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Finite difference (FD) formulas approximate derivatives by weighted sums of function values. Given
arbitrarily distributed node locations in one-dimension, a previous algorithm by the present author
(1988, Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput., 51, 699–706)
provides FD weights of optimal order of accuracy for approximating any order derivative at a specified
location. This algorithm is extended here to the case of finding weights to apply not only to function
values but also to first derivative values in the case that these also are available. The MATLAB code for
the algorithm is provided, and two examples are given to illustrate how this type of FD stencil can be
applied to solving partial differential equations.
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1. Introduction

Finite differences (FD) have a long history, being used for solving ordinary differential equations
(ODEs) in the 19th century, and introduced for partial differential equations (PDEs) in a pioneering study
by Richardson (1911). In the common case that node layouts in more than one-dimension are grid based,
explicit one-dimensional approximations can usually be applied separately in each spatial direction.1

Table 1 shows sketches of three different types of one-dimensional FD stencils. In the algorithms listed
here, k denotes the order of derivative to be approximated. This can be any non-negative integer, with
the algorithms in the k = 0 case providing weights for interpolation formulas. Algorithm 1 is convenient
both for equispaced and nonequispaced nodes. It is computationally very fast, and does not involve any
(potentially ill-conditioned) linear system solution step. Algorithm 2 requires (in a symbolic language,
such as Mathematica) only two lines of code, and gives weights in exact (rather than floating point)
format. As noted in its references, one of its applications is to provide weights for most standard classes
of ODE linear multistep methods.

The reason for here generalizing Algorithm 1 to Algorithm 3 is to make these Hermite-type FD
approximations equally easily available.2 In situations where both f and f ′ values are available at the
node points (which can be arbitrarily spaced), these types of approximations provide a higher order of
accuracy for the same stencil width and, as we will also see in Section 3, lower leading error coefficient

1 In the case of nodes irregularly scattered in multiple dimensions (for purposes such as aligning nodes with irregular boundaries
or interfaces, or providing local refinement), FD generalizes to radial basis function-generated finite differences (RBF-FD) as
surveyed, for example, in Fornberg & Flyer (2015a,b).

2 Other options for finding Hermite-type weights include solving linear systems which enforce exact result for polynomials, and
a contour-integration-based approach (Butcher et al., 2011). Some greater flexibility can be gained at the expense of computational
cost and numerical stability.
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2 B. FORNBERG

Table 1 Summary of Algorithms 1–3. In the stencil sketches, the vertical separation between the
markers has no significance other than graphical clarity. All the indicated locations are along a single
axis (which we call the x-axis)

Algorithm
number

Stencil
sketch

Weights
applied to

Brief description

1
�

� ��� ��
f (k)

f
Nodes arbitrarily spaced. Original Fornberg
(1988) with FORTRAN code; MATLAB code in
Fornberg & Flyer (2015a).

2
����
�������

f (k)

f
Nodes equally spaced in f and f (k). The two sets
can be arbitrarily shifted. Reference Fornberg
(1998) with Mathematica code; see also
Fornberg & Flyer (2015a).a

3
�

� ��� ��
� ��� ��

f (k)

f ′
f

f and f ′ locations the same, arbitrarily spaced.
Present study; MATLAB code provided.

aUsing more recent Mathematica syntax.

for matching orders of accuracy (unsurprisingly since, in typical use, they pick up more information
local to the point of interest than do stencils that only use function values).

Following the description in Section 2 of the present HFD (Hermite-FD) algorithm (Algorithm 3),
two simple PDE test problems are used in Section 3 to illustrate the high accuracies that can be
obtained even with small stencils. Some conclusions (in Section 4) are followed by references and two
appendices, one with a MATLAB code for the present algorithm, and one with a couple of FD / HFD
weight tables.

2. Hermite algorithm

We first summarize briefly the key concept behind Algorithm 1. This is followed by a description of
how one builds on this to obtain the Hermite algorithm that the present study focuses on (referred to
above as Algorithm 3).

2.1 Concept behind Algorithm 1

Since Algorithm 1 has been described repeatedly (first in Fornberg, 1988 and later, with graphical
illustrations of its recursions, in Fornberg, 1990, 1992), we will here limit ourselves to a brief summary
of its key concept.

Let the nodes be located at x = x0, x1, . . . , xn (distinct, but otherwise arbitrary) and consider stencils

that approximate dkf
dxk , for simplicity at x = 0. The Lagrange interpolation polynomial takes the form

pn(x) =
n∑

i=0

Li,n(x) f (xi), (2.1)
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AN ALGORITHM FOR CALCULATING HERMITE-BASED FINITE DIFFERENCE WEIGHTS 3

where

Li,n(x) =
{

1, x = xi,
0, x = xl, l �= i.

(2.2)

These Lagrange kernels Li,n(x) can (uniquely) be written as

Li,n(x) =
n∏

l = 0
l �= i

x − xl

xi − xl
=

n∑
j=0

ci,j,nxj. (2.3)

Differentiating (2.1) and (2.3) k times gives

dk

dx k
pn(x)

∣∣∣∣
x=0

=
n∑

i=0

dk

dx k
Li,n(x)

∣∣∣∣
x=0

f (xi) =
n∑

i=0

k! ci,k,n f (xi).

The desired FD weights can thus be read off from the coefficients ci,j,n in the right-hand side (RHS) of
(2.3). The task of finding the FD weights is thus equivalent to that of rearranging the Lagrange kernel
(2.3) into standard polynomial (finite Taylor expansion) form. The product form of Li,n(x) in (2.3) can
be shown to provide a couple of recursion relations for the ci,j,n coefficients such that these all can be
deduced explicitly starting from the trivial c0,0,0 = 1. In contrast to finding weights by solving linear
systems, this algorithm is computationally very fast and also entirely stable numerically.

2.2 Hermite algorithm (Algorithm 3)

Considering interpolation formulas based on f (xi) and f ′(xi) values (but no higher still derivatives), the
Hermite polynomial counterparts to (2.1) and (2.2) take the form

q2n+1(x) =
n∑

i=0

Di,n(x) f (xi) +
n∑

i=0

Ei,n(x) f ′(xi), (2.4)

where

Di,n(x) =
{

1, x = xi,
0, x = xl, l �= i

and
dDi,n(x)

dx
= 0, x = xi,

Ei,n(x) = 0, x = xi and
dEi,n(x)

dx
=

{
1, x = xi,
0, x = xl, l �= i.

The function (Li,n(x))
2 satisfies all requirements for Di,n(x) with the exception that, instead of being

zero,
d(Li,n(x))

2

dx |x=xi
= 2 dLi,n(x)

dx |x=xi
= 2

∑
l �=i

1
xi−xl

= 2si,j. The function (x − xi)(Li,n(x))
2 satisfies all

the requirements for Ei,n(x). Thus, we can write Di,n(x) and Ei,n(x) in terms of Li,n(x) as

Di,n(x) = (1 − 2si,j(x − xi))
(
Li,n(x)

)2 ,

Ei,n(x) = (x − xi)
(
Li,n(x)

)2 . (2.5)
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4 B. FORNBERG

By knowing (from Algorithm 1) the Taylor expansions for Li,n(x), we obtain from (2.5) the Taylor
coefficients for Di,n(x) and Ei,n(x). Since (2.4) implies

dkq2n+1(x)

dxk

∣∣∣∣∣
x=0

=
n∑

i=0

dkDi,n(x)

dxk

∣∣∣∣∣
x=0

f (xi) +
n∑

i=0

dkEi,n(x)

dxk

∣∣∣∣∣
x=0

f ′(xi),

these Taylor coefficients provide the desired weights in this Hermite case.3

Appendix A contains a MATLAB function weights that implements both Algorithms 1 and 3. The
leading comment lines explain how the routine is used.

Example Use the MATLAB function weights to obtain the weights at xk = −3, −2, −1, 0, 1, 2 for
approximating f (0), f ′(0), f ′′(0), f ′′′(0) when using

1. f (xk) values only (output array c) and

2. f (xk) and f ′(xk)values (output arrays d, e).

The statements

z = 0;

x = −3 : 3;

m = 3;

[c, d, e] = weights(z, x, m)

produce as output4

c =
0 0 0 1 0 0 0

− 1
60

3
20 − 3

4 0 3
4 − 3

20
1

60
1
90 − 3

20
3
2 − 49

18
3
2 − 3

20
1

90

− 1
8 −1 13

8 0 − 13
8 1 − 1

8

d =
0 0 0 1 0 0 0
0 0 0 0 0 0 0

157
18000

69
250

39
16 − 49

9
39
16

69
250

157
18000

− 167
18000 − 963

2000 − 171
16 0 171

16
963
2000

167
18000

3 Formulas (but not FD weights) for non-equispaced Hermite interpolation on periodic data were considered in Salzer (1960).
4 Using MATLAB symbolic toolbox, and declaring (noninteger) variables as ‘sym’, makes the algorithm return weights in

exact rational form.
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AN ALGORITHM FOR CALCULATING HERMITE-BASED FINITE DIFFERENCE WEIGHTS 5

e =
0 0 0 0 0 0 0
0 0 0 1 0 0 0

1
600

9
100

9
8 0 − 9

8 − 9
100 − 1

600

− 1
600 − 27

200 − 27
8 − 49

3 − 27
8 − 27

200 − 1
600

All the nontrivial entries in this output can be seen also in Tables B1 and B2 (which are often convenient
as a reference when using centered FD schemes in equispaced node cases).5

3. Numerical illustrations for solving two simple PDEs

Before applying different types of FD formulas to a PDE demonstration problem, let us first describe
the formulas we are considering in some more detail.

3.1 The FD formulas to be used

The different FD formulas that are employed in the one-dimensional PDE test are listed in Table 2.
These are all provided by the present MATLAB function weights. In the CFD (compact FD) cases,
we need a simple trick. For example, to generate the CFD 4 formula, we start by forming the HFD
approximation

f (5)(x) = [ 90 0 −90 ]/h5f + [ 30 120 30 ]/h4f ′ + O(h2)f (7)(x), (3.1)

which is exact for f (x) = 1, x, . . . , x6. The left-hand side and the error term both vanish for f (x) =
1, x, . . . , x4. Then multiplying (3.1) by h4

180 normalizes the relation to give the CFD 4 formula in Table 2.
For the CFD 8 case, we similarly start by considering f (9)(x).

3.2 Accuracy comparisons by dispersion analysis

We will, as our first PDE demonstration problem, consider the one-dimensional wave equation
∂u

∂t
+ ∂u

∂x
= 0. (3.2)

Before turning to numerical results, we present some dispersion analysis of the methods listed in Table 2.
The single Fourier mode solution to (3.2) is u(x, t) = eiωx−iα(ω)t, with α(ω) = ω. When the space
direction x is discretized with a step length h, the available frequency range becomes limited to −π

h <

ω ≤ π
h .6 If, for example, we approximate ∂u

∂x in (3.2) using FD 2, we obtain

α(ω) = 1

ih

(
−1

2
e−iωh + 1

2
eiωh

)
= sin ωh

h
= ω − h2

6
ω3 + · · ·

This function α(ω)h is shown as the bottom curve in Fig. 1, and its approximation for small ω as the
top-right entry in Table 2.

5 As noted above, the present algorithm weights works just as well in noncentered cases, and when the nodes are not equally
spaced.

6 Due to aliasing; any higher frequency will, on the grid, appear identical to one within this range.
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6 B. FORNBERG

Table 2 Summary of the regular, compact and HFD formulas that are compared in Sections 3.2
and 3.3

Scheme Stencil Stencil coefficients α(ω), expanded
(acc. order) width (nodes spaced distance h apart) around origin

FD 2 3 f ′ ≈
[
− 1

2 0 1
2

]
/h f ω − h2

6 ω3 + · · ·
4 5 f ′ ≈

[
1
12− 2

3 0 2
3− 1

12

]
/h f ω − h4

30ω5 + · · ·
6 7 f ′ ≈

[
− 1

60
3
20 − 3

4 0 3
4 − 3

20
1
60

]
/h f ω − h6

140ω7 + · · ·
8 9 f ′ ≈

[
1

280 − 4
105

1
5 − 4

5 0 4
5 − 1

5
4

105 − 1
280

]
/h f ω − h8

630ω9 + · · ·
CFD 4 3

[
1
6

2
3

1
6

]
f ′ ≈

[
− 1

2 0 1
2

]
/h f ω − h4

180ω5 + · · ·
8 5

[
1
70

8
35

18
35

8
35

1
70

]
f ′ ≈

[
− 5

84 − 8
21 0 8

21
5
84

]
/h f ω− h8

44100ω9+· · ·
HFD 4 3 f ′′ ≈ [2 − 4 2] /h2f +

[
1
2 0 − 1

2

]
/h f ′ ω − h4

1080ω5 + · · ·
8 5 f ′′ ≈

[
7
54

64
27 − 5 64

27
7
54

]
/h2f +

[
1
36

8
9 0 − 8

9 − 1
36

]
/h f ′ ω − h8

441000ω9 +
· · ·

Fig. 1. Display of the dispersion curves α(ω)h (as functions of ωh) for the different FD, CFD and HFD methods compared in
Section 3. Since all these functions are odd, they are displayed only over [0, π ] (rather than [−π , π ]).
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AN ALGORITHM FOR CALCULATING HERMITE-BASED FINITE DIFFERENCE WEIGHTS 7

Fig. 2. Analytic solution to PDE test problem at time t = 1000, displayed over the spatial interval 850 ≤ x ≤ 1050 with markers
shown at integer x-coordinates.

The implementation of the regular FD approximations is entirely straightforward—just apply the
stencils weights listed in Table 2. For the CFD approximations, the ux-values at the nodes are obtained
from the u-values by solving a tridiagonal and a five-diagonal linear system, respectively. For the HFD
formulas we start by noting that ut = −ux implies (ux)t = −uxx. Writing ux = v, we can thus solve
(3.2) by advancing in time, [

u
v

]
t
= −

[
v

uxx

]
. (3.3)

The only spatial approximation required is to approximate uxx in terms of u and v = ux, i.e. exactly what
the HFD formulas in Table 2 provide.

The remaining curves in Fig. 1 and approximations in Table 2 are obtained similarly to the FD 2
case, described in some detail above. We can now make several observations:

• The orders of accuracy for the spatial approximations match the orders by which the curves
approximate the ideal straight line in Fig. 1 at ωh = 0.

• For matching orders of accuracy, the CFD and HFD curves fit this straight line over a wider part
of the frequency range −π < ωh ≤ π than do the corresponding FD curves.

• The FD and CFD curves all go to zero at ±π (since the fastest oscillating grid function
. . . , +1, −1, +1, −1, +1, . . ., arising for ωh = ±π , is symmetric around each node point, causing
the first derivative to be approximated by zero at all of these). One key to HFD’s superior accuracy
is that these methods avoid this issue.

3.3 Accuracy comparisons when solving the one-dimensional PDE test problem

In this test we solve (3.2) with u(x, 0) = e−(0.3x)2
as initial condition. With uniform space discretization

h = 1, the analytic solution at time t = 1000 will look as shown in Fig. 2. Figure 3 shows (over the
same display interval 850 ≤ x ≤ 1050) the numerical solutions (having used accurate time stepping,
such that all errors that are seen come from the spatial approximations). The display is organized by FD
stencil width (increasing from front to back) and by FD type (left to right).

It is visually obvious from Fig. 3 that the regular FD falls well short of the other methods in terms
of accuracy—with highly conspicuous trailing wave trains unless the FD stencil widths are large. The
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8 B. FORNBERG

Fig. 3. Numerical solutions to the PDE test problem, using various FD schemes and different stencil widths/orders of accuracy,
displayed final time of t = 1000, as in Fig. 2. For each case, the number shown following the acronym of the method is the max
norm error of the numerical solution.

CFD methods are more accurate, but incur the cost of having to solve a banded linear system for each
time step. The present Hermite approach offers by far the best accuracy. It steps forward in time twice
the number of variables (u and v, rather than just u), but it involves no solutions of linear systems.

When using an explicit method in time, one would for ut = −ux expect a time-step condition of the
form k/h ≤ constant. The reformulation (3.3) does not alter this. With u(t) and v(t) denoting column
vectors with u- and v-values after the Hermite-type spatial discretization, (3.3) requires time stepping of
a system with block structure

d

dt

[
u(t)
v(t)

]
= −

[
0 I

O( 1
h2 ) O( 1

h )

] [
u(t)
v(t)

]
. (3.4)

A similarity transformation of this matrix with

[
I 0
0 hI

]
makes all elements O( 1

h ) or less, therefore

making O( 1
h ) also an upper bound for the magnitudes of matrix eigenvalues.

3.4 A two-dimensional PDE illustration

A simple two-dimensional generalization of (3.2) is

∂u

∂t
+ α

∂u

∂x
+ β

∂u

∂y
= 0, (3.5)

where we let α and β be constants. With v = ux, w = uy, this PDE can be written as

⎡
⎣ u

v
w

⎤
⎦

t

= −
⎡
⎣ αv + βw

αuxx + βuxy
αuxy + βuyy

⎤
⎦ ,
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AN ALGORITHM FOR CALCULATING HERMITE-BASED FINITE DIFFERENCE WEIGHTS 9

Fig. 4. The numerical solution in the two-dimensional PDE test case after the Gaussian cone has moved a distance of 1000 from
its original position at the origin. The displayed grid is the same as (a section of) the computational grid.

where we can approximate the derivatives in the RHS by

uxx ≈ [
1 −2 1

] 2

h2 u + [
1 0 −1

] 1

2h
v, (3.6)

uyy ≈
⎡
⎣ 1

−2
1

⎤
⎦ 2

h2 u +
⎡
⎣ 1

0
−1

⎤
⎦ 1

2h
w, (3.7)

[
1 4 1

]
uxy ≈ −

⎡
⎣ 1

0
−1

⎤
⎦[ −1 0 1

] 3

2h2
u +

⎡
⎣ 1

0
−1

⎤
⎦[

1 4 1
] 1

2h
v + [ −1 0 1

] 3

h
w. (3.8)

Relations (3.6) and (3.7) are exactly the same as the HFD 4 formula used in the one-dimensional
PDE example. Equation (3.8) is of a slightly different form (and can be replaced or alternated with
an equivalent one that requires a tridiagonal solve in the y-direction, rather than in the x-direction). By
Taylor expansion, it is easily verified to be 6th-order accurate.

We choose as initial condition a rotated version of exactly the same initial condition as in the one-
dimensional test: u(x, y)|t=0 = e−(0.32(x2+y2)) and then step (3.5) forward (with α = 4

5 , β = 3
5 and space

step h = 1) until t = 1000, at which time the cone will have moved a distance of 1000 in a direction
not aligned with the grid, to the position x = 800, y = 600. Figure 4 shows from two perspectives the
numerical solution at this end time, over an x, y-region surrounding this point. The max norm error is
comparable to the one-dimensional case: 7.2 · 10−2 vs. 6.5 · 10−2 (both using 3-node-wide stencils).

3.5 Some literature comments

There already exists a rich literature on CFD approximations, starting with Fox (1947) and Collatz
(1960, p. 538), with later works including Fornberg & Ghrist (1999) and Lele (1992). Hermite-type
FD methods for approximating wave propagation have been described in several recent works; see for
example, Appelö et al. (2018) for implementations and references. The approach taken in these works,
however, differs fundamentally from the present implementation, with the Hermite polynomials defined
by numerous derivatives at just two nodes for each. Another key ingredient in these implementations is
node staggering in both space and time.
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10 B. FORNBERG

An application of the present FD and HFD approximations to Euler–Maclaurin expansions is
described in Fornberg (2020).

4. Conclusions

Finite difference approximations are ubiquitous in computational mathematics. For many situations
(especially when using equispaced grids), tables of weights can be generated once and for all. However,
when using noncentered stencils (for example, near boundaries) or when nodes are not equispaced, it
is essential to have available convenient, fast and numerically stable algorithms for computing weights.
We provide here a generalization of a previous algorithm (Fornberg, 1988), applicable when not only
function values but also first derivative values are available (and an arbitrary-order derivative is to
be approximated). With this tool, various nonstandard FD methods can be conveniently explored and
applied. We have here limited the discussion regarding applications to two simple PDE examples.
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AN ALGORITHM FOR CALCULATING HERMITE-BASED FINITE DIFFERENCE WEIGHTS 11

Appendix A. MATLAB code

The MATLAB function weights:

function [c, d, e] = weights (z, x, m) % Calculates FD weights.

% Input parameters:

% z location where approximations are to be accurate

% x row vector with x-coordinates for grid points

% m highest derivative that we want to find weights for

% Output parameters

% c, d, e arrays size (m+1, length (x)), containing (as output) in

% successive rows the weights for derivatives 0, 1, ..., m.

% The weights in c are when using f-values only, in d and

% e for when using both f- and f′ values

% __________________________________________________________________

n=length(x); c=zeros(m+2,n); c(2,1)=1;

A=x’-x; s=sum(1./(A+eye(n)))-1;

b=cumprod([ones(n,1),A],2); rm=repmat((0:m+1)’,1,n-1);

d0=diag(b); d1(1:n-1)=d0(1:n-1)./d0(2:n);

for i=2:n

mn=min(i,m+1);

c(2:mn+1,i)=d1(i-1)*(rm(1:mn, 1).*c(1:mn,i-1)-(x(i-1)-z)...

*c(2:mn+1,i-1));

c(2:mn+1,1:i-1)=((x(i)-z)*c(2:mn+1,1:i-1)- ...

rm(1:mn,1:i-1).*c(1:mn,1:i-1))./(x(i)-x(1:i-1));

end

c2=zeros(m+2,n); cp=cumprod([1,1:m])’;

c(1,:)=[]; cc=c./cp;

for k=1:m+1

c2(k+1,:)=sum(cc(1:k,:).*cc(k:-1:1,:),1);

end

e=c2(1:m+1,:)-(x-z).*c2(2:m+2,:); d = c2(2:m+2,:)+2*s.*e;

d=d.*cp; e=e.*cp;
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Appendix B. Two weight tables for equispaced centered derivative approximations

Tables B1 and B2 display some weights to be used for centered FD and HFD approximations on unit-
spaced grids, approximating derivatives up to orders 4 and 3, respectively. If the grid has spacing h
(rather than h = 1), the weights need to be adjusted as follows:

• Table B1: All first derivative weights need to be divided by h, all second derivative weights by h2,
etc.

• Table B2: The f (xi) weights for the second derivative should be divided by h2, for the third
derivative by h3, etc., with (in all cases) one power of h less for the f ′(xi) weights.

Table B1 Weights for some centered FD formulas on a unit-spaced grid, giving approximations to
f (k)(x)|x=0, k = 0, 1, . . . , 4. This table contains the same information as Fornberg (1996, Table 3.1-1)

Order of Approximations at x = 0; x coordinates at nodes

derivative accuracy −4 −3 −2 −1 0 1 2 3 4

0 ∞ 1

1 2 − 1
2 0 1

2

4 1
12 − 2

3 0 2
3 − 1

12

6 − 1
60

3
20 − 3

4 0 3
4 − 3

20
1
60

8 1
280 − 4

105
1
5 − 4

5 0 4
5 − 1

5
4

105 − 1
280

2 2 1 −2 1

4 − 1
12

4
3 − 5

2
4
3 − 1

12

6 1
90 − 3

20
3
2 − 49

18
3
2 − 3

20
1
90

8 − 1
560

8
315 − 1

5
8
5 − 205

72
8
5 − 1

5
8

315 − 1
560

3 2 − 1
2 1 0 −1 1

2

4 1
8 −1 13

8 0 − 13
8 1 − 1

8

6 − 7
240

3
10 − 169

120
61
30 0 − 61

30
169
120 − 3

10
7

240

4 2 1 −4 6 −4 1

4 − 1
6 2 − 13

2
28
3 − 13

2 2 − 1
6

6 7
240 − 2

5
169
60 − 122

15
91
8 − 122

15
169
60 − 2

5
7

240
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Table B2 Weights for some centered HFD formulas on a unit-spaced grid. Applied to f (i) and f ′(i)
values with i integers centered around the origin, they give approximations (at x = 0) to f (k)(x)|x=0,
k = 0, 1, . . . , 3

Weights
for

Order of Approximations at x = 0; x coordinates at nodes

derivative accuracy
−4 −3 −2 −1 0 1 2 3 4

f (xi) 0 ∞ 1

1 ∞ 0

2 4 2 −4 2

8 7
54

64
27 −5 64

27
7

54

12 157
18000

69
250

39
16 − 49

9
39
16

69
250

157
18000

16 199
343000

11824
385875

48
125

304
125 − 205

36
304
125

48
125

11824
385875

199
343000

3 4 − 15
2 0 15

2

8 − 31
144 − 88

9 0 88
9

31
144

12 − 167
18000 − 963

2000 − 171
16 0 171

16
963
2000

167
18000

16 − 2493
5488000 − 12944

385875 − 87
125 − 1392

125 0 1392
125

87
125

12944
385875

2493
5488000

f ′(xi) 0 ∞ 0

1 ∞ 1

2 4 1
2 0 − 1

2

8 1
36

8
9 0 − 8

9 − 1
36

12 1
600

9
100

9
8 0 − 9

8 − 9
100 − 1

600

16 1
9800

32
3675

4
25

32
25 0 − 32

25 − 4
25 − 32

3675 − 1
9800

3 4 − 3
2 −12 − 3

2

8 − 1
24 − 8

3 −15 − 8
3 − 1

24

12 − 1
600 − 27

200 − 27
8 − 49

3 − 27
8 − 27

200 − 1
600

16 − 3
39200 − 32

3675 − 6
25 − 96

25 − 205
12 − 96

25 − 6
25 − 32

3675 − 3
39200
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