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Abstract. Mesh-free solvers for partial differential equations perform best on scattered quasi-3
uniform nodes. Computational efficiency can be improved by using nodes with greater spacing in4
regions of less activity. However, there is no ideal way to generate nodes for these solvers. We5
present an advancing front type method to generate variable density nodes in 2-D and 3-D with clear6
generalization to higher dimensions. The exhibited cost of generating a node set of size N in 2-D7
and 3-D with the present method is O(N).8
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1. Introduction. Mesh-free methods for solving partial differential equations11

such as radial basis function-generated finite differences (RBF-FD) have become in-12

creasingly popular. These methods use scattered nodes of variable density rather13

than a mesh as a computational domain. RBF-FD methods allow for high geometric14

flexibility, but still require certain constraints on node sets in order to ensure solu-15

tion accuracy and stability [10, 11]. For example, nodes that are locally too irregular16

can be problematic for the stability of PDE solvers. Hence, one key quality require-17

ment is for nodes to be locally quasi-uniform i.e., if you zoom into a region of nodes18

they should be close to equispaced (see Appendix A for more rigorous definitions of19

node quality). Node generation algorithms should also satisfy minimum spacing and20

bounded gaps between nodes and their neighbors, and have the ability to spatially21

vary node density in a prescribed manner. In general, placing nodes in a domain is22

reminiscent of circle packing in 2-D and sphere packing in 3-D. Optimal node sets23

for a given node spacing should be as densely packed as possible while maintaining a24

prescribed distance between nodes.25

Node generation remains a bottleneck for mesh-free PDE solvers, especially in26

higher than 2 dimensions or where variable density is desired. Recent work has been27

done on producing quality node sets specifically for RBF-FD [8, 9, 19, 22]. Here we28

build off the method of 2-D node generation from Fornberg & Flyer [9] to generate29

nodes in higher dimensions. This previous method was constrained to 2 dimensions30

due to the way that nodes were generated and stored. The present method utilizes31

a background grid and local searches to allow quality nodes of variable density to be32

generated in 2-D or 3-D according to a desired node spacing function, with the ability33

to generalize to higher dimensions. The algorithm also guarantees a minimum spacing34

requirement between nodes. In this work we do not seek to further demonstrate the35

robustness of RBF-FD and other mesh-free PDE methods, rather to fill the need36

for locally quasi-uniform and variable density node sets that these methods require37

[1, 8, 10].38

Current methods of node generation can be categorized broadly into iterative39
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2 K. VAN DER SANDE, AND B. FORNBERG

methods, sphere packing methods and advancing front methods. Often unstructured40

grid generators are used and nodes extracted as the vertices of the mesh. This is,41

however, computationally wasteful since RBF-FD methods make no use of the often42

costly step of connecting nodes into good aspect ratio elements. Iterative methods43

begin with an initial node set and update their positions through either a form of44

energy minimization [13], short-range interaction forces [17] or gradient flow [22].45

These methods are strongly dependent on their initial configuration and can be costly.46

Sphere and circle packing methods can be extended to arbitrary dimension and can47

be parallelizable, but are often constrained to constant sphere radii (i.e. constant48

node density). These methods include Poisson disk sampling [4, 7, 20], which is used49

for sampling in the graphics community and was recently introduced as a method50

of generating nodes for RBF-FD [18]. There has been some interest in defining the51

requirements for variable radii in this context [16]. Advancing front methods are52

computationally more efficient and relatively simple to implement. The proposed53

method in this paper is an advancing front type method, as is the original in [9] and54

the work of [14, 15, 19].55

The rest of the paper is organized as follows: section 2 outlines the method in 3-D56

and presents two possible modifications to the basic method; section 3 investigates57

different metrics of node quality and compares the present method to other node sets58

in 2-D and 3-D; and section 4 demonstrates the application of the method for use in59

RBF-FD. Conclusions and future work are presented in section 5.60

2. Node generation in arbitrary dimension.61

2.1. The basic node generation algorithm. We outline the algorithm for62

generating node sets by first considering the 3-D case in a bounded box. The desired63

spatial density of the nodes is specified through an exclusion radius function r(x, y, z),64

which can be any 3-D function and defines the minimum spacing between nodes.65

The method is an advancing-front type method, which relies on a background66

grid. In 3-D this is a dense grid in one Cartesian plane and the front progresses in67

the normal direction to it. For simplicity the grid is considered to be in the x, y-plane68

and the front to move in the increasing z-direction. The grid is stored as an array of69

‘potential dot placements’ (PDPs) with associated ‘heights’ in the normal direction.70

These heights are initialized as the bottom z-plane of the boundary box plus a small71

random perturbation (on the order of the minimum desired distance between nodes72

at z = 0). The first placed node is chosen as the minimum of these heights. The73

method proceeds as described in Algorithm 2.1.74

In 3-D and higher there is no way to sort the PDPs to track the global minimum,75

as there was in the 2-D method of [9]. In order to find a close local minimum to76

the last placed node p, an iterative moving window search over the PDPs is used.77

The minimum of the updated heights is set as x0 and iterations are taken from there78

to find a local minimum. At each iteration, xn+1 is set to be the minimum of the79

PDPs within a radius of 2r(p) of xn. This continues until xn+1 is within r(p) of xn.80

If the edge of the box is reached, the search wraps around to the other side of the81

domain. MATLAB code for the algorithm is provided in [21]. A visual representation of82

the algorithm in 2-D is shown in Figure 1.83

Note that the resolution of the background grid will have an effect on the resulting84

node set. The grid should be fine enough to resolve spatial varying node densities,85

but not so fine as to impede efficiency. Experiments showed that setting ∆x of the86

background grid to be 10 times smaller than the minimum desired exclusion radius87
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Algorithm 2.1 Node generation pseudocode

Initialize PDP array to the height of the bottom of the bounding box.
Choose the minimum of the initial array as the first node location p.
while the lowest PDP height is within the bounding box do

Add p to the list of generated nodes.
Calculate the exclusion radius r(p) at p.
if updated height > current height then

Update the heights of PDP within the sphere of radius r centered at p to lie
on the upper half of this sphere.

end if
Set x0 to be the PDP location with the minimum updated height.
Set x1 to be PDP location with the minimum height within 2r(p) of x0.
while |xi+1 − xi| > r(p) do

Update xi = xi+1

Set xi+1 to be the PDP location with minimum height within 2r(p) of xi.
end while
Let the next node location be p = xi+1.

end while

(a) p is the current node (b) PDP heights are updated

(c) Search for local minimum (d) pnew is the next node.

Fig. 1: Illustration of node generation algorithm in 2-D. The ‘potential dot placements’
(PDPs) shown by small black dots are are an advancing front.

is a good compromise. Lower grid density gave way to discretization errors in finding88

local minima so nodes ended up further apart than desired, while increasing grid89

density above a factor of around 10 − 20 did not significantly change the resulting90

node quality. Timing tests also showed that reducing the background grid density91

further gave no additional benefit as the cost is dominated by other factors. Unless92

otherwise stated, a factor of 10 will be used throughout this work.93
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4 K. VAN DER SANDE, AND B. FORNBERG

We are interested in interior nodes so we generate nodes in a box (or sphere,94

as described later in subsection 2.4). In order to create node sets in more complex95

domains, nodes should first be generated in a bounding box and points outside the96

desired domain discarded after the box is filled. If desired, boundary nodes can then97

be added manually. A final step would simulate local electrostatic repulsion on nodes98

near the boundary, as described in [9] and utilized in [1, 8]. Treatment of boundaries99

in RBF-FD has been described previously in [2, 3].100

Generating nodes in higher dimension d will require a PDP array of dimension101

d − 1 and the front will advance in the last dimension. For example in 4-D, the102

background PDP grid will be a 3-D array and nodes will be placed in increasing103

‘height’ in the 4th dimension.104

2.2. Spatial density function and exclusion radius. The exclusion radius105

is given by a 3-D function that prescribes the desired distance between nodes. Setting106

a uniform exclusion radius r for this method will guarantee a minimum spacing of107

r between nodes. In the case of a spatially varying exclusion radius, a minimum108

spacing requirement can be defined based on the exclusion radius of the previously109

placed nodes (prior-disks), the current node (current-disks), or some function of the110

two (See Appendix A for further details).111

The present method naturally adheres to the prior-disks variation as the exclusion112

radii of the previously placed nodes defines the position that the current node will be113

placed at. We propose a couple ways to deal with variations of this minimal spacing114

requirement in subsection 2.3 and subsection 2.4.115

2.3. Direction dependence and a possible correction. In the algorithm116

each node is placed based on the exclusion radii of the previously placed nodes and117

then the front is updated to include the exclusion radii of the new node. However118

this may lead to a directional dependence since the front advances in one particular119

direction (i.e. the Cartesian z-direction). An exclusion radius function which varies in120

z will then have some systematic error in the z-direction. There are several possible121

ways to correct for this direction dependence and satisfy different minimal spacing122

requirements. Here we introduce one possible correction in the spirit of a bigger-disks123

minimal spacing.124

A first order correction is added when placing a new node pj . Before placing125

the node, a check is performed of whether any already placed nodes are within the126

exclusion radius r(pj) of the new node. In order to avoid an expensive search of the127

list of previously generated nodes we store an additional array, which is the same size128

as the background grid and initialized with null values. Each element in this array129

corresponds to an (x, y) location in the background grid. When a node is placed at130

a given (x, y) location a pointer to that node’s place in the list of generated nodes is131

stored in the corresponding element of this additional array. This allows for a check132

of only close enough background grid elements to see if there are any placed nodes133

nearby. If any nodes are within r(pj), the height of the new node is increased until134

its own exclusion radius is satisfied. In 3-D, this correction can be written as:135

(2.1) znew = znbr +
√
r2 − (x− xnbr)2 − (y − ynbr)2136

where (xnbr, ynbr, znbr) is the position of the nearest neighbor. The new node is then137

placed at (x, y, znew).138

2.4. A modification for spherical density functions. Often it is desirable139

to have node density vary in the radial direction, i.e. in modeling an atom or the140
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FAST VARIABLE DENSITY 3-D NODE GENERATION 5

atmosphere. Another option for avoiding direction dependence in this case is to141

construct the node set as a radially advancing front. This method allows better142

control of whether the minimal spacing requirement should be based on the minimum,143

maximum, or average exclusion radius between the current node to be placed and the144

previously placed nodes. When placing the next node based on the exclusion radii145

of previous nodes, the bias will be in the radial direction rather than the z-direction,146

which will allow for better radial symmetry.147

To implement this modification, instead of starting with a background grid in the148

x, y-plane a grid can be constructed in (θ, φ) and the algorithm can be carried out in149

spherical coordinates building outwards from the origin.150

3. Generated node sets. Nodes are generated in 2-D and 3-D, and compared151

to existing algorithms. For the measures of node quality used in the following section,152

we refer to Appendix A.153

3.1. Nodes in 2-D. As a first test case, nodes are generated in the unit square154

with constant exclusion radius r = 0.025. They are compared to nodes generated by155

the original Fornberg & Flyer method [9] and nodes generated by the recent Slak &156

Kosec method [19] as well as a Cartesian lattice. Note that both methods have a157

parameter n to adjust, which corresponds to the number of sample points generated158

at each step. We use the recommended n = 5 for Fornberg & Flyer and n = 15159

for Slak & Kosec. The three node sets can be seen in Figure 2. The optimal circle160

packing in the plane is hexagonal and visually one can see that the present method161

results in nodes most similar to this.162
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N = 1698

Fig. 2: 2-D uniform node sets with r = 0.025 spacing, n being the the number
of sample points created at each step of the algorithms in [9, 19] and N the total
number of generated nodes. Larger N suggests closer to optimal node placement.

One of the advantages of the present method compared to a lattice structure or163

Halton node set is the ability to handle prescribed variable density functions. To164

demonstrate the ability to generate locally quasi-uniform nodes of highly variable165

density with sharp gradients, we consider the common test case for image rendering166

found online as ‘trui.png’. The radial exclusion function is based off the gray-scale167

information of the image so that more nodes are placed in darker areas. Figure 3168

depicts the original image and the resulting dithered nodes using the present method,169

while Figure 4 shows a close-up comparing the three algorithms. Note that the same170
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6 K. VAN DER SANDE, AND B. FORNBERG

radial exclusion function results in different numbers of generated nodes for each171

method. The present algorithm is able to achieve the highest density while still172

satisfying the minimum spacing constraint of the function. Qualitatively, the nodes173

also look the most locally regular.174

(a) Original image (b) Dithered version

Fig. 3: Test image ‘trui’ and dithered version using the present method with a total
of N = 40, 664 nodes.
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(a) Fornberg & Flyer, N =
36, 328
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(c) Present method, N =
40, 664

Fig. 4: Enlargements of 2-D variable density node sets based off the ‘trui’ image shown
in Figure 3a. N is the number of nodes generated in the total dithered image.

Table 1 compares the quality metrics defined in Appendix A for the uniform node175

sets and Table 2 compares the dithered node sets. Both the mesh ratio and packing176

density are unit free metrics that don’t depend on the number of nodes being placed.177

The present method has the highest number of nodes and smallest mesh ratio γ.178

The packing density gives a way to compare to the optimal hexagonal circle packing179

density π
√

3/6 ≈ 0.9069. The present method is closest to this optimal density. Note180

that for the uniform case, ρ should be close to half of the prescribed spacing r = 0.025.181

For the variable density case, ρ is not included since as the exclusion radius is varying182

the ratio γ is more descriptive.183
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Uniform Density

Packing Covering Radius Mesh Ratio
Method N Density ρ γ

Fornberg & Flyer 1492 0.72 0.0216 0.746
Slak & Kosec 1429 0.70 0.0253 1.010
Cartesian 1681 0.79 0.0177 0.707
Present method 1698 0.83 0.0180 0.685

Theoretical limit - 0.91 0.0125 0.5

Table 1: A comparison of node quality metrics on 2-D uniform node sets with spacing
r = 0.025. Larger N , larger packing density, smaller ρ and smaller γ are better.

Variable Density

Mesh Ratio
Method N γ

Fornberg & Flyer 36,328 0.756
Slak & Kosec 35,014 0.780
Present method 40,663 0.637

Table 2: A comparison of node quality metrics on variable density node sets generated
from the ‘trui’ test case. Larger N , larger packing density, smaller ρ and smaller γ
are better.

Looking at the mesh norm γ gives an idea of whether the nodes are well-spaced184

and quasi-uniform. However, it is not a perfect metric. These metrics only take185

into account the maximum gap and minimum distance between neighbors, not the186

distribution of gaps over the whole node set. A Cartesian grid will have the same gap187

and minimum distance over the whole node set while nodes generated by the present188

method have smaller gaps overall, which is why N is closer to the maximal packing,189

but may have a few nodes with larger gaps than the grid. This is why the Cartesian190

grid has a smaller covering radius than the present method. In fact Cartesian grids191

are non-optimal for RBF-FD due to poor conditioning and accuracy issues [10], which192

are investigated in section 4.193

To get a better idea of the variation over the node set, local regularity can be194

observed from the distribution of distance to the nearest k neighbors δi,j , i = 1, 2, ...k195

for each node pj . Table 3 compares statistics based on 6 nearest neighbors for the196

uniform node sets. We use k = 6 based on hexagonal circle packing. Here, the197

present method gives the closest δ̄j to the prescribed r = 0.025 with a small standard198

deviation and mean range(δi,j).199

One way to visualize this distribution of nearest neighbors is through a histogram200

plot, as seen in [?, 18, 22]. The distance to nearest neighbor can be scaled by the201

exclusion radius function so a sharp peak is expected around 1 with some spread to202

the right. This can be seen in the histograms in Figure 5. The 6 neighbors in the203

Cartesian lattice are fixed at one of two distances as expected in a grid lattice. More204

neighbors are at the prescribed distance in the present method than Slak & Kosec.205
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8 K. VAN DER SANDE, AND B. FORNBERG

Method mean δ̄j std δ̄j mean range(δi,j)

Fornberg & Flyer 0.0291 0.0016 0.0114
Slak & Kosec 0.0299 0.0018 0.0127
Cartesian 0.0285 3.3e-16 0.0104
Present method 0.0270 0.0007 0.0080

Table 3: A comparison of distance to nearest 6 neighbors for uniform 2-D nodes.
Mean δ̄j should be close to prescribed r = 0.025 while std δ̄j and mean range(δi,j)
should be small.

(a) Fornberg & Flyer (b) Slak & Kosec

(c) Cartesian lattice (d) Present method

Fig. 5: Distribution of distance to 6 nearest neighbors for the uniform 2-D node sets.
Distance to neighbors δi,j is normalized by the exclusion radius r = 0.025 and the
number of counts in each bin is normalized by the total number of counts .

3.2. Nodes in 3-D. Moving on to the 3-D case, nodes were generated in the unit206

cube. A uniform node set with prescribed exclusion radius r = 0.05 is compared to a207

Cartesian lattice and a node set generated with the method from [19] in Table 4. Note208

there is no comparison to [9] as this method does not generalize to higher dimensions.209

As in the 2-D case, ρ is smaller for a Cartesian grid than for the nodes generated by210

the present method. On all other metrics the present method performs best.211

Optimal packing density in higher than 2 dimensions is a classic challenging math-212

ematical problem [5]. The optimal 3-D packing density is achieved by a family of213

close packed lattices, which have a packing density of π/3
√

2 ≈ 0.74. For the pres-214

ent method, background density was increased to a factor of 100 to determine the215

average packing density. Using the usual factor of 10 would decrease cost and only216

compromise on quality by about 5%.217

Table 5 compares statistics based on 12 nearest neighbors for the same 3 uniform218
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Method N Packing Density Covering Radius ρ Mesh Ratio γ

Slak & Kosec 7128 0.46 0.0537 1.073
Cartesian 9261 0.52 0.0433 0.866
Present method 9998 0.61 0.0447 0.887

Theoretical limit - 0.74 0.0250 0.500

Table 4: A comparison of node quality metrics on 3-D uniform node sets with spacing
r = 0.05. Larger N , larger packing density, smaller ρ and smaller γ are better.

node sets. We use k = 12 based on dense sphere packings like cubic close packing219

and hexagonal close packing where each sphere is surrounded by 12 others. Here, the220

present method gives the closest δ̄j to the prescribed r = 0.05 with a small standard221

deviation and mean range(δi,j).222

Method mean δ̄j std δ̄j mean range(δi,j)

Slak & Kosec 0.0608 0.0017 0.0254
Cartesian 0.0604 3.6e-15 0.0207
Present method 0.0546 8.8e-4 0.0163

Table 5: A comparison of distance to nearest 12 neighbors for uniform 3-D nodes.
Mean δ̄j should be close to prescribed r = 0.05 while std δ̄j and mean range(δi,j)
should be small.

Histogram plots in Figure 6 show the distribution of distance to the nearest223

12 neighbors. Again the neighbors in the Cartesian lattice are fixed at one of two224

distances as expected in a grid lattice. More neighbors are at the prescribed distance225

in the present method than Slak & Kosec, with a smoother tail.226

(a) Slak & Kosec (b) Cartesian lattice (c) Present method

Fig. 6: Distribution of distance to 12 nearest neighbors for the uniform 3-D node sets.
Distance to neighbors δi,j is normalized by the exclusion radius r = 0.05 .

3.3. Execution Time. We investigate the time complexity of the present method227

through numerical experiments. Node generation cost is expected to scale with num-228

ber of nodes N placed for a fixed background grid density factor. In Figure 7 we229

observe O(N) convergence for both uniform density and variable density node sets in230
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2-D and 3-D.231
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Fig. 7: Cost of node generation in the 2-D unit square and 3-D unit cube with
no boundary using a MATLAB implementation on a 6-core Intel i7-8750H CPU.
An average is taken over 10 tests per each number of nodes, and error bars denote
standard deviation from the mean.

There are two while loops in the given algorithm. The outer loop runs until the232

nodes are out of the bounding box. Since the algorithm satisfies minimum spacing233

between nodes, an upper bound on the number of nodes to be placed in bounding234

box B of dimension d, and thus the number of loop iterations, is given by235

(3.1) Nmax <
Vol(B)

πd/2

Γ( d
2 +1)

(
min(r)

2

)d .236

For a bounded box volume and min(r) ≥ δ > 0, this is a finite bound.237

The inner loop is an iteration to find a local minimum. In the worst case scenario,238

this minimum search will continue until the global minimum is found. The global239

minimum exists for a bounded box, since the projection onto the plane orthogonal to240

the z direction is also a finite area which we denote bb. Thus the maximum number241

of iterations for node p is bounded as242

(3.2) Niter ≤
bb− (2r(p))d−1

r(p)d−1
,243

which is also finite for an exclusion radius function r(p) ≥ δ > 0.244

In practice, the number of iterations to find a local minimum is significantly less245

than this upper bound. For the 2-D uniform node set shown in Figure 2c the average246

number of iterations per node is 1.72, while for the 2-D trui node set the average is247

1.67. For the 3-D uniform node set the average number of iterations is 2.08. Although248

the maximum number of iterations does increase as the density increases, the average249

remains around 2 in all the experiments detailed in this work.250

3.4. Direction dependence correction results. The original algorithm is251

compared to the correction method described in subsection 2.3 and the radially built252

method described in subsection 2.4 for a radially varying node density. As we have253

already compared the present algorithm to other recent methods in subsection 3.1254
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and subsection 3.2, we only compare to the present algorithm in this section. The255

exclusion radius function256

(3.3) r(R) = CeεR
2

257

is used as a test case, where R =
√
x2 + y2 + z2 is the distance to the origin, and C258

and ε are parameters that change the shape of the function. Figure 8 shows a node259

set using C = 4/21 and ε = 1/15.260
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Fig. 8: Radially varying node set generated using exclusion radius function (3.3).

Two radially built variations are investigated. Variation (1) uses an exclusion ra-261

dius based on previously placed nodes, while variation (2) uses the maximum exclusion262

radius between the current node and the previously placed nodes.263

First, the distance to nearest neighbor is compared to the prescribed exclusion264

radius function, both as a function of distance to the origin, in Figure 9. The corrected265

version more closely aligns to the exclusion radius function than the original algorithm,266

but the radially built node set does even better.267
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Fig. 9: Scatter plots of the distance to nearest neighbor as a function of distance from
the origin. The line through the data is the prescribed exclusion radius.

To investigate the bias in the z-direction, the distance to nearest neighbor is plot-268

ted as a function of z and compared between node sets in Figure 10. As previously,269

the distance to nearest neighbor is normalized by dividing by the desired exclusion270

radius. Here we only compare the original algorithm to both radially built variations.271
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One can see how the radially built node sets avoid the bias seen in the original algo-272

rithm and how imposing different minimal spacing requirements through the exclusion273

radius can affect the distribution of nodes.274
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Fig. 10: Comparison of the normalized distance to nearest neighbor between the
original method and two radially built node set.

For additional insight, the distance to k nearest neighbors can be considered as275

well. In Figure 11, a 2-D histogram shows the normalized distances to the 6 nearest276

neighbors as a function of z.277
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Fig. 11: Histogram of normalized distances to the 6 nearest neighbors δi,j of each
node pj . Color represents the number of counts in each tile normalized by the total
number of counts.

4. Node sets for RBF methods. Here we investigate the application of gener-278

ated node sets to RBF-FD. The purpose of this work is not to further the development279

of these meshless methods for solving PDEs. It is instead to present a useful tool for280

node generation. Hence we will look at the condition number of the collocation ma-281

trix as an indicator of the application to RBF-FD methods, and the results of a local282

interpolation.283

4.1. Condition Number. RBF-FD makes use of a collocation matrix A to284

obtain the weights for each local stencil of size n [10]. One measure of node quality285

for discretizing PDEs is the condition number of this matrix. The condition number is286

calculated for a uniform node set of N ≈ 8000 nodes in the 3-D unit cube. A Gaussian287

kernel φ(r) = e−(εr)2 is used as the basis function, where r is the Euclidean distance288

from the collocation point and ε is the shape parameter. The condition number is289
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averaged over 300 stencils centered around random points x0 taken from a normal290

distribution centered in the cube. The result is compared to a Halton node set, a291

Cartesian lattice, and one generated by the method of Slak & Kosec in Figure 12.292

Similar results where the present method and Slak & Kosec have the lowest condition293

numbers can be obtained by instead fixing the minimum spacing between node sets294

(for all except the Halton set) and allowing N to vary.295
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Fig. 12: Comparison of the condition number of the RBF-FD matrix using Gaussian
RBFs for a 3-D uniform node set of N ≈ 8000 nodes in the unit cube

It is important to remember that the condition number is not the most useful296

for measuring node quality, as opposed to the quality metrics investigated in previous297

sections. In [10] it was noted that node irregularity can in some cases reduce condition298

numbers even while damaging accuracy. When using Gaussian RBFs, a higher con-299

dition number can actually give higher accuracy up to a breakpoint where the error300

spikes. There exist stable algorithms for Gaussian RBFs which bypass these issues in301

conditioning [10, 12]. When using polyharmonic splines augmented with polynomials,302

as is increasingly popular [2, 3], the condition number becomes irrelevant.303

4.2. Local Interpolation. Local interpolation with RBFs provides insight into304

node quality without getting into the details of solving specific PDEs. We consider305

a test case of using RBF-FD to calculate a local interpolant to f(R) = 1
1+R3 where306

R is the distance from the origin. Using the same node set in the unit cube, the307

interpolant was calculated at 100,000 different points using a local stencil of size308

n = 80 nodes. The resulting error is compared for different values of the shape309

parameter ε in Figure 13. The results are shown for both fixed N ≈ 8000 and fixed310

minimum spacing r = 0.05. For the fixed spacing, we compared to a Halton set with311

the same number of nodes as the present method.312

5. Conclusions. Methods like RBF-FD for solving PDEs on scattered nodes313

require that nodes be locally regular and often spatially varying in density. These314

nodes should satisfy minimum spacing and bounded gaps between nodes. The present315

method is demonstrated to generate quality node sets in 2-D and 3-D and performs316

well in comparison to other node sets. It is simple to implement and computationally317

fast. More complex domains can be treated by generating nodes in a bounded box and318

then eliminating nodes outside the desired domain. From there, boundary treatment319

has been discussed in [9]. Finally, for radially varying density functions a slight320
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Fig. 13: Error in the local interpolation of f(R) = 1
1+R3 where R is distance to the

origin.

modification of the algorithm can allow nodes to be generated in spherical coordinates321

to reduce bias in the direction of the advancing front. Tests with variable density322

demonstrated the ability to handle gradients in the radial exclusion function. There323

may be difficulty in contexts where extreme refinement in small areas of the domain324

is desired, as this may increase the background grid density to a point where the325

computational efficiency is lost. Future directions include generating nodes from a326

given boundary set and investigating extensions to adaptive node generation. Source327

code for the present node generation algorithm in 2-D and 3-D is available at [21].328

Appendix A. Measuring node set quality. There is no general metric329

of a ‘good node set’, rather, various characteristics are advantageous for different330

applications. Good point sets for mesh generation or PDE solvers may differ from331

good points for rendering images or for numerical integration. Low discrepancy is a332

measure of node quality that has been heavily investigated in relation to numerical333

integration and Monte Carlo simulations, and has been proposed as a measure of quasi-334

random node sets [6]. However, a sequence can have low discrepancy despite having335

arbitrarily close spacing between nodes: if a pair of points are very close together336

within a node set of N points, they only add at most 1/N to the discrepancy.337

Well-spaced nodes have been defined as satisfying a minimal spacing requirement338

and having bounded gaps [20]. These requirements are desirable for mesh-free PDE339

solvers. The minimal spacing requirement for a uniform density of nodes is clear:340

given a specified node spacing r341

(A.1) ||pi − pj || ≥ r342

for any two distinct nodes pi and pj . For the variable density case, the minimal343

spacing requirement, otherwise known as the empty disk property, is344

(A.2) ||pi − pj || ≥ f(pi, pj)345

where pi is the closest placed node to a new candidate node pj and f(pi, pj) may be346
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one of the variations described by Mitchel et al [16]:347

(A.3)

Prior-disks: f(pi, pj) = r(pi)

Current-disks: f(pi, pj) = r(pj)

Bigger-disks: f(pi, pj) = max(r(pi), r(pj))

Smaller-disks: f(pi, pj) = min(r(pi), r(pj))

348

The bounded gaps requirement states that there is an upper bound on the max-349

imum radius of a sphere that can be placed within the node set without including350

any nodes. As with minimum spacing, this bound should be constant in the case of351

uniform density nodes, but can be modified for variable density. A node set satisfies352

the L-gap property if for exclusion radius function r(x), the maximum sphere that353

can be placed within the node set without including any nodes has a radius bounded354

by Lr(x) where L is a constant [20].355

In the context of RBF-FD it is desirable that nodes be “locally quasi-uniform”,356

which can be understood intuitively as being roughly equispaced when zoomed in.357

The term quasi-uniform is well defined on a global sense. A sequence of node sets of358

size N are globally quasi-uniform if the mesh ratio359

(A.4) γN =
ρN
δN

,360

where ρN is the covering radius and δN is the maximum distance to the nearest neigh-361

bor over the whole set, is bounded as N → ∞ [13]. This corresponds to minimizing362

ρ and maximizing δ over the whole node set. Although this is a global quality and363

for variable density node sets one might be interested in looking at the mesh ratio on364

smaller local patches, it is still always desirable to minimize the global mesh ratio.365

If a Voronoi diagram is constructed from a node set, the covering radius of a366

node set can be measured as the furthest distance from a node to a vertex of its367

corresponding Voronoi cell [5]. Node generation may also be characterized as a sphere368

packing problem. The sphere packing problem is often separated into a packing369

problem or a covering problem and a solution to one may not be good for the other.370

Both can be measured based on a node set’s Voronoi diagram. A good packing371

maximizes the radius of the inscribed circle of the Voronoi cells, while a good covering372

minimizes the covering radius, which is the radius of the circumscribed circle of the373

Voronoi cells [5]. It is natural, therefore to look at the ratio in (A.4) as a balance374

between both problems. In using a Voronoi diagram to investigate these metrics, only375

interior nodes are considered as the Voronoi cells go to infinity at the edges.376

For a node set that satisfies minimal spacing requirements the distance to nearest377

neighbor is bounded below as δ ≥ r(x). Then the problem of minimizing γ can also378

be reformulated as maximizing the number of nodes in the domain, N . To compare379

further to circle packing, for a uniform node set in 2-D the packing density can be380

calculated by considering circles around each node, summing the area of the circles381

within the domain and dividing by the area of the domain. The circles should be half382

the radius of the exclusion radius. When calculating this packing density, the domain383

is a box taken from the center of the whole node set in order to avoid boundary effects.384

It is known that the optimal packing density in the plane is hexagonal, which has a385

density of π
√

3/6 ≈ 0.9069. The closer the 2-D packing density is to this, the better.386

A final desirable quality in a node set is local regularity, which requires taking387

into account the distance to k nearest neighbors. The k neighbors for each node pj are388

found and denoted pi,j for i = 1, 2, ...k. The distance to each neighbor is calculated as389
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δi,j = ||pj − pi,j || and an average can be taken over the k neighbors δ̄j = 1
k

∑k
i=1 δi,j390

for each node pj . The average δ̄j and standard deviation can be taken over the node391

set as well as the average range of maxj δi,j −minj δi,j . Again only internal nodes pj392

are used to avoid boundary effects.393
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