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Abstract. Pseudospectral (PS) methods are widely used for solving partial differential equations (PDEs) to high accuracy
in simple geometries. They can be seen as the limit of finite difference (FD) methods for increasing order of accuracy. Similarly,
recently introduced Hermite-based finite difference (HFD) approximations converge to Hermite-based pseudospectral (HPS)
limits. We derive here HPS coefficients, and make comparisons between PS and HPS approximations. Using half the number
of nodes and twice the amount of data per node, HPS approximations match the accuracy of the PS method. A potential
advantage of HPS over PS arises when a computer has multiple cores available.
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1 Introduction Standard centered finite differences (FD) approximate a derivative at a grid point
by a weighted combination of function values at adjacent grid points. The limits that the FD weights
approach when such approximations are made increasingly accurate (and stencils wider) have been well
documented [3]. In Hermite-type FD formulas, weights are assigned to both function and first derivative
values in order to approximate some higher derivative (or to interpolate the function or a derivative of it).
Following a recent fast algorithm for Hermite weights [4] and their application to PDEs (for the Korteweg-de
Vries equation in [1]), the question arises if these weight sets, like those for regular FD methods, possess
infinite order accurate limits. We find here that this indeed is the case. Pseudospectral implementations
(using the FFT algorithm on periodic data) turn out to give particularly simple closed form expressions.

The limit formulas for regular FD weights on an infinite interval are briefly commented on in Section 2 before
we turn to Hermite formulas in Section 3. We first carry over the FD limit derivation on an infinite interval
to the HFD case in Section 3.1, and follow that in Section 3.2 with another derivation that gives additional
insights in the HFD schemes. Section 3.3 presents an alternative closed form for FD and HFD weight limits.
Section 4 discusses the periodic case, and is followed by numerical examples, conclusions, references, and an
appendix with some FD, HFD, and HPS weight tables and further discussion.

2 Finite difference (FD) limits on an infinite interval Following Appendix 2 in [2],
the Lagrange interpolation polynomial for equispaced nodes xi and data f(xi), i = 1, 2, . . . , N takes the form

(2.1) L(x) =

N∑
i=1

Li(x) · f(xi),

where

(2.2) Li(x) =

∏n
j=1,j 6=i(x− xj)∏n
j=1,j 6=i(xi − xj)

.

Choosing instead as nodes the doubly infinite sequence xi = k = . . . ,−2,−1, 0, 1, 2, . . ., it follows from the

sine product sinπx
πx =

∏∞
k=1

(
1−

(
x
k

)2)
that, in this limit, Li(x) converges to sinπ(x−k)

π(x−k) , and we obtain the

weights

(2.3) w
(p)
k =

dp

dxp

(
sinπ(x− k)

π(x− k)

)∣∣∣∣
x=0

= (−1)p
dp

dxp

(
sinπx

πx

)∣∣∣∣
x=k

.
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Some notable features of these FD weight limits include:

1. The weights always oscillate in sign as k moves away from k = 0,
2. For a odd order derivatives, the weights decay in magnitude as O(1/|k|) while, for even order

derivatives, the decay rate is faster, O(1/|k|2).

3 Hermite limits on an infinite interval Looking at Table 7.2 in the Appendix, showing
HFD weights, it is not immediately obvious that going down any of the columns (beyond order 16, towards
infinite order) will produce convergent sequences. Another difference to the FD case is that the weights do
not oscillate in sign as x moves away from x = 0. The next Sections 3.1 and 3.2 give two different ways to
derive limit formulas for the Hermite weights. For simplicity of notation, we set the node spacing h = 1 in
most of the following analysis.

3.1 HFD limits derived by means of infinite products The derivation above of (2.3) generalizes
quite straightforwardly to the HFD case, as shown next in Section 3.1.1.

3.1.1 Infinite product derivation in the HFD case Instead of (2.1), the starting point is now

(3.1) H(x) =

N∑
i=1

Pi(x) · f(xi) +

N∑
i=1

Qi(x) · f ′(xi),

where Pi(x) and Qi(x) need to satisfy

Pi(xk) =

{
1, k = i
0, k 6= i

and P ′i (xk) = 0

Qi(xk) = 0 and Q′i(xk) =

{
1, k = i
0, k 6= i

Following [4], the function (Li(x))
2

satisfies all requirements for Pi except that d(Li(x))
2

dx

∣∣
x=xi

= 2dLi(x)dx

∣∣
x=xi

=

2
∑
l 6=i

1
xi−xl . The function (x−xi) (Li(x))

2
satifies all the requirements for Qi(x). Thus, we can write Pi(x)

and Qi(x) in terms of Li(x) as

Pi(x) = [1− 2(x− xi)L′i(xi)] Li(x)2

Qi(x) = (x− xi) Li(x)2

In the same limit as above, with xi = k = . . . ,−2,−1, 0, 1, 2, . . ., we obtain Pk(x) →
(

sinπ(x−k)
π(x−k)

)2
and

Qk(x)→ (x− k)
(

sinπ(x−k)
π(x−k)

)2
, from which follows

dp

dxp
H(x)

∣∣∣∣
x=0

=

∞∑
k=−∞

dp

dxp
Pk(x)

∣∣∣∣
x=0

· f(xk) +

∞∑
k=−∞

dp

dxp
Qk(x)

∣∣∣∣
x=0

· f ′(xk)

and

dp

dxp
f(x)

∣∣∣∣
x=0

≈
∞∑

k=−∞

a
(p)
k · f(xk) +

∞∑
k=−∞

b
(p)
k · f

′(xk)(3.2)

with

(3.3) a
(p)
k = (−1)p

dp

dxp

(
sinπx

πx

)2
∣∣∣∣∣
x=k

and b
(p)
k = (−1)p+1 dp

dxp

{
x

(
sinπx

πx

)2
}∣∣∣∣∣

x=k

.



3.2 HFD limits by means of Fourier series expansions A key difference between FD and HFD
approximations concerns the range of Fourier modes ν(x) = eiωx these schemes can approximate, given a
grid spacing h. For FD schemes, using function values only, any mode outside the range

(3.4) − π

h
≤ ω ≤ +

π

h

is, due to aliasing, indistinguishable from a mode within this range. For an HFD scheme, picking up h-spaced
information of both ν(x) = eiωx and ν′(x) = iωeiωx , the range becomes doubled [1], to

(3.5) − 2π

h
≤ ω ≤ +

2π

h
,

as shown in Figure 5.4. This range doubling can be explained in part by dispersion analysis shown in [1]
and briefly in the Appendix of this paper.

To keep the notation simple, the following derivation is for the derivative order p = 4, but it generalizes to

any order. In the notation used in (3.2) (with h=1), the limiting weights for the function values are a
(4)
k and

for the first derivative values b
(4)
k , k integer, i.e.,

(3.6) f (4)(0) ≈
∞∑

k=−∞

a
(4)
k f(k) +

∞∑
k=−∞

b
(4)
k f ′(k),

Based on the patterns seen in Table 7.2, we expect the a
(4)
k sequence to be symmetric about k = 0 and the

b
(4)
k sequence anti-symmetric, making it sufficient to find a

(4)
k for k = 0, 1, 2, 3, . . . and b

(4)
k for k = 1, 2, 3, . . ..

This can also be more technically explained via the symmetry of the grid around k = 0 and requiring that
the stencil is accurate for all polynomial powers xp. Applying these limiting weights to eiωx, we expect
(based on the comments just above) that

(3.7) ω4 = a
(4)
0 + 2

∞∑
k=1

a
(4)
k cos kω − 2ω

∞∑
k=1

b
(4)
k sin kω = a0 + 2S1(ω)− 2ωS2(ω)

holds for all ω in the range −2π < ω < +2π. The two functions S1(ω) and S2(ω) are both [−π, π]-periodic.
The question becomes how one then can get (3.7) to hold exactly over a twice as wide interval (−2π, 2π).

The next two subsections show (i) an explicit construction leading to closed form expressions for the {a(4)k }
and {b(4)k } sequences, and (ii) that these coefficients are uniquely determined.

3.2.1 Explicit construction of the coefficient sequences We start by noting that there is a
unique way to split ω4 over the interval [0, 2π]

(3.8) ω4 = P1(ω) + ωP2(ω) ,

if we require that P1(ω) is symmetric and P2(ω) is anti-symmetric around ω = π :

(3.9)
P1(ω) = −3ω4 + 12πω3 − 16π2ω2 + 8π3ω
P2(ω) = 4ω3 − 12πω2 + 16π2ω − 8π3
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Fig. 3.1: The functions P1(ω) and P2(ω), as defined in (3.9) and extended across ω = 0.

Figure 3.1 illustrates these two functions, as solid curves over [0, 2π] and then also (as dashed curves over
[−2π, 0]) their symmetric and anti-symmetric extensions, respectively, across ω = 0. We next find the Fourier
series coefficients for these functions as calculated over [−π, π]:

(3.10)
P1(ω) = 16π4

15 +
∑∞
k=1

(
− 16π2

k2 + 144
k4

)
cos kω

P2(ω) =
∑∞
k=1

(
− 16π2

k + 48
k3

)
sin kω

Looking at the symmetries that are apparent in Figure 3.1, it is clear that these Fourier expansions return
the correct values for the P1(ω) and P2(ω) functions not just over [−π, π] but also over the double interval
[−2π, 2π]. Recalling (3.8), equating coefficients between (3.10) and (3.7) now gives the desired coefficients
in (3.6):

(3.11)

{
a
(4)
0 = 16π4

15 ,

a
(4)
k = − 8π2

k2 + 72
k4 , k = 1, 2, 3, . . .{

b
(4)
0 = 0

b
(4)
k = 8π2

k −
24
k3 , k = 1, 2, 3, . . .

3.2.2 Proof of uniqueness The construction in the previous Section 3.2.1 provided one set of ex-

pansion coefficients {a(4)k } and {b(4)k } such that

ω4 = a
(4)
0 + 2

∞∑
k=1

a
(4)
k cos kω − 2ω

∞∑
k=1

b
(4)
k sin kω

is valid over ω ∈ (−2π, 2π). Suppose there is a different coefficient set with this same property. We then

subtract the two cases, and denote the differences in the coefficients by {c(4)k } and {d(4)k }, respectively. It
then holds that

0 ≡ c(4)0 + 2

∞∑
k=1

c
(4)
k cos kω − 2ω

∞∑
k=1

d
(4)
k sin kω.

If all d
(4)
k coefficients are zero, so are the c

(4)
k coefficients. Suppose next that at least one d

(4)
k coefficient is

nonzero, and divide by the last sum

(3.12) 2ω ≡
c
(4)
0 + 2

∑∞
k=1 c

(4)
k cos kω∑∞

k=1 d
(4)
k sin kω

.



The RHS in (3.12) is (−π, π)-periodic, and can therefore not match the LHS over (−2π, 2π). From this

contradiction, we conclude that the {c(4)k } and {d(4)k } coefficients must be all zero, therefore (3.11) uniquely
satisfies (3.7).

3.3 PS and HPS coefficients in closed form While (2.3) and (3.3) are of ‘closed form’, they can
be re-expressed as finite sums with no derivatives required. For example, (3.3) in the case of p = 4 evaluates
to (3.11). We start by observing the p-th derivative product rule

dp

dxp
[f(x)g(x)] =

p∑
n=0

(
p

n

)
f (n)(x)g(p−n)(x).(3.13)

By letting f(x) = sinπx and g(x) = (πx)−1 the FD weights w
(p)
k = (−1)p dp

dxp

(
sinπx
πx

) ∣∣∣
x=k

(as given in (2.3))

can be expressed using (3.13) as

(3.14)

{
w

(p)
0 = cos

(
πp
2

)
πp

p+1

w
(p)
k =

∑p
n=1 (−1)p+n

πn−1p! sin(π(n2 +k))
n!kp−n+1 , k = ±1,±2,±3, . . .

Similarly the weights defined in (3.3) can be expressed as

(3.15)

 a
(p)
0 = cos

(
πp
2

) (2π)p

( p2+1)(p+1)

a
(p)
k =

∑ p
2
n=1 (−1)p+n+1 22n−1π2n−2(p−2n+1)p!

(2n)!kp−2n+2 , k = ±1,±2,±3, . . .{
b
(p)
0 = sin

(
πp
2

)
2pπp−1

p+1

b
(p)
k =

∑ p
2
n=1 (−1)p+n 22n−1π2n−2p!

(2n)!kp−2n+1 , k = ±1,±2,±3, . . .

The special case when p = 2:

(3.16)

{
a
(2)
0 = − 2π2

3

a
(2)
k = 2

k2 , k = ±1,±2,±3, . . .{
b
(2)
0 = 0

b
(2)
k = − 2

k , k = ±1,±2,±3, . . .

A list of coefficients for various fixed p is given in Table 7.3 of the Appendix.

4 Hermite limits in the periodic (PS) case In this section we derive HPS weights on
periodic domains using two approaches: (i) direct aliasing, and (ii) convolutions (to be used in conjunction
with the fast Fourier transform (FFT)).

4.1 HPS weights via direct aliasing On the periodic interval [−π, π] with N equispaced nodes

at xi = π
(
2i
N − 1

)
for i = 0, 1, 2, · · · , N − 1 the infinitely wide FD stencil for the p-th derivative can be

expressed in closed form [5] using aliasing as

dp

dxp

 u0
...

uN−1

 =

 W (p)


 u0

...
uN−1

 .(4.1)

When N is even the closed form for the first two derivatives are,
p = 1:

W
(1)
i,j =

{
0 if i = j
(−1)i−j

2 cot (i−j)h
2 otherwise



and p = 2:

W
(2)
i,j =

{
− π2

3h2 − 1
6 if i = j

(−1)i−j+1 csc2
(

(i−j)h
2

)
otherwise

where h is the node spacing. Closed forms are available for N odd as well [8].

The extension of (4.1) to HFD on the periodic interval [0, N ] with N unit spaced nodes becomes

dp

dxp

 u0
...

uN−1

 =

 C(p)


 u0

...
uN−1

+

 D(p)


 u′0

...
u′N−1

 .(4.2)

where the elements of C(p) and D(p) can be found by similarly aliasing (3.15). The periodic interval [0, N ]
rather than [−π, π] is chosen to simplify the expressions shown in (4.3). Since C(p) and D(p) are symmetric
circulant matrices it suffices to only find the first row. We note that
d(p)u
dx(p)

∣∣∣
x=0

=
∑N−1
k=0 c

(p)
k u(k) + d

(p)
k u′(k) where ck =

∑∞
n=−∞ a

(p)
k+nN and dk =

∑∞
n=−∞ b

(p)
k+nN . These aliased

coefficients c
(p)
k and d

(p)
k can be written in closed form as

(4.3)


c
(p)
0 = cos

(
πp
2

) (2π)p

( p2+1)(p+1)
+
∑ p

2
m=1(−1)m+1 [(−1)p + 1] 22m−1π2m−2(p−2m+1)p!

(2m)!Np−2m+2 ζ(p− 2m+ 2)

c
(p)
k =

∑ p
2
m=1(−1)p+m+1 22m−1π2m−2(p−2m+1)p!

(2m)!

∑∞
n=−∞

1
(k+nN)p−2m+2 , k = 1, 2, . . . , N − 1

d
(p)
0 = sin

(
πp
2

)
2pπp−1

p+1 +
∑ p

2
m=1(−1)m [(−1)p − 1] 22m−1π2m−2p!

(2m)!Np−2m+1 ζ(p− 2m+ 1)

d
(p)
k =

∑ p
2
m=1(−1)p+m 22m−1π2m−2p!

(2m)!

∑∞
n=−∞

1
(k+nN)p−2m+1 , k = 1, 2, . . . , N − 1

where ζ(s) is the Zeta function. While these forms in (4.3) seem cumbersome they simplify into very
manageable forms for fixed p values. For example the p = 2 case:

(4.4)


c
(2)
0 = 2π2

3

(
1
N2 − 1

)
c
(2)
k =

2π2 csc2 kπ
N

N2 , k = 1, 2, . . . , N − 1
d
(2)
0 = 0

d
(2)
k = − 2π cot kπN

N , k = 1, 2, . . . , N − 1

.

One immediate benefit of the Hermite construction is the single form for either N even or odd as opposed
to the FD counterpart where the two cases need to be treated separately. Table 7.3 in the Appendix shows
weights for several fixed p values.

4.2 HPS weights via convolution When N is small, (4.1) and (4.2) can be computed quickly by
simple matrix × vector multiplication. However, when N becomes large, a faster option is convolution via
the fast Fourier transform (FFT). The digonalization can be explained by again noting C(p) and D(p) are
symmetric circulant matrices. On the periodic interval [0, N ] with N −1 unit-spaced nodes (4.2) can instead
be written

dp

dxp

u0...
un

 =
[
U
] 
ĉ
(p)
0

. . .

ĉ
(p)
N−1

 [U−1]
u0...
un

+
[
U
]
i


d̂
(p)
0

. . .

d̂
(p)
N−1

 [U−1]
u
′
0
...
u′n

(4.5)



where
[
U
]

is the direct Fourier transform (DFT) matrix, with elements Uk,l = e
2πikl
N , 0 ≤ k, l ≤ N − 1.

After multiplying with
[
U−1

]
from the left

[
U−1

] dp
dxp

u0...
un

 =


ĉ
(p)
0

. . .

ĉ
(p)
N−1

 [U−1]
u0...
un

+ i


d̂
(p)
0

. . .

d̂
(p)
N−1

 [U−1]
u
′
0
...
u′n

 .(4.6)

The Fourier modes representable on the grid (in view of aliasing) are e2πixk/N up through |k| ≈ N
2 . We do

however look for HPS formulas that are exact up through |k| ≈ N . We consider a k in the smaller range,
and expect the correct result also for mode k−N . We next note (i) when inserting a single Fourier mode for
the vector u, (4.5) reduces to one single nontrivial line (all others becoming zero), and (ii) on the grid, the
scheme cannot tell the difference between the two modes k and k −N . We thus obtain for the two modes

0th deriv. e2πixk/N & e2πix(k−N)/N

1st deriv.
(
2πik
N

)
e2πixk/N &

(
2πi(k−N)

N

)
e2πix(k−N)/N

...
...

...

pth deriv.
(
2πik
N

)p
e2πixk/N &

(
2πi(k−N)

N

)p
e2πix(k−N)/N

Both of these cases k and k −N contribute to line k in (4.6), giving respectively

(
2πik
N

)p
= id̂

(p)
k

(
2πik
N

)
+ ĉ

(p)
k ,(

2πi(k−N)
N

)p
= id̂

(p)
k

(
2πi(k−N)

N

)
+ ĉ

(p)
k

.

Solving for the coefficients give

(4.7)

 ĉ
(p)
k = (2π)p−1

[(
ik
N

)p − ( i(k−N)
N

)p]
d̂
(p)
k = (2π)p

N

[
(N − k)

(
ik
N

)p
+ k

(
i(k−N)
N

)p] k = 0, 1, 2, . . . , N − 1.

In particular the p = 2 case, this becomes

(4.8)

{
ĉ
(2)
k = 4k(k−N)π2

N2

d̂
(2)
k =

(
4k
N − 2

)
π

k = 0, 1, 2, . . . , N − 1.

Table 7.3 in the Appendix contain the convolution weights for various fixed p. Note that in these formulas
(as opposed to in (4.3) and (4.4)), k = 0 need not be treated as a separate case from k 6= 0.

5 Numerical illustrations In this section we present numerical findings when using HPS to
discretize in space. Section 5.1 discusses the convergence of HFD weights to the HPS coefficients. In Section
5.2 the accuracy of HPS is tested on several functions with various levels of ‘smoothness’. Section 5.3 details
the dispersion of FD and HFD stencils in comparison with PS and HPS. Section 5.4 comments on time
stepping stability constraints. For these sections we consider the 1-D transport equation

∂u

∂t
+
∂u

∂x
= 0.(5.1)

In order to apply HFD or HPS, the PDE must first be differentiated once in space [1]. Letting ux = v the
PDE can be expressed as the system [

u
v

]
t

= −
[
v
uxx

]
.(5.2)

In Section 5.5, we consider a variable coefficient counterpart to (5.1).



5.1 Convergence of HFD weights The second derivative operator in (5.2) can be effectively
approximated by HFD. In the limit as the stencil width (s.w.) of HFD becomes infinitely wide we expect the
weights to converge to (3.16). Figure 5.1 shows how quickly HFD weights converge to the infinite interval

HPS coefficients (a
(2)
k and b

(2)
k ) as s.w. increases. Only the first ten coefficients are considered while the limit

determined by (3.16) is shown in gray. For graphical clarity only the magnitude of the weights are shown.

Fig. 5.1: The first ten HFD weights for (left) a
(2)
k , function values, and (right) b

(2)
k , derivative values,

compared to their respective infinite interval HPS coefficients at different stencil sizes.

In this case of approximating an even order derivative (here p = 2), the coefficients acting on function
values decay like O

(
1
k2

)
rather than O

(
1
k

)
when using PS to solve (5.1). This implies HPS is more ‘locally’

influenced by function values over its PS counterpart. While PS alternates between O
(
1
k

)
and O

(
1
k2

)
decay

rates as p increases, HPS alternates between O
(

1
k2

)
and O

(
1
k3

)
for the coefficients acting on function values.

These HPS decay rates can be found explicitly via (3.15) for all values of p or for select values in Table 7.3
in the appendix.
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Fig. 5.2: The convergence of the first four HFD weights for (left) a
(2)
k , function values, and (right) b

(2)
k ,

derivative values, to their respective infinite interval HPS coefficients.

Figure 5.2 shows the rate at which the first four HFD coefficients a
(2)
k and b

(2)
k convergence to their respective

HPS coefficients in (3.16). The convergence rate seems to eventually become O
(

1
s.w.

)
for all k. The k = 0

case is excluded from the b
(2)
k plot due to always having a value of zero.

5.2 Accuracy The ‘smoothness’ of a function will dictate the convergence rate when using standard
PS for differentiation [7]. Since only the first derivative is utilized in (5.1) and the second derivative in (5.2)
it is of interest to compare convergence rates. We consider four different periodic test functions - (i) | sin(x)|3,

(ii) exp
(
− sin−2

(
x
2

))
, (iii)

(
1 + sin2

(
x
2

))−1
, and (iv) sin(10x), similar to the convergence rate test in [7].



0 20 40 60 80 100

10
-2

10
0

0 20 40 60 80 100

10
-10

10
-5

10
0

0 20 40 60 80 100
10

-80

10
-60

10
-40

10
-20

10
0

0 20 40 60 80 100
10

-100

10
-50

10
0

Fig. 5.3: A comparison of convergence rates for the first derivative using PS (PS 1) and for the second
derivative using PS (PS 2) and HPS (HPS 2) on several periodic functions as a function on N .

Figure 5.3 compares the convergence rates for PS (p = 1 and p = 2) with HPS for p = 2 for the periodic test
functions. For a given N , the HPS p = 2 approximation features roughly double as many correct digits as
the PS p = 2 approximation, as expected since it uses double the amount of information at each node (both
function and first derivative values). In some cases the HPS p = 2 approximation features roughly double
as many digits as the PS p = 1 case. For functions with discontinuous first derivatives (like | sin(x)|3) we
expect second derivative approximations to often be worse than first derivative approximations. However,
when the function is smooth enough to be expressed as a finite sum of Fourier modes (like sin(10x)) HPS
will reach the threshold to exactly approximate the derivatives at half the nodes compared to PS. This is
discussed more in Section 5.3. All extended precision calculations were done with the Advanpix package [6].

5.3 Dispersion The single Fourier mode solution to (5.1) is u(x, t) = eiωx−iα(ω)t where analytically
α(ω) = ω. Discretizing in space and plugging this solution into either (5.1) or (5.2) (depending on using
FD/PS or HFD/HFD respectively) yields a method of analysing dispersion [1].



Fig. 5.4: The graphical representation of α(ω) for FD/PS and HFD/HPS compared to the ideal case α(ω) =
ω.

Figure 5.4 shows how well α(ω) is approximated for various values of ω at different orders of convergence
for FD and HFD methods along with their respective limits PS and HPS. As expected PS and HPS capture
exactly all the Fourier modes in the region of validity for the respective method. This also illustrates why
HFD reduces trailing waves due to how much closer the HFD curves follow the ideal curve in the region
where standard FD is valid [4]. Another attribute to consider is points per wavelength (PPW) in the context
of solving (5.1). PPW is discussed in [1], where HFD are found to require half the PPW compared to their
FD counterparts. Similarly, HPS requires half the PPW as PS.

5.4 Time stepping The stability constraint for explicit time steppers introduced by discretizing (5.1)

or (5.2) using FD or HFD (respectively) in space scales like O
(
k
h

)
where k is the time step and h is the

spatial node spacing [1]. The semi-discrete version of (5.1) when using the PS convolution approach can be
written,




...
ûk
...


t

= −


. . . 0

iŵk

0
. . .




...
ûk
...

(5.3)

where ŵk are the standard wave-numbers
[
0, 1, · · · , N−12 ,−N−12 , · · · ,−1

]
. Likewise, when using HPS on

(5.2)



...
ûk
...
...
v̂k
...


t

= −



1 0

0
. . .

0 1
. . . 0

. . . 0

ĉk id̂k

0
. . . 0

. . .





...
ûk
...
...
v̂k
...


(5.4)

where ĉk and d̂k are defined in (4.8). While one won’t conduct these matrix multiplications in practice using
sparse matrices, as illustrated in (5.3) and (5.4), this matrix formulation gives insights into the stability
constraint. The eigenvalues in (5.3) grow like O (N) indicating the stability constraint is O

(
k
h

)
. In a similar

argument made in [1, 4] via a similarity transform, the eigenvalues of the matrix in (5.4) grow like O (N)
again indicating the stability constraint is O

(
k
h

)
while also showing the eigenvalues are purely imaginary.

While both PS and HPS discretization introduce similar stability constraints for explicit time steppers, it is
worth noting that HPS still requires roughly half the time step size for the same number of total nodes N
in space. Heuristically, this seems obvious as twice as much information is being utilized.

5.5 Variable coefficient transport Here we consider a spatially dependent wave speed problem

∂u

∂t
+ a(x)

∂u

∂x
= 0(5.5)

where a(x) = (10− 9 cos(x))
−1

and test against the closed form solution

u(x, t) =
[
cos
(

1
20 (t− 10x+ 9 sin(x))

)]20
shown in Figure 5.5. This illustrates the convergence of the periodic

HPS scheme on a time dependent PDE in comparison with standard the PS method. To eliminate the effects
of numerical time-steppers in order to purely focus on errors caused by PS and HPS, we consider the linear
semi-discrete problem


...
uk
...


t

= −

 D




...
uk
...

(5.6)

where the differentiation matrix D represents the linear spatial operator acting on the vector u. Given that
D has eigenvalue decomposition D = VΛV−1, the solution to (5.6) at a given time t with initial condition
u0 can be written u = −VeΛtV−1u0 where V is the matrix comprised of the eigenvectors of D and Λ is the
diagonal matrix comprised of the eigenvalues of D.



Fig. 5.5: Numerical solution of (5.5) using HPS with N = 60 over one revolution using the eigenvalue
decomposition solution (visually indistinguishable from the analytic solution).

Figure 5.5 shows the numerical solution of (5.5) over one revolution when discretizing in space with HPS
with N = 60 nodes. Figure 5.6 shows the accumulation of error over 50 revolutions when using either the
PS or HPS approximation in space. HPS used 60 nodes in space while PS used 121 nodes (due to the odd
number restriction). For roughly the half number of nodes in space the accuracy of HPS is comparable to
PS. Figure 5.7 shows this same calculations, but when both PS and HPS use the same N = 61 nodes. Since
HPS converges roughly twice as fast as PS we certainly expect HPS to outperform given the same node
count, however, requiring roughly twice the number of operations. This might however be off-set by HPS
being better able to utilize two cores in parallel.
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Fig. 5.6: The ∞-norm and normalized `2-norm errors over 50 revolutions while using PS (N = 121) and
HPS (N = 60) when solving (5.5) using the eigenvalue decomposition solution. Note that the errors rise the
fastest around half-integer values of the number of revolutions, i.e. when the traveling pulse is the narrowest
(see Figure 5.5).
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Fig. 5.7: Semi-log plot of The ∞-norm and normalized `2-norm errors over 50 revolutions while using PS
and HPS with both using N = 61 nodes when solving (5.5) using the eigenvalue decomposition solution.

6 Conclusions By using both function and first derivative information, HPS provides an alterna-
tive approach to the standard PS method with some of the following benefits:



1. given a smooth enough first derivative in space, a HPS approximation using N nodes roughly matches
the PS approximation accuracy when using 2N nodes

2. a seemingly more ‘local’ approximation of differential operators due to faster decay rates of coeffi-
cients on function values.

3. a doubling of the interval of the accuracy representation of the Fourier modes from [−πh ,
π
h ] to

[− 2π
h ,

2π
h ]

4. no major consequence in the time stepping stability constraint by introducing higher derivatives via
differentiation of the PDE.

One possible further advantage with the HPS method concerns the use of multiple cores for parallel process-
ing. When time stepping the wave equation (or nonlinear equations, like the Korteweg-de Vries equation)
it becomes difficult to utilize more than a single core using the standard PS method. However, the HPS
method divides these computations into two separate calculations, opening the possibility to run these pro-
cesses in parallel. This advantage potentially increases if higher derivatives are included into the HPS method
(although this paper only discusses up to the first derivative), possibly allowing still more cores to be utilized.

The key present novelty lies in establishing Hermite-PS formulas, generalizing ‘classical’ PS formulas, and
giving numerous closed form expressions for these. The HPS vs. PS wave equation test described here give
results in line with more extensive HFD vs. FD tests, for the Korteweg-de Vries and 2-D wave equations in
[1] and [4], respectively.

Continuation of this work could include application to nonlinear PDEs, the study of possible speed up by
utilizing multiple cores, and the introduction of higher derivative terms in the HPS approximation.
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7 Appendix A: Brief tables for centered FD, HFD, and HPS approximations
This section contains tables that contain the coefficients for FD, HFD, and HPS used to approximate various

derivatives.

Order of Approximations at x = 0; x coordinates at nodes
deri- accu-

vative racy -4 -3 -2 -1 0 1 2 3 4

0 ∞ 1

1 2 − 1
2 0 1

2

4 1
12 − 2

3 0 2
3 − 1

12

6 − 1
60

3
20 − 3

4 0 3
4 − 3

20
1
60

8 1
280 − 4

105
1
5 − 4

5 0 4
5 − 1

5
4

105 − 1
280

2 2 1 -2 1

4 − 1
12

4
3 − 5

2
4
3 − 1

12

6 1
90 − 3

20
3
2 − 49

18
3
2 − 3

20
1
90

8 − 1
560

8
315 − 1

5
8
5 − 205

72
8
5 − 1

5
8

315 − 1
560

3 2 − 1
2 1 0 -1 1

2

4 1
8 -1 13

8 0 − 13
8 1 − 1

8

6 − 7
240

3
10 − 169

120
61
30 0 − 61

30
169
120 − 3

10
7

240

4 2 1 -4 6 -4 1

4 − 1
6 2 − 13

2
28
3 − 13

2 2 − 1
6

6 7
240 − 2

5
169
60 − 122

15
91
8 − 122

15
169
60 − 2

5
7

240

Table 7.1: Weights for some centered FD formulas on a unit-spaced grid, giving approximations to
f (k)(x)|x=0, k = 0, 1, . . . , 4. This table contains the same information as Table 3.1-1 in [3] and Table
B1 in [4].



Wei- Order of Approximations at x = 0; x coordinates at nodes
ghts deri- accu-
for vative racy -4 -3 -2 -1 0 1 2 3 4

f(xi) 0 ∞ 1

1 ∞ 0

2 4 2 -4 2

8 7
54

64
27 -5 64

27
7
54

12 157
18000

69
250

39
16 − 49

9
39
16

69
250

157
18000

16 199
343000

11824
385875

48
125

304
125 − 205

36
304
125

48
125

11824
385875

199
343000

3 4 − 15
2 0 15

2

8 − 31
144 − 88

9 0 88
9

31
144

12 − 167
18000 − 963

2000 − 171
16 0 171

16
963
2000

167
18000

16 − 2493
5488000 − 12944

385875 − 87
125 − 1392

125 0 1392
125

87
125

12944
385875

2493
5488000

f ′(xi) 0 ∞ 0

1 ∞ 1

2 4 1
2 0 − 1

2

8 1
36

8
9 0 − 8

9 − 1
36

12 1
600

9
100

9
8 0 − 9

8 − 9
100 − 1

600

16 1
9800

32
3675

4
25

32
25 0 − 32

25 − 4
25 − 32

3675 − 1
9800

3 4 − 3
2 -12 − 3

2

8 − 1
24 − 8

3 -15 − 8
3 − 1

24

12 − 1
600 − 27

200 − 27
8 − 49

3 − 27
8 − 27

200 − 1
600

16 − 3
39200 − 32

3675 − 6
25 − 96

25 − 205
12 − 96

25 − 6
25 − 32

3675 − 3
39200

Table 7.2: Weights for some centered HFD formulas on a unit-spaced grid. Applied to f(i) and f ′(i) values
with i integers centered around the origin, they give approximations (at x = 0) to f (k)(x)|x=0, k = 0, 1, . . . , 3.
If the grid has spacing h, the f(i) weights for the second derivative should be divided by h2, for the third
derivative by h3, etc., with one power of h less for the f ′(i) weights. This table contains the same information
as Table B2 in [4].



p = 2 3 4

a0 − 2π2

3 0 16π4

15

ak
2
k2 − 12

k3
72−8k2π2

k4

b0 0 −2π2 0

bk − 2
k

6
k2

8(k2π2−3)
k3

c0 − 2(N2−1)π2

3N2 0 8(3−5N2+2N4)π4

15N4

ck
2π2 csc( kπN )

N2 − 12π3 cot( kπN ) csc2( kπN )
N3 − 8π4 csc2( kπN )(6+N2−9 csc2( kπN ))

N4

d0 0 − 2(N2+1)π2

N2 0

dk − 2π cot( kπN )
N

6π2 csc2( kπN )
N2

8π3 cot( kπN )(N2−3 csc2( kπN ))
N3

ĉk
4k(k−N)π2

N2

8ik(2k2−3kN+N2)π3

N3 − 16k(k−N)(3k2−3kN+N2)π4

N4

d̂k
(
4k
N − 2

)
π 4i(3k2−3kN+N2)π2

N2 − 8(k4−(k−N)4)π3

N4

Table 7.3: HPS coefficients for various implementations given a fixed derivative order p. On an infinite
interval of unit spacing a0 and ak are used on f and b0 and bk are used on f ′. On a periodic interval with
N nodes of unit spacing c0 and ck are used on f and d0 and dk and used on f ′. While using convolutions
on a periodic interval with N nodes of unit spacing ĉk is applied to f̂ and dk is applied to f̂ ′.

7.1 Dispersion for HFD Consider the standard 1-D transport equation

∂u

∂t
+
∂u

∂x
= 0(7.1)

with the single Fourier mode solution u(x, t) = eiωx−iα(ω)t. Analytically, it should hold that α(ω) = ω.
HFD can be applied to (7.1) by differentiating once in space, as considered in [4]. By substituting the single
Fourier mode solution into (7.1) or the appropriate system for HFD and discretely approximating any spatial
derivatives a relation for α(ω) can be found 1. These functions α(ω) as shown in Figure 5.4 and can help
explain the doubling of the region where the Fourier modes are represented.

1For example, in the FD, order p = 4 case, one obtains α(ω) = 1
ih

(
1
12
e−2iωh − 2

3
e−iωh + 2

3
eiωh − 1

12
e2iωh

)
= 4

3h
sin(ωh)−

1
6h

sin(2ωh) = ω − h4ω5

30
+ h6ω7

252
+ · · · .



Scheme Order α(ω)

FD

4 ω − h4ω5

30 + h6ω7

252 + · · ·

8 ω − h8ω9

630 + h10ω11

2310 + · · ·

12 ω − h12ω13

12012 + h14ω15

27720 + · · ·

16 ω − h16ω17

218790 + h18ω19

366795 + · · ·

HFD

4 ω − h4ω5

1080 −
h6ω7

54432 + · · ·

8 ω − h8ω9

441000 −
h10ω11

22638000 + · · ·

12 ω − h12ω13

155387232 −
h14ω15

7888890240 + · · ·

16 ω − h16ω17

50684891400 −
h18ω19

2549151891000 + · · ·

Table 7.4: The α(ω) relationship for standard FD and HFD for varying orders.

Table 7.4 shows the series expansions of the α(ω) function for standard FD and HFD. These functions can
also be seen in part in Figure 5.4
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