-4 4.9121e-5 6.1401e-6

HFD 1.6571e-2 2.0713e-3 2.5891e-4 3.2364e-5 4.0455e-6 5.0569e-7

Table 2: Numerical Results for FD2 and HFD4/2 for the two soliton test problem. Due to the double precision
rounding errors, the accuracy levels for all the methods stagnate around the 10−7 levels as N increases.
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Figure 9: Numerical Results for FD2 and HFD4/2 for the two soliton test problem. The time steps k assume regular
RK4.

Figure 8 shows the numerical solution when solving (5) with HFD4/2 and RK4 (k ≈ 4E− 6) using
N = 8192 node points. Table 2 and Figure 9 show the different errors for both second order FD and
HFD methods on the presented test problem. Here, the errors are the max error, the normalized
`2 error, and the error of the integral I =

∫ 25π
−25π u(x)dx of the solution at the final time compared

to the initial time calculated with the trapezoidal rule. The time step used here in this test are the
largest approximate time step reduced by 80% to ensure stability during testing.

Figure 10: The numerical solution for FD2 and HFD4/2 using N = 256 at the final time compared against the
analytic solution.
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Figure 10 shows the trailing waves generated from time stepping the two soliton solution with FD2
and HFD4/2 using N = 256 nodes. HFD not only limits the phase shift of the solitons, but reduces
trailing waves and conserves mass better than its FD counter part.

3.2. Step Solution / Dispersive Shock

Another important phenomena for the study of waves is the dispersive shock. For this test we use
a hyperbolic tangent function to approximate the step function

u(x, 0) =

{
0 x < 40

−10 x > 40

According to [6] the moving fronts of the dispersive shocks will be mostly contained in −20 ≤ x
t ≤

−10
3 . Figure 11 shows the numerical results of using the HFD12/10 stencil (h = 0.1) and RK4

(k = 10−5).
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Figure 11: (Left) A time lapse when solving equation (6) with a step initial condition. (Right) The initial (red) and
final (black) wave with the −20 ≤ x

t
≤ − 10

3
interval at the final time illustrated with dashed black lines.

3.3. Instabilities of Wavetrain

We showed in Section 2.3 convergence rates for HFD stencils acting on a soliton at a ‘final’ time.
Here we consider an accuracy test that includes nonlinear time evolution effects, but still does not
require numerical time stepping. A stationary wavetrain provides one such test by analysing the
instabilities of the solution. Following [6], the equation

ut + 3u2ux + uxxx = 0 (10)

is considered on the interval [0, 128]. A traveling wave train

u0(x− ct) = a1 cos ν(x− ct) + a3 cos 3ν(x− ct) + a5 cos 5ν(x− ct)
+a7 cos 7ν(x− ct) + a9 cos 9ν(x− ct) + · · ·
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is found with a1 = 0.3 and ν = 7×2π
128 . The Appendix Section 5.1 includes quad-precision values

found for c and the leading coefficients ai. By adjusting the equation to

ut +
(
3u2 − c

)
ux + uxxx = 0 (11)

the wavetrain remains stationary.
The substitution u(x, t) = u0(x) + eαtv0(x) is made into (11). Ignoring second order terms in v0
yields

αv0 − cv0x + 3u20v0x + 6u0v0u0x+ v0xxx = 0 (12)

When discretized in space, (12) amounts to a linear discrete eigenvalue problem. It theoretically
has four unstable solutions, as detailed in [6]. Each of these has an exponential growth rate, as
given in Table 2 of [6].
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Figure 12: The largest error of the four growth modes α when using explict FD and M = 1 HFD for given total
nodes N for different orders displayed on different vertical scales.

Figure 12 shows the decrease in growth rate errors α for similar orders of FD and M = 1 HFD
stencils. The more compact HFD stencils tend to outperform their explicit FD counterparts. For
the same order, the nodes required for FD to reach similar accuracy is about 32 times as many for
2nd order to 4 times as many for 14th order in comparison with HFD, well above the break even
cost of 2.
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Figure 13: The wavetrain expansion u0 time stepped with RK4 (k = 10−3) and M = 1 HFD 2nd order (h = 0.5).

Figure 13 shows the instabilities of the nonlinear wavetrain similar to the results found in [6]. It is
worth noting that the initial amplitude here is 0.3, while in Figure 24 of [6] the initial amplitude is
0.2. This may influence how the recurrence to a smooth state appears.

4. Conclusions

The introduction of derivative terms to form HFD stencils provides several benefits

i Compact stencil size,

ii Larger time steps allowed for same spatial error when compared with explicit FD,
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iii Reduction of overall differentiation matrix size for same spatial error when compared with
explicit FD,

iv Reduction of trailing waves [5],

v Flexibility of time stepper to use,

vi All stencils weights are pre-computed for fast time stepping.

HFD introduces all of these benefits while still maintaining the O
(
k
h3

)
constraint using regular

explicit time stepping (such as RK4).

The last row of Table 2 points towards a possible concern. For the same number of nodes in space,
and using regular RK4, the largest time steps for stability have a smaller constant in the bound
for HFD than for FD approximations of corresponding spatial accuracy orders. There is however
an extensive literature available on how to greatly reduce (in fact, largely bypass) these conditions
for the present class of PDEs, which are characterized by the term with the highest derivative
in space appearing linearly (here uxxx in (4)). Key methods for this are known as exponential
time integrators, integrating factor methods, linearly implicit-explicit schemes, IMEX (IMplicit-
EXplicit) schemes, etc. Comparative discussion (and application) of these different classes of time
integrators fall outside the scope of the present (spatial discretization) study.

We finally note that the inevitable double precision truncation errors around 3 · 10−15

h3
(due to the

uxxx term) favors very high order methods (allowing larger h). For very accurate calculations, quad
precision (and higher) is needed. The relative benefit of higher accurate discretizations become then
even more pronounced.
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5. Appendix

5.1. Wavetrain Coefficients

i ai
1 0.3
3 0.007696237082252840479773430660732841
5 0.0001926253560344188728294145863829283
7 4.821050392780964377337746868597412e-6
9 1.206618232420510945841900045030304e-7
11 3.019938478512394844810756006944602e-9
13 7.55833798044364321088936398647235e-11
15 1.891709828961749706245506784219818e-12
17 4.7345938832712073090146155713803e-14
19 1.184979794274906676180623295168048e-15
21 2.96578153788690219133943740161295e-17
23 7.42279334463505899395615271899691e-19
25 1.85778555612748710949612996528734e-20
27 4.64968780930759258784713863665665e-22
29 1.163729400991210770136781875204157e-23
31 2.91259580056200057586999932987294e-25
33 7.28967944801067349020828791699825e-27
35 1.82446965159036717006556321257814e-28
37 4.56630436676150801619804747112018e-30
39 1.142860093711591474521289173012151e-31
41 2.86036384982544250951812182632412e-33
43 7.15895269981570427266591342189321e-35
45 1.79175120540436887740061949361204e-36
47 4.48441625005374331959491257137067e-38
49 1.12236502951310375283246510801311e-39

Table 3: The ai coefficients used in Section 3.3.

Table 3 shows the coefficients, ai, found for the wave train u0(x, t) from Section 3.3 with c =
−0.04874618642519625103897344224266144.
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5.2. Stencil Weights

Derivative
Order
p

M
Accuracy

Order

Coordinates and weights (f, f ′, f ′′)

x = 0 x = ±1 x = ±2 x = ±3

2 1

4 −4,0 2,∓1
2

8 −5,0 64
27 ,∓8

9
7
54 ,∓ 1

36

12 −49
9 ,0 39

16 ,∓9
8 ± 69

250 ,∓ 9
100

157
18000 ,∓ 1

600

3

1

4 0,−12 ±15
2 ,−3

2

8 0,−15 ±88
9 ,−8

3 ± 31
144 ,− 1

24

12 0,−49
4 ±171

16 ,−27
8 ± 963

2000 ,− 27
200 ± 167

18000 ,− 1
600

2
6 0,−18,0 ±105

8 ,−33
8 ,±3

8

12 0,−45
2 ,0 ±488

27 ,−56
9 ,±8

9 ± 601
1728 , 3

32 ,± 1
144

4

1

2 24,0 −12,±6

6 99
2 ,0 −64

3 ,±16 −41
12 ,±3

4

10 3409
54 ,0 −187

8 ,±93
4 −3959

500 ,±267
100 − 7339

27000 ,± 47
900

2
6 −144,0,−36 72,∓39

2 ,32

12 −207,0,−45 2816
27 ,∓32,329 −43

54 ,± 29
144 ,− 1

72

5

1

2 0,120 ∓90,30

6 0,4952 ∓560
3 ,80 ∓455

48 ,258

10 0,1704554 ∓1865
8 ,4654 ∓9253

400 ,26740 ∓2603
5400 , 47

540

2
4 0,360,0 ∓315,135,∓15

10 0,13052 ,0 ∓17240
27 ,24409 ,∓440

9 ±20585
864 ,−935

144 ,±35
72

Table 4: Centered stencil weights for function, first, and second derivative values at node location x to approximate
the third, fourth, and fifth derivative in the M = 1 and M = 2 cases. We recognize the first line of (3) in the (top)
row p = 3, M = 1, order= 4 and the second line of (3) in the row p = 4, M = 1 and order= 2. The M = 2 stencils
were not used in this study.
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