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The trapezoidal rule
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Babylonian astronomers, 50 BC

Error typically O(h2), but becomes spectrally accurate if the integrand is periodic.
This follows from Euler-Maclaurin’s formula (1740):

The coefficients can be obtained by the generating function
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Simpson and Newton-Cotes formulas

Simpson’s rule: Fit by succession of quadratics
Simpson (1710-1761); however used by Kepler (1571-1630)

Newton-Cotes idea: Continue by using piecewise cubics, quartics, etc. 
Newton (1642-1726), Cotes (1682-1716)

Orders of accuracy increases (from Trap. Rule) 2, 4, 4, 6, 6, 8, 8, …

Concept flawed for several reasons:
- Essentially ALL errors in Trap. Rule comes from the ends; should do corrections there 

and NOT ‘contaminate’ throughout the whole interior. 
- For periodic problem,  Trap error ≈  (Simpson error)2.
- Becomes very unstable for increasing orders.

Gives weights  1 4 2 4 2 4 2 4 1
3
h 

Trapezoidal rule: Fit by piecewise linear 
functions
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1 11 1 1 1 1 1
2 2

h  
  





Slide 4 of 19 

Gregory’s method
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Non-trivial weights at left end; each term increases accuracy order by one.
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James Gregory (1638-1675)
Extract from a letter by 
Gregory to John Collins,
dated November 23, 1670:

Transcribed to print by Oxford 
Univ. Press, 1840
(with them introducing a typo, 164 in 
place of 160)

Gregory’s exact derivation of this particular expansion is unknown, but he did extensive 
work on calculus, Taylor expansions, derivatives and integrals in the 1660’s. He most likely  
obtained the coefficients from their generating function

Note:

The first publications on calculus: Gottfried Leibnitz, 1684,  Isaac Newton, 1687
Taylor expansions: Brook Taylor, 1715.
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Comparison of weights, Gregory vs. Newton-Cotes methods
Gregory:

Newton-Cotes
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Timeline of the pioneers of numerical quadrature
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The Runge phenomenon (Runge 1901)

Polynomial cardinal functions; 11 nodes over [-1,1]

Node clustering remedy not available – committed here to equispaced node layout.
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The Runge phenomenon

Commonly used demonstration function 2

1( )
1 16

f x
x
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For equispaced interpolation on [-1,1]:

Error: where  0( ( ) ( ))( , ) N z zE z N e    1( ) Re (1 ) log(1 ) ( 1 ) log( 1 )
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Here  z need not be on the real axis;  z0 is the location of the nearest singularity
(in the example,                ).0 4
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RBF-FD papers for numerical quadrature over various surfaces
J.A. Reeger and BF: Numerical quadrature over the surface 

of a sphere, Studies in Appl. Math., 2015

J.A. Reeger, BF and M.L. Watts: Numerical quadrature over 
smooth closed surfaces, Proc. R. Soc. A, 2017

J.A. Reeger and BF: Numerical quadrature over smooth surfaces 
with boundaries, J. Comput. Phys. 2018

In all cases: Accuracy O(h7) with h a `typical’ node separation.
With N nodes, total cost for all weights  O(N log N) operations

In last case, when increasing the accuracy order further, no Runge phenomenon arose (in 
spite of no node clustering towards the boundary).

When simplified first to flat surface patch and then to a 1-D interval with equispaced nodes, 
method produced a ‘Gregory-like’ scheme, of high order of accuracy but still free from the 
Runge phenomenon.

Motivated current project: Can one derive such Gregory-type schemes by some more direct 
(not RBF-based) approach? 
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Revisit Gregory-type quadrature schemes

Consider                                                   
(1)

where all weights wk are  1  from k = N+1 and onwards.

If  f(x)  is defined on                   ,  its Fourier modes are           ,         real.
The counterpart modes for               are           , Re z ≥ 0. Thus, substitute                      into (1):  

(2)
Subtract from (2)  the identity

(3)

Let  dk = wk – 1.  Task becomes choosing coefficients dk , k = 0, 1, 2, … , N  so that 

(4)

becomes as accurate as possible around z = 0.
For every power of  z we can match the Taylor expansions of the LHS and RHS of (4),
we gain one order of accuracy in the quadrature formula (1).
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Derive matching conditions
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RHS: Taylor expand each exponential. Matching powers k = 0,1,2,…,n ≤ N  gives 
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RHS column vector entries
are                         where the           

are the Bernoulli numbers.
1 / ( 1)kB k 

kB

This (generally underdetermined) Vandermonde linear system can be rearranged 
to upper triangular form 

(Same as the generating function for the Euler-Maclaurin formula)
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Matching conditions
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RHS column vector contains
the exact Gregory coefficients:

Equivalent system:

Multiply by Pascal triangle inverse from left:
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Matching conditions

Gregory weights wk: Gregory ‘corrections’ from weights all one; dk = wk - 1

Relation to be satisfied for our quadrature weights to be accurate of order p = n+2 :
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The g-column is the corresponding row in the Gregory ‘correction table’.

Explicit values are available for the B-matrix:
and also for the RHS vector:

,
( 1)i

i j

n j njB
j in i j
  

       



Slide 15 of 19 

Example:      Create a quadrature scheme with weights d0, d1, … , d9 of order p = 8:

By choosing N somewhat larger than n, we have an under-determined system, and we can 
then find a solution that minimizes the d-coefficients

and

we have a set-up for finding weight sets containing only relatively simple rational number weights. 
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Minimization solutions to the under-determined system

Choose desired accuracy order p , then take n = p - 2, and let N > n.
For example, minimize:

L2: Matlab lsqmin
or use pseudoinverse 

L1: Mathematica NMinimize

2 2
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N k
kk

s d


2
0

| |N
kk

s d
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Example of a rational number solution

The following set of dk ‘correction’ coefficients (weights  wk = 1 + dk) gives an order  p = 10 scheme: 

1 26911 628 10421 33487 31441 16873 10567 10451 28613 5099 107, , , , , , , , , ,
96 400 1350 189 840 4725 1512 4200 1080 3024 1400 200

       
 

Order p = 16 schemes,
Gregory vs. L2-generated



Slide 17 of 19 

Illustration of weight sets that will be used in following test               

Corrections from the two sides can overlap.
For example rational coefficient scheme can be used on any equispaced node set of 11 or more nodes.

Weight range in Gregory
schemes of matching order p

[-0.14,  2.24]

[-7.8,  10.2]

[-276,  273]
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Numerical quadrature methods applied to a test function

Test function: ( ) cos(20 )f x x

1

0

1( ) (cos(20) 20sin(20) 1)
200

f x dx   

log-log plot of errors vs. number of subintervals

Test function with N = 68; gives error < 10-16
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Some conclusions
Historical notes:

- Several of Gregory’s pioneering works around 1670 deserve much more recognition than is 
nowadays customary – including his pioneering works in calculus, use of Taylor expansions 
and, as focused on here, his quadrature method.

- Gregory’s quadrature compares in most aspects favorably against the Newton and Cotes 
approach.

Specific to the present work:

- The Runge phenomenon is not quite as unavoidable as often portrayed. 

- Allowing Gregory-type quadrature formulas to feature non-trivial weights in a somewhat 
wider interval than minimally needed avoids weights becoming negative, or wildly 
oscillatory.

Publications:

BF and J.A. Reeger, An improved Gregory-like method for 1-D quadrature, Numerische Mathematik (2019)
BF,  Improving the accuracy of the trapezoidal rule (submitted, 2019) 


