
Transport schemes in spherical geometries using
spline-based RBF-FD with polynomials

David Gunderman1, Natasha Flyer ∗2, and Bengt Fornberg1

2National Center for Atmospheric Research, Boulder, Colorado, USA
1University of Colorado, Boulder, USA

August 29, 2019

Abstract

This work presents a numerical algorithm for using radial basis function-generated
finite differences (RBF-FD) to solve partial differential equations (PDEs) on S2 using
polyharmonic splines with added polynomials defined in a 2D plane (PHS+Poly). We
introduce a novel method for calculating RBF-FD PHS+Poly differentiation weights on
S2 using first a Householder reflection and then a projection onto the tangent plane. The
new PHS+Poly RBF-FD method is implemented on two standard test cases: 1) solid
body rotation on S2 and 2) 3D tracer transport within Earth’s atmosphere. Compared
to existing methods (including those in the RBF literature) at similar resolutions, this
approach requires fewer degrees of freedom and is algorithmically much simpler. A
MATLAB code to implement the method is included in the Appendix.

1 Introduction

A number of applications arising in fields ranging from geophysics to blood flow involve solving
transport PDEs on S2 or in 3-dimensional spherical domains. Radial basis function-generated
finite differences (RBF-FD) generalize regular finite difference approximations from grids
to scattered layouts, allowing for geometric flexibility while maintaining the computational
benefits of local differentiation weight calculation. As surveyed in [9, 10], RBF-FD has been
successfully used for more than a decade to solve PDEs in spherical geometries [3, 7, 23].
However, recent developments in the RBF-FD framework provide advantages over previous
implementations which improve the accuracy and flexibility of RBF-FD methods.

A series of recent papers has shown that the strategy of combining polyharmonic spline
RBFs (PHS), defined as φ(r) = rm for odd m and φ(r) = rmlog(r) for even m, with high
degree polynomials (RBF-FD PHS+Poly) is particularly effective [1, 2, 5, 6]. This approach

∗Corresponding author.

1

avoids the difficulty encountered with infinitely smooth RBFs (such as Gaussians) of selecting
a shape parameter and provides an acceptable compromise between accuracy and numerical
conditioning. Polynomial reproduction up to a user-specified degree can also be seamlessly
guaranteed. Along with these advantages, it has also been shown that the use of RBF-FD
PHS+Poly avoids the Runge phenomenon near boundaries associated with finite-difference
type schemes [1]. All this is gained while still ensuring RBFs traditional advantage: a
guarantee of the existence of a unique interpolant to scattered data [4]. However, application
of RBF-FD PHS+Poly to PDEs on S2 requires that the method be modified to avoid linear
dependence of the polynomials when expressed in Cartesian coordinates (e.g. on the sphere
x2 + y2 + z2 = 1).

The method presented here is inspired by a technique discussed in [20], which uses RBF-
FD PHS+Poly to obtain high order accuracy in numerical quadrature. The presented method
uses a Householder reflection to transform the RBF-FD stencil to a coordinate axis, allowing
it to be considered in the tangent plane where the differentiation weights are calculated using
PHS plus 2D polynomials, and then the weights are transformed back to the original stencil
location.

An overview of the paper is as follows: Section 2 gives a general review of the RBF-FD
PHS+Poly method; Section 3 discusses the new RBF-FD PHS+Poly method for spherical
geometries; Section 4 discusses how to transform to spherical coordinates; Section 5 presents
numerical results on a solid body rotation test case on S2 and a Hadley-like meridional
circulation trace transport test case, comparing these results with other methods from the
literature; Section 6 is a short summary.

2 Review of RBF-FD PHS+Poly

The use of RBFs to approximate differentiation operators discretely in multiple dimensions
has a long history, as surveyed in [4, 9]. We provide a brief review of the recent history and
developments here for background purposes. The earliest applications of the method used
global RBF approximations, in which finding differentiation weights involves solving a dense
N ×N matrix problem, with each time step requiring a full N ×N matrix-vector multiply,
where N is the total number of nodes in the domain. In most application areas computational
cost becomes prohibitive as N increases. RBF-FD is a local method leading to exceptionally
sparse matrices. Each node in the set {xk}Nk=1, serves as the “center”, xc, of an RBF-FD
stencil, {xi}ni=1 defined by the n nearest nodes to xc (as well as including it), where n� N .
The nodes in each stencil are used to approximate the derivative at xc. The computational
cost for calculating the differentiation weights and evolution for one time step is reduced,
respectively, from O(N3) and O(N2) in the global RBF case to being O(n3N) and O(nN)
in the local RBF-FD case. The calculation of RBF-FD weights is a pre-processing step that
only needs to be performed once for any fixed N .1

It long has been known that including polynomials to PHS RBF basis: 1) is necessary
to ensure that the PHS RBF interpolation matrix is nonsingular for any scattered layout of

1The local RBF-FD case also requires as pre-processing a nearest-neighbor search, costing O(N logN)
operations when using a kd-tree algorithm.

2

distinct nodes and 2) gives polynomial reproduction up to the degree of polynomial included
[4]. However, it was not known until [5, 6] that for when using a PHS basis with RBF-FD the
order of accuracy in approximating differentiation operators is dictated by the highest-degree
polynomial used and not the PHS RBFs. In [1, 2], it was shown that such a formulation also
ensures a variety of other benefits especially with regard to suppressing Runge phenomenon
at boundaries.

2.1 Calculating RBF-FD PHS+Poly differentiation weights

Assume we want to approximate a linear operator L, e.g. the components of the gradient ∂
∂x

,
∂
∂y

, or ∂
∂z

, at xc by a linear combination of weighted function values at the nearest n nodes
which form the stencil, i.e.

Lu|xc ≈
n∑
i=1

wiui. (1)

The RBF-FD PHS+Poly weights wi above are obtained by solving the following system,
where we have added polynomials only up to degree d = 1 for illustration; for a detailed
explanation see Chapter 5 in [9]

φ(||x1 − x1|| . . . φ(||x1 − xn||) | 1 x1 y1
φ(||x2 − x2|| . . . φ(||x2 − xn||) | 1 x2 y2

... .
... | ...

...
...

φ(||xn − x1|| . . . φ(||xn − xn||) | 1 xn yn
|

1 . . . 1 |
x1 . . . xn | 0
y1 . . . yn |

w1

w2
...
wn

β1
β2
β3

=

Lφ(||x− x1||)x=xc
Lφ(||x− x2||)x=xc

...
Lφ(||x− xn||)x=xc

L1x=xc
Lxx=xc
Lyx=xc

(2)

Here || · || denotes the standard Euclidean norm. Notice that when adding polynomials we
also need to add the constraints

∑n
i=1wipj(xi) = Lpj(x)|xc , j = 0, 1, ..., l, where pj are the l

multivariate polynomials up to degree d that are augmented to the weight calculation matrix,
in this case l = 3. The matrix equation (2) can be written more concisely as[

A Pd
P T
d 0

] [
w
β
d

]
=

[
Lφ
Lp

d

]
(3)

Here Lp
d

is a vector of size l × 1 with entries that contain the operator L applied to the
polynomials up to degree d, evaluated at the stencil center xc. Pd is a matrix of size n × l
with entries that contain the polynomials up to degree d, evaluated at each node in the
stencil {xi}ni=1. After solving for the weights, the {βi}li=1 are discarded (see Section 5.2.3.3 in
[9]). With PHS RBFs, the left-hand-side matrix will be positive definite in the constrained
subspace, as long as sufficiently high-degree polynomials are added, as shown in [4].

The user can specify the order of convergence d of the PHS+Poly derivative approximation
to the exact operator by choosing to include polynomial terms up through degree d in the
weight calculation matrix, independent of the degree m of the PHS (see [5, 6]).

3

3 Calculating Differentiation Weights on S2

3.1 Difficulty with RBF-FD PHS+Poly on S2

Combining PHS RBFs with polynomials is straightforward in planar geometries. A naive
implementation of the RBF-FD PHS+Poly algorithm in 3D Cartesian coordinates on nodes
which lie on a sphere manifests immediate issues: 1) there is no guarantee that the action
of the operator will lie on the sphere, 2) the polynomials are not linearly independent (e.g.
x2 + y2 + z2 = 1), leading to a singular matrix in (2).

3.2 Other RBF-FD PHS+Poly methods on S2

Some methods have been proposed to implement RBF-FD PHS+Poly-like methods on S2.
For example, a natural analogy to polynomials in Cartesian space is the spherical harmonics
on the surface of the sphere. Replacing the polynomials up through degree d with spherical
harmonics up through degree d in the weight calculation matrix (2) was shown in [21] to
have similar effects on the order of accuracy as regular RBF-FD PHS+Poly in R3. Spherical
harmonics are simply restrictions of polynomials in R3 to S2 and the spherical harmonics form
an orthonormal basis for functions on S2. Thus, it is unsurprising that spherical harmonics
can play the same role on S2 as polynomials do in R3 for RBF-FD.

Another candidate for implementing an RBF-FD PHS+Poly type method on S2, pre-
sented in [22], is RBF-Least Orthogonal Interpolation (RBF-LOI), in which a different or-
thogonal polynomial basis is computed for each stencil and this polynomials basis is used
analogously to the typical monomials in the RBF-FD PHS+Poly weight-calculation matrix.
The method to be represented in the next section requires less than four times as many nodes
per stencil for a particular choice of d (e.g., in [22] n = 169 are used for 5th degree polynomial
reproduction, where we use only n = 37) and requires fewer computations per stencil for the
same-sized stencil. The following section describes it in detail.

3.3 Novel method: Using Householder reflections on S2

Figure 1: A visualization of the novel method for calculating RBF-FD weights on S2

Given a node set {xk}Nk=1 on S2, we wish to approximate ∂
∂x

, ∂
∂y

, and ∂
∂z

restricted to S2

with RBF-FD PHS+Poly. The proposed method can be summarized in four steps (visualized

4

in Figure 1), with the code given in Appendix A:

1. (Step 1) With a kd-tree search, as MATLAB’s knnsearch, find the indices of the n
nearest nodes, {xi}ni=1, to the point xc on the sphere. This defines the kth stencil as
shown in Step 1 in Figure 1. This is then performed for all nodes N on the sphere,
resulting in the input matrix IDX of size N × n in the code given in Appendix A.

2. (Step 2) Perform a Householder reflection on each point in the original stencil. This
Householder reflection is almost a rotation, but not quite; however, it is unitary. It
is defined by a 3x3 matrix Q, such that (xc, yc, zc) becomes the point (1, 0, 0). Q is
defined by line 18 in the code in Appendix A. The use of Q to transform all nodes
in the original stencil so that they are now located around the x-axis but still on the
sphere is done by line 19 in the code in Appendix A.

3. (Step 3) Ignoring the new x-coordinates (they will be very close to one), consider this
as a stencil purely in the y,z-plane. This can be done since it is tangent at the origin of
the y,z plane and we are only considering first derivatives which involve no curvature.
Next, the column vectors of the differentiation weights for the kth stencil, wky and wkz ,
are calculated by 2-D RBF-FD PHS+Poly as is done in (2). This is performed on line
20 in the code given in Appendix A, where the subroutine for calculating RBF-FD
PHS+Poly weights is given in Appendix B of the paper [5].

4. (Step 4) However, this has only given us the differentiation weights for ∂
∂y

and ∂
∂z

at

(1, 0, 0). What is needed is wkx, w
k
y , w

k
z at to the original sphere position for the stencil.

It turns out that we get these 3 column vectors by taking the two vectors wky , w
k
z we

computed in the previous step and multiply this n × 2 matrix from the right with a
2 × 3 matrix extracted out of the 3 × 3 Q matrix. The result is an n × 3 matrix of
differentiation weights, wkx, w

k
y , w

k
z , to be used at the original stencil location centered

at node location (xc, yc, zc). This is done on line 22 in the code in Appendix A.

Notice the above steps are nested in a ’for’ loop and repeated for all k nodes on the sphere
to create the entire differentiation matrix (DM) that is stored in sparse format at the end of
the code in Appendix A.

4 Transforming to spherical coordinates

It is important to note that the algorithm presented above calculates differentiation weights
in Cartesian coordinates on the sphere; however, it straightforward to use the method for
problems posed in latitude(φ)-longitude(λ) spherical coordinates, as will be done in the first
test case. An application of the chain rule reveals that

∂

∂φ
= −y ∂

∂x
+ x

∂

∂y
(4)

∂

∂λ
= − zx

x2 + y2
∂

∂x
− zy

x2 + y2
∂

∂y
+ (x2 + y2)

∂

∂z
(5)

5

In a 3D domain discretized as nested spherical shells, we can approximate ∂
∂x

, ∂
∂y

, and ∂
∂z

at xc by the relations

∂

∂x
=

(
∂

∂xs

)
+
x

r

∂

∂r
,

∂

∂y
=

(
∂

∂ys

)
+
y

r

∂

∂r
,

∂

∂z
=

(
∂

∂zs

)
+
z

r

∂

∂r
. (6)

where the subscript s denotes restriction to the sphere using the algorithm in Section 3.3.
This is the methodology used in the second transport test case. Because it is assured that the
derivatives approximated using RBF-FD PHS+Poly have no radial components, it is simple
to combine them with any radial discretization scheme. An illustration of the two separate
stencils is given in Figure 2, where in the radial direction centered finite differences is used.

Figure 2: An illustration of the nodes used in the discretization of ∂/∂x, ∂/∂y, ∂/∂z designed
to be accurate at the central black square.

5 Numerical Test Cases

In this section, we investigate the performance of the method by implementing it on two
standard test cases from the literature: solid body rotation on S2 from [28] and tracer trans-
port by Hadley-like meridional circulation in an idealized atmosphere from [15]. In each test
case, the field should return to the initial condition after a given time period. Thus, the
exact solution at the final time is known, making it straightforward to compute errors.

In both of the test cases, the PDE is given by

∂q(x, t)

∂t
= −v(x, t) · ∇q(x, t). (7)

q(x, t)t=0 = q0(x). (8)

The PDE represents the advection of a field q(x, t) with initial condition q0(x) at time t = 0
by a given velocity field v(x, t). In the first test case, v is constrained to the sphere; in the
second case, to the 3D spherical shell defined by the space between Earth’s surface, r = z = 0
and the height r = z = 12000m. The main focus of the investigation is on the accuracy and
convergence of the methods, measured in the relative l1, l2, and l∞ norms. The standard
definitions of these norms can be found in [15].

6

5.1 Node Sets

The node sets used are the minimal energy (ME) and maximal determinant (MD); see the
website [29], as well as icosahedral node sets. Results using ME, MD and icosahedral node
sets were found to be similar. The derivation and properties of ME, MD, and icosahedral
node sets are described in [13, 24, 30]. A nice property of these node sets is that the typical
node spacing, h (defined as the mesh norm, see [14, 29]) decays approximately uniformly
with the inverse square of the total number of nodes, h ∼ 1√

N
. To produce the 3D node sets

used in the second test case, we use copies of radial translates of node sets on S2 such that
the nodes have a nested shell-like structure, with Nr nodes per shell and Ns shells.

5.2 Hyperviscosity

It is fairly typical, when approximating convective terms, to obtain differentiation matrices
that contain spurious eigenvalues with small positive real parts. This can cause instabilities
when time-stepping, especially when an explicit time discretization is used, as is the case in
this study. The current remedy for this issue is to add a small artificial diffusion (hypervis-
cosity) term to the convective operator which effectively shifts spurious eigenvalues of the
original differentiation matrix into the negative half eigenplane, so that all eigenvalues fit
within the time stability region. This hyperviscosity operator takes the form of ∆k, where
∆ represents the typical spatial Laplacian. This transforms the purely convective equation
(7) to

∂q

∂t
= v · ∇q + γN∆kq. (9)

Strategies for choosing the parameters k and γN in the hyperviscosity formulation are
discussed in [7, 11, 21]. In this work, we follow the parameter choice procedure suggested
in Appendix A of [7] in order to push eigenvalues into the region of stability for 4th order
explicit Runge-Kutta time-stepping. We choose Gaussian type hyperviscosity with k = 4; for
the MATLAB code see [9], Section 5.3.2.2. Note that neither test case requires hyperviscosity
on the time scale called for by the test case. However, to show the robustness of the method,
when the cosine bell initial condition in the first test case is rotated for more than tens of
rotations, hyperviscosity is required to ensure stability.

5.3 Test Case 1: Solid body rotation on S2

We consider the standard test case 1 from Williamson, et al. [28]. The test case involves
revolving a cos bell on S2 according to a prescribed velocity field. The zonal and meridional
components of the steady velocity field for this test case in spherical coordinates (−π ≤ λ ≤
π,−π

2
≤ θ ≤ π

2
) are respectively given by

u(λ, θ) = sin(θ) cos(λ) sin(α)− cos(θ) cos(α), v(λ, θ) = cos(λ) sin(α) (10)

This velocity field (not time-dependent) results in solid body rotation at an angle of α with
respect to the polar axis. We choose α = π/2, corresponding to advection directly over poles.
The choice of α is irrelevant to the results since any node can act as the pole. We test two

7

Method N l1 l2 l∞
Finite Volume [27] 9600 3.5E−2 2.0E−2 1.4E−2
RBF-FD PHS+Poly 9604 2.6E−2 9.6E−3 1.0E−2
Spectral Elem. [25] 24576 5.4E−3 2.6E−3 2.3 E−3
SL RBF-PU (n=84) [23] 23104 Unreported 4.2E−3 5.1E−3
RBF-FD PHS+Poly 25600 1.0E−2 3.5E−3 4.6E−3
Discont. Galerkin [18] 38400 9.2E−3 3.8E−3 4.0E−3
RBF-FD PHS+Poly 31250 5.9E−3 2.7E−3 3.6E−3

Table 1: A comparison in the l1, l2, and l∞ norms of various methods in the literature with
the present method for stencil size n = 55, φ(r) = r3 and, d = 5 (polynomials up to 5th
degree in 2D) for one revolution of the cos bell test case with various degrees of freedom, N .

initial conditions: q1, a compactly supported cosine bell with a jump in the second derivative,
and q2, an infinitely-smooth Gaussian bell to test high-order convergence.

The cosine bell initial condition, q1 ∈ C1(S2), is centered at (x = 1, y = 0, z = 0) and
given as [28]:

q1(x = x, y, z) =

{
1
2

(
1 + cos(πr

Rb

)
r < Rb,

0 r ≥ Rb,
(11)

where, r = arccos(x), and the support is set as Rb = 1/3. The Gaussian bell initial condition,
q2 ∈ C∞(S2), is also centered at the same place and given by

q2(x) = e−6r
2

(12)

The test calls for one rotation of the bell around the sphere, corresponding to T = 2π.

5.3.1 Numerical results

We use the RBF-FD PHS+Poly method described in Section 3.3 to create the spatial DMs
and 4th order Runge-Kutta in time. For the cosine bell test case, we use 3rd degree PHS,
φ(r) = r3, with added polynomials up to 5th degree. Table 1 compares the accuracy in
the relative l1, l2, and l∞ to other methods used in the literature, such as spectral element,
discontinuous Galerkin, finite volume, and RBF-PU (Partition of Unity) methods. With a
similar number of degrees of freedom, the RBF-FD PHS+Poly method is shown to be very
competitive and in most cases gives slightly lower errors.

Due to the jump in the second derivative of the compactly supported cosine bell, conver-
gence with respect to total number of nodes is approximately second order, as can be seen
in the left panel of Figure 3. However, using a smooth Gaussian bell initial condition q2, the
order of convergence of the method is limited only by the choice of d and n in the model,
and achieves approximately 6th order convergence with d = 6, as can be seen in the right
panel of Figure 3. Any order spatial convergence can be achieved by simply increasing the
parameters d and n in the model.

8

(a) Cosine Bell (b) Gaussian Bell

Figure 3: Using d = 5 for the cosine bell test case and d = 6 for the Gaussian bell, n = 37
nodes per stencil, and ME node sets, (a) a log-log plot of convergence of error for the cosine
bell initial condition (q0) with dashed lines representing 3/2 and 2nd -order convergence and
(b) a log-log plot of convergence of error for the Gaussian bell initial condition (q1) with
dashed lines representing 11/2 and 6th -order convergence. Note that the reference slopes
are given as powers of h, since these powers directly reflect the methods order of accuracy; h
is here related to N as h = O(1/

√
N).

In Figure 4, the l2 errors after one rotation for different choices of n, d, and N are plotted
for solid body rotation with a cos bell and Gaussian initial condition. The dashed lines
in these plots display the stencil size n for a given d at which the matrix system in (3) will
become singular, (e.g. there are 10 polynomials up to degree d = 3, which require a minimum
of 11 distinct node points). Due to the discontinuity in the second derivative of the cosine
bell, the best error achieved at N = 25600 regardless of the degree of the polynomial used, is
between O(10−3) and O(10−2). This is in contrast to the C∞ Gaussian bell, where the error
is completely controlled by d , regardless of what stencil size is used.

An artificial diffusion term of the form described in Section 5.2 was added to the the
PDE to ensure stability of the method when time-stepping for longer than one revolution.
We tuned the parameter γN with N = 1600 such that the eigenvalues of the right hand side
matrix in Equation (9) had no positive real parts. This yielded a hyperviscosity parameter
of γ1600 ≈ 10−10. Then, we used the scaling law γN = (1600

N
)kγ1600 to find values for γN

at higher resolutions [7]. Figure 5 displays the effect of the hyperviscosity operator on the
eigenvalues of the differential operator with N = 1600 and N = 6400 nodes. The figure
shows that spurious eigenvalues in the spatial differentiation operator have been pushed into
the stability region of the 4th-order Runge-Kutta time-stepper, with little disturbance of the
physically relevant eigenvalues.

The hyperviscosity operator ensures that the PDE can be time-stepped for much longer
time periods without becoming unstable. In order to illustrate this advantage, we let the
cosine bell rotate 1000 times around the sphere in the case of N = 25600 MD nodes. The
exact solution and the error after T = 1, 10, 100, and 1000 revolutions are plotted in Figure 6.

9

Figure 4: Contour plots of Log10 of the l2 error after one rotation without hyperviscosity
as a function of d and n for different N ; top row is the solid body rotation test case with
a cosine bell; bottom row is the same test case with an infinitely smooth Gaussian bell
initial condition. The curved dotted line in the bottom right of each plot represents the
point at which weight calculation matrices become ill-posed due to the inclusion of too many
polynomial terms for stencil size n, n ≤

(
d+2
d

)
in 2D. Contour lines represent interpolations,

since both n and d can only take on integer values.

10

(a) N = 1600, no hyperviscosity (b) N = 1600, with hyperviscosity

(c) N = 6400, no hyperviscosity (d) N = 6400, with hyperviscosity

Figure 5: The effect of hyperviscosity on the eigenvalues of the spatial differentiation matrix
with N = 1600 and N = 6400 nodes.

Note, the decrease in the height of the bell after 1000 revolutions is only about 4% percent.
Instead, the overall error is mainly concentrated around the base of the cosine bell, where the
second-order discontinuity in the initial condition causes dispersive errors. For N � 5000,
time-stepping for 1000 rotations required slightly different tuning of the parameter γN to
ensure stability; γN is approximately halved if N ≥ O(105). The results above compare very
favorably with earlier local RBF calculations in the literature. In [23], the bell was convected
10 rotations using both a local and partition of unity RBF-based semi-Lagrangian method,
with n = 49 and N = 40, 962. In [11] (where the concept of hyperviscosity for RBF-FD
was introduced), an n = 74 calculation with N = 25, 600 nodes was run for 1, 10 and 1, 000
rotations. In all cases cited above, the dominant error at the final time occurred around the
base of the bell, as with in this case, and was the same order of magnitude.

Computational time as a function of accuracy (by varying N with ME node sets) for the
solid body rotation test case was tested on a dual core, 2.7 Ghz laptop with d = 5, n = 37.
Figure 7 shows that computational time versus accuracy are approximately linear for both

11

Table 2: Constants used in the Hadley-like meridional circulation test case
Constant Value Description
τ 86400s Period of motion (here 1 day)
K 5 Number of overturning cells
u0 40ms−1 Reference zonal velocity
w0 0.15ms−1 Reference vertical velocity
z1 2000m Lower boundary of tracer layer
z2 5000m Upper boundary of tracer layer
a 6.37122× 106m Radius of the Earth
g 9.80616ms−2 Gravity
cp 1004.5J kg−1 K−1 Specific heat capacity of dry air
Rd 287.0J kg−1 K−1 Gas constant for dry air
κ Rd/cp = 2/7 Ratio of Rd to cp
ztop 12000m Height position of the model top
T0 300K Isothermal atmospheric temperature

pre-processing of differentiation matrices and for time-stepping one rotation, as predicted
based on the expected computational complexity of O(N).

5.4 Test Case 2: 3D Hadley-like meridional circulation

The Hadley-like meridional circulation cell test case is defined in [15] and was used as one of
the Dynamical Core Model Intercomparison Project’s (DCMIP) tracer test cases in 2012 [12].
A dynamical core governs the evolution of the dynamical processes in weather forecasting and
climate modeling. Many transport algorithms in dynamical cores are horizontally-vertically
split due to the difference in spatial scales. The initial tracer field is time-stepped for one day
according to the transport equation (7) with a prescribed nonlinear time-dependent velocity
field that deforms it in the Earth’s atmosphere .

The zonal, meridional, and vertical velocity field for this test is specified as

u(λ, φ, z, t) = u0 cos(φ) (13)

v(λ, φ, z, t) = −aw0πρ0
Kztopρ

cos(φ) sin(Kφ) (14)

× cos

(
πz

ztop

)
cos

(
πt

τ

)
w(λ, φ, z, t) =

w0ρ0
Kρ

[−2 sin(Kφ) sin(φ) (15)

+K cos(φ) cos(Kφ)] sin

(
πz

ztop

)
cos

(
πt

τ

)
where the above constants with explanations are listed in Table 2.

12

The initial tracer field is defined as

q0(λ, φ, z) =

{
1
2

[
1 + cos

(
2π(z−z0)
z2−z1

)]
if z1 < z < z2,

0 otherwise,
(16)

where z0 = 1
2
(z1 + z2). Since this initial condition contains a discontinuity in the second-

derivative, the maximum order of convergence should theoretically be 2nd order. However,
we do get orders of convergence greater up to 2.8, depending on the error norm used.

5.4.1 Numerical results

In this test case, we consider evenly-spaced nested spheres of nodes. For tangential deriva-
tives, we use r3 PHS with d = 5 and n = 55. In the radial direction, we use centered five-point
finite differences on equi-spaced nodes to calculate radial differentiation weights for interior
nodes. Near the boundary, we use one-sided five-point finite differences as calculated in [8].
Fourth order explicit Runge-Kutta is used for time-stepping. Although hyperviscosity might
allow for longer time integration without running into instabilities, we found it to be unnec-
essary for the one day time integration called for by this test case. The tracer field after 0h,
12h, and 24h, as well as the error after 24h is shown in Figure 8. The error appears mostly to
be due to dispersive errors caused by the discontinuity in the second derivative of the initial
condition in the radial direction.

Tables 3, 4, and 5 show results in the l1, l2, and l∞ norms, respectively, in comparison
with various methods in the atmospheric literature, each of which is described briefly in
the next section. Time steps of δt = 1800s, δt = 720s, δt = 480s were used respectively
for each resolution of 2° × 2° (220km) with 30 (400m) nested shells, 1° × 1° (120km) with
60 nested shells (200m), and 1/2° × 1/2° (60km) with 120 (100m) nested shells. For the
lowest resolution, we used a 12, 100 node MD node set. For the higher resolutions, we used
icosahedral node sets of size 40, 962 nodes and 163, 842 nodes. The RBF-FD PHS+Poly
method error is better by approximately an order of magnitude in all resolutions as well
as the rate of convergence, regardless of the norm used. The improvement in error can be
partially attributed to the RBF-FD method does not require a deformation of the underlying
domain, such as the cubed sphere or latitude-longitude grid, as is done in the other methods.

5.4.2 Brief description of comparison methods

CAM is NCAR’s Community Atmosphere Model, described in [19]. In CAM-FV, the finite-
volume version of CAM, the horizontal tracer transport component uses a flux-form semi-
Lagrangian Finite Volume method on a lat-long grid. In CAM-SE, a high-order continuous
Galerkin spectral element method on a cubed-sphere mesh is used for discretizatio in the
horizontal direction, which is described by Taylor et al. [25]. MCore is a dynamical core,
described in [26], that uses high-order upwind finite-volume methods on a cubed-sphere grid
(also used in CAM-SE). FV3 is the dynamical core to be used in NOAA’s next generation
Environmental Modelling System infrastructure. It uses finite volumes on a cubed sphere
with a Lagrangian, terrain-following vertical coordinate, described in [16, 17]

13

Table 3: Comparison of advection schemes in the relative l1 norm for the DCMIP test case
Resolution CAM-FV CAM-SE MCore FV3 RBF-FD PHS+Poly

2°× 2° 30 shells 1.8E−1 1.3E−1 1.4E−1 8.4E−2 2.9E−2
1°× 1° 60 shells 4.1E−2 2.9E−2 2.9E−2 2.2E−2 3.2E−3

1/2°× 1/2° 120 shells 1.2E−2 1.0E−2 6.3E−3 1.5E−2 6.1E−4
Convergence 1.93 1.86 2.22 1.33 2.80

Table 4: Comparison of advection schemes in the relative l2 norm for the DCMIP test case
Resolution CAM-FV CAM-SE MCore FV3 RBF-FD PHS+Poly

2°× 2° 30 shells 2.0E−1 1.4E−1 1.7E−1 9.7E−2 1.8E−2
1°× 1° 60 shells 5.4E−2 3.2E−2 4.6E−2 2.1E−2 3.1E−3

1/2°× 1/2° 120 shells 1.6E−2 1.2E−2 1.1E−2 1.5E−2 7.4E−4
Convergence 1.84 1.79 1.94 1.46 2.37

Table 5: Comparison of advection schemes in the relative l∞ norm for the DCMIP test case
Resolution CAM-FV CAM-SE MCore FV3 RBF-FD PHS+Poly

2°× 2° 30 shells 4.7E−1 3.8E−1 4.2E−1 2.3E−1 8.9E−2
1°× 1° 60 shells 1.6E−1 1.0E−1 1.6E−1 5.4E−2 1.1E−2

1/2°× 1/2° 120 shells 4.7E−2 4.6E−2 4.3E−2 2.9E−2 8.1E−3
Convergence 1.66 1.52 1.64 1.61 2.35

5.5 Summary

We present a new numerical algorithm based on Householder reflections for calculating differ-
entiation weights to first derivatives in Cartesian coordinates, ∂

∂x
, ∂
∂y

, and ∂
∂z

, on the sphere
using RBF-FD polyharmonic splines supplemented with 2D polynomials. The code, attached
to this paper, is concise - only 17 lines. The beauty of the method is that it only requires
defining N 3 × 3 Householder matrices, N being the total number of points on the sphere.
Each Householder matrix transforms a point on the sphere to one of the coordinate axis, here
chosen to be (1,0,0); however (0,1,0) or (0,0,1) would have worked just as well. The same
matrix is then used to transform the entire stencil associated with that point. The method
was tested on two standard advection test cases, one on a sphere and the second within a 3D
spherical shell. It was shown to be competitive, and in most cases outperformed a variety
of methods currently used, including spectral elements, finite elements, finite volume, and
other RBF methods in terms of accuracy and convergence.

14

(a) T = 2π (1 revolution) (b) T = 20π (10 revolutions)

(c) T = 200π (100 revolutions) (d) T = 2000π (1000 revolutions)

Figure 6: Error in the solid body rotation test case with n = 37, d = 5, and an MD node
set of size N = 25600. The error appears to increase approximately logarithmically with
the number of revolutions even for long periods of time, implying that the hyperviscosity
effectively ensures stability. Strategies for tuning the hyperviscosity parameter can be found
in [7, 11, 21]

15

(a) Differentiation matrix calculation (b) Time stepping calculation

Figure 7: For the solid body rotation test case, with varying size ME node sets, d = 5
and n = 37(a) a log-log plot of computation time to calculate differentiation matrices as a
function of accuracy for the solid body rotation test case. (b) a loglog plot of computation
time to evolve the initial condition one rotation as a function of accuracy for the solid body
rotation test case.

(a) T = 0 Hours
(b) T = 12 Hours

(c) T = 24 Hours
(d) Error at T = 24 Hours

Figure 8: A representative cross section of the tracer field at λ = π for the Hadley-like
meridional circulation test case with n = 55 and d = 5, 60 shells in the vertical and a
horizontal resolution of 1°× 1°. The tracer field is the same at all values of λ. Plots (a)-(c)
are the tracer field itself, while plot (d) is the error in the tracer field after 24 hours.

16

Appendix A:

1 function [Dx,Dy,Dz] = D_xyz_PHS(xyz ,IDX ,m,d)

2
3 % Calculates the RBF -FD DMs associated to d/dx , d/dy, d/dz

4 % Input parameters

5 % xyz All nodes on the sphere surface , array size (N,3)

6 % IDX Array (N,n) of n neighbors for each of N nodes on

sphere

7 % m Power used in the radial function , r^m

8 % d Degree of polynomial terms included

9 % Output parameters

10 % Dx,Dy,Dz Sparse NxN matrices with RBF -FD weights

11
12 [N,n] = size(IDX); % Find problem size

13 Wx = zeros(N,n); Wy = zeros(N,n); Wz = zeros(N,n);

14 for k = 1:N % Loop over N stencils

15 X = xyz(IDX(k,:) ,:); % Find nodes in kth stencil

16 Xt = -X(1,:) '; y1 = 1; if Xt(1) < 0; y1 = -1; end;

17 Xt(1) = y1+Xt(1); Wh = Xt/norm(Xt);

18 Q = eye(3) -2*(Wh*Wh '); % Define Householder matrix Q

19 X = X*Q';
20 w = RBF_FD_PHS_pol_weights_sph (X(:,2),X(:,3),m,d);

21 % Get weights in plane using 2-D algorithm

22 w = w*Q(2:3 ,:); % Transform weights to orginal stencil

23 Wx(k,:) = w(:,1) '; Wy(k,:) = w(:,2) '; Wz(k,:) = w(:,3) ';
24 end

25 it = (1:N) '; it = it(:,ones(1,n));

26 Dx = sparse(it(:),IDX (:),Wx(:),N,N);

27 Dy = sparse(it(:),IDX (:),Wy(:),N,N);

28 Dz = sparse(it(:),IDX (:),Wz(:),N,N);

29 % Re-arrange weights into DMs for d/dx, d/dy, d/dz

This Matlab code performs the algorithm described in Section 3.3. Lines 16-19 calculate and
apply the Householder reflection to the stencil. Line 20 references a subroutine which can be
found in Appendix B of [5] for calculating PHS+Polys RBF-FD weights in a plane. Line 22
transforms the weights back to the original stencil position.

17

References

[1] V. Bayona, N. Flyer, and B. Fornberg. On the role of polynomials in RBF-FD approx-
imations: III. Behavior near domain boundaries. Journal of Computational Physics,
380:378–399, 2019.

[2] V. Bayona, N. Flyer, B. Fornberg, and G.A. Barnett. On the role of polynomials in RBF-
FD approximations: II. Numerical solution of elliptic PDEs. Journal of Computational
Physics, 332:257–273, 2017.

[3] V. Bayona, N. Flyer, G.M. Lucas, and A.J.G. Baumgaertner. A 3-D RBF-FD solver for
modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1. 0).
Geoscientific Model Development, 8(10):3007, 2015.

[4] G.E. Fasshauer. Meshfree approximation methods with MATLAB, volume 6. World
Scientific, 2007.

[5] N. Flyer, G.A. Barnett, and L.J. Wicker. Enhancing finite differences with radial ba-
sis functions: Experiments on the Navier–Stokes equations. Journal of Computational
Physics, 316:39–62, 2016.

[6] N Flyer, B. Fornberg, V. Bayona, and G.A. Barnett. On the role of polynomials in RBF-
FD approximations: I. Interpolation and accuracy. Journal of Computational Physics,
321:21–38, 2016.

[7] N. Flyer, E. Lehto, S. Blaise, G.B. Wright, and A. St-Cyr. A guide to RBF-generated
finite differences for nonlinear transport: Shallow water simulations on a sphere. Journal
of Computational Physics, 231(11):4078–4095, 2012.

[8] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Math-
ematics of Computation, 51(184):699–706, 1988.

[9] B. Fornberg and N. Flyer. A primer on radial basis functions with applications to the
geosciences. SIAM Press, 2015.

[10] B. Fornberg and N. Flyer. Solving PDEs with radial basis functions. Acta Numerica,
24:215–258, 2015.

[11] B. Fornberg and E. Lehto. Stabilization of RBF-generated finite difference methods for
convective PDEs. Journal of Computational Physics, 230(6):2270–2285, 2011.

[12] D.M. Hall, P.A. Ullrich, K.A. Reed, C. Jablonowski, R.D. Nair, and H.M. Tufo. Dy-
namical core model intercomparison project (DCMIP) tracer transport test results for
CAM-SE. Quarterly Journal of the Royal Meteorological Society, 142(697):1672–1684,
2016.

[13] D.P. Hardin, T. Michaels, and E.B. Saff. A comparison of popular point configurations
on S2. Dolomites Research Notes on Approximation, 9(1), 2016.

18

[14] K. Jetter, J. Stöckler, and J.D. Ward. Error estimates for scattered data interpolation
on spheres. Math. Comput., 68:733–747, 1999.

[15] J. Kent, P.A. Ullrich, and C. Jablonowski. Dynamical core model intercomparison
project: Tracer transport test cases. Quarterly Journal of the Royal Meteorological
Society, 140(681):1279–1293, 2014.

[16] S. Lin. A vertically Lagrangian finite-volume dynamical core for global models. Monthly
Weather Review, 132(10):2293–2307, 2004.

[17] S. Lin and R.B. Rood. An explicit flux-form semi-Lagrangian shallow-water model on
the sphere. Quarterly Journal of the Royal Meteorological Society, 123(544):2477–2498,
1997.

[18] R.D. Nair, S.J. Thomas, and R.D. Loft. A discontinuous Galerkin transport scheme on
the cubed sphere. Monthly Weather Review, 133(4):814–828, 2005.

[19] R.B. Neale, C. Chen, A. Gettelman, P.H. Lauritzen, S. Park, D.L. Williamson, A.J.
Conley, R. Garcia, D. Kinnison, J. Lamarque, et al. Description of the NCAR community
atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR, 1(1):1–12,
2010.

[20] J.A. Reeger and B. Fornberg. Numerical quadrature over the surface of a sphere. Studies
in Applied Mathematics, 137(2):174–188, 2016.

[21] V. Shankar and A.L. Fogelson. Hyperviscosity-based stabilization for radial basis
function-finite difference (RBF-FD) discretizations of advection-diffusion equations.
Journal of Computational Physics, 372(1):616–639, 2018.

[22] V. Shankar, A. Narayan, and R.M. Kirby. RBF-LOI: Augmenting radial basis functions
(RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces. Journal
of Computational Physics, 373:722–735, 2018.

[23] V. Shankar and G.B. Wright. Mesh-free semi-Lagrangian methods for transport on a
sphere using radial basis functions. Journal of Computational Physics, 366:170–190,
2018.

[24] I.H. Sloan and R.S. Womersley. Extremal systems of points and numerical integration
on the sphere. Advances in Computational Mathematics, 21(1-2):107–125, 2004.

[25] M. Taylor, J. Tribbia, and M. Iskandarani. The spectral element method for the shallow
water equations on the sphere. Journal of Computational Physics, 130(1):92–108, 1997.

[26] P.A. Ullrich and C. Jablonowski. MCore: A non-hydrostatic atmospheric dynamical
core utilizing high-order finite-volume methods. Journal of Computational Physics,
231(15):5078–5108, 2012.

19

[27] P.A. Ullrich, C. Jablonowski, and B. Van Leer. High-order finite-volume methods for the
shallow-water equations on the sphere. Journal of Computational Physics, 229(17):6104–
6134, 2010.

[28] D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, and P.N. Swarztrauber. A stan-
dard test set for numerical approximations to the shallow water equations in spherical
geometry. Journal of Computational Physics, 102(1):211–224, 1992.

[29] R.S. Womersley and I. H. Sloan. Interpolation and cubature on the sphere. https:

//web.maths.unsw.edu.au/~rsw/Sphere/.

[30] R.S. Womersley and I.H. Sloan. How good can polynomial interpolation on the sphere
be? Advances in Computational Mathematics, 14(3):195–226, 2001.

20

