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Abstract

The trapezoidal rule uses function values at equi-spaced nodes. It is very accurate for
integrals over periodic intervals, but is usually quite inaccurate in non-periodic cases. Commonly
used improvements, such as Simpson’s rule and the Newton-Cotes formulas, are not much (if
at all) better than the even more classical quadrature formulas described by James Gregory in
1670. For increasing orders of accuracy, these methods all suffer from the Runge phenomenon
(the fact that polynomial interpolants on equi-spaced grids become violently oscillatory as their
degree increases). In the context of quadrature methods on equi-spaced nodes, and for orders
of accuracy around 10 or higher, this leads to weights of oscillating signs and large magnitudes.
This article develops further a recently discovered approach for avoiding these adverse effects.

Keywords: Gregory’s method, trapezoidal rule, Simpson’s rule, Newton-Cotes, Euler-
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1 Introduction

The trapezoidal rule (TR)∫ xN

x0

f(x)dx ≈ h
N∑
k=0

f(xk)−
h

2
[f(x0) + f(xN )] (1)

can be traced back to Babylonian astronomers before 50 BC [11]. In this formula, the nodes xk are
spaced a distance h apart.

Much later, around 1740, Leonhard Euler and Colin Maclaurin (independently) discovered an
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infinite sequence of further correction terms1 to (1):∫ xN

x0

f(x)dx ∼ h
N∑
k=0

f(xk)−
h

2
[f(x0) + f(xN )] +

+
h2

12

[
f (1)(x0)− f (1)(xN )

]
− h4

720

[
f (3)(x0)− f (3)(xN )

]
+ (2)

+
h6

30240

[
f (5)(x0)− f (5)(xN )

]
− h8

1209600

[
f (7)(x0)− f (7)(xN )

]
+− . . . ,

with coefficients obtained from the generating function

1

1− e−z
− 1

z
=

1

2
+

1

12
z − 1

720
z3 +

1

30240
z5 − 1

1209600
z7 +− . . . (3)

From (2), we can make two key observations:

1. The leading errors in the TR come from the edges. The usual 2nd order accuracy (error O(h2))
becomes 4thorder if f ′(x0) = f ′(xN ), 6thorder if also f ′′′(x0) = f ′′′(xN ), etc. For periodic
problems, the accuracy increases beyond any algebraic order (assuming f(x) is infinitely
differentiable). This case is surveyed in [17, 18].

2. It is at the edges one should adjust quadrature weights if one want to increase the accuracy
of a TR-type scheme.

Although James Gregory (1638-1675) lived too early to have the Euler-Maclaurin formula available,
he nevertheless made these observations, and produced an alternative series of correction terms.
Instead of requiring derivatives, they altered some trapezoidal weights near each end.

In the next Section 2, we describe further Gregory’s work, display the quadrature weights his
approach leads to, and contrast these weights with the (nowadays better known) Newton-Cotes
weights. Section 3 gives some background to why the Gregory method has recently been re-visited,
and summarizes a new approach that makes equi-spaced quadrature formulas practical also at high
orders of accuracy. Section 4 describes how such weight sets can be calculated, both in floating point
and as rational numbers, and gives also some test results. Section 5, containing some concluding
remarks, is followed by References and an Appendix with a simple MATLAB code for calculating
quadrature weights.

Some of the ideas behind this present article can be found in [9]. We here summarize, simplify, and
expand on these earlier observations.

2 The pioneering work by James Gregory

An even cruder approximation than TR would be to use∫ xN

x0

f(x)dx ≈ h
N∑
k=0

f(xk). (4)

1Asymptotically correct to all orders
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In Gregory’s methods, one adjusts p−1 weights at each end, and obtains then schemes of accuracy
order p (with TR representing the p = 2 case). Since the two ends of an interval are equivalent in
terms of making these corrections, it suffices to consider just one boundary (for ex. the semi-infinite
interval x ∈ [0,∞]) , and furthermore set h = 1. The quadrature weights wk can then trivially be
adjusted to step size h by multiplying each by h. We focus on approximations for which all the
weights wk are the same from some k and onward (since this provides optimal accuracy away from
boundaries). A finite interval is treated by adding the weights corrections inwards from each end.
The corrections from the two sides may overlap.

2.1 Derivation

With the notation ∆f(k) = f(k + 1)− f(k), it follows that

∆0f(0) = f(0)
∆1f(0) = f(1)− f(0)
∆2f(0) = f(2)− 2f(1) + f(0)
∆3f(0) = f(3)− 3f(2) + 3f(1)− f(0)

...
...

(5)

with coefficients from Pascal’s triangle. Gregory’s idea was to look for an improved TR formula of
the form ∫ ∞

0
f(x)dx ∼

( ∞∑
k=0

f(k)

)
+
[
b0∆

0 + b1∆
1 + b2∆

2 + . . .
]
f(0) , (6)

using only a finite number of these correction terms.

Similarly to how the Fourier transform expresses a real-valued functions f(x) as a superposition
of exponentials e−z x with z purely imaginary, it is natural for the one-sided interval [0,∞] to
also include z-values from the right half-plane (corresponding to decaying modes). Substituting
f(x) = e−zx into (6)2 gives

1

z
=

1

1− e−z
+
[
b0 − b1(1− e−z) + b2(1− e−z)2 − b3(1− e−z)3 +− . . .

]
.

With the substitution
w = (1− e−z) , (7)

i.e. z = − log(1− w), this becomes

1

log(1− w)
+

1

w
= −b0 + b1w − b2w2 + b3w

3 −+ . . . (8)

The coefficients bk can now be calculated recursively based on the Taylor expansion of log(1− w)
(as seen in the MATLAB code in the Appendix):3

b0 = −1

2
, b1 =

1

12
, b2 = − 1

24
, b3 =

19

720
, b4 = − 3

160
, b5 =

863

60480
, b6 = − 275

24192
, . . . (9)

2This same substitution in
∫∞
0
f(x)dx ∼

∑∞
k=0 f(k) +

∑∞
n=0 αnf

(n)(0) gives (3) and the Euler-Maclaurin coeffi-
cients.

3As an alternative to calculating Taylor coefficients (such as in (3) and (8)) recursively, they can also be obtained
numerically by applying the trapezoidal rule to Cauchy’s integral formula - effectively carried out by means of FFTs.
An automated procedure for choosing the radius of the integration path is given in [5]. However, this approach incurs
truncation errors, and offers no advantages in the present context (for which simple recursions are available).
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Figure 1: Magnitudes of the Gregory weights wk for orders p = 2, 4, 6, . . . , 16, displayed in two
slightly different ways. Weights equal to one shown in white, else blue for positive and yellow for
negative weights.

These coefficients oscillate in sign and decay to zero for increasing k: bk ∼ (−1) k+1

k (log k)2
. As noted above,

using only b0 = −1
2 turns (6) into the TR. For each further term, the accuracy order increases by

one.

Figure 1 shows the Gregory weights wk for accuracy orders p = 2, 4, 6, . . . , 16 . Heights correspond
to magnitude, with blue meaning a positive weight, and yellow a negative weight. Uncolored
markers indicate weights that are exactly equal to one, beginning at location p − 1. It is visually
clear that the Gregory formulas are severely affected by the Runge phenomenon [6, 16], manifesting
itself in large oscillations of the weights. We see negative weights for orders p = 10 and above.

Table 1 gives the Gregory corrections dk = wk − 1, to be added to weights all starting off as one,
up through p = 10. In case of a finite interval, we add this dk-sequence from each end (in reversed
order at the right end) to obtain actual weights to use. These two sequences can overlap; each one
just has to fit into the interval.

The passage shown in Figure 2 appears in a letter that James Gregory wrote in 1670. We rec-
ognize here exactly the same content as in (5), (6), and (9) (however, with a typo in one of the
denominators; 164 instead of 160) 4. This letter by Gregory well precedes the first publications on
calculus, by Leibniz (1684) and Newton (1687), respectively, as well as Brook Taylor’s description
in 1715 of what has become known as Taylor expansions. The early history of calculus may well
have developed differently, had it not been for Gregory’s premature death in 1675 (of stroke, at age
36).

4Only extracts of the letter are preserved. Although these do not include Gregory’s derivation, it seems plausible
from other preserved letter extracts that he used a generating function concept. The typo most likely occurred when
the handwritten letter extract was typeset in 1870 [10].
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p = Gregory corrections dk to the weights all being one

2 −1
2

3 − 7
12

1
12

4 −5
8

1
6 − 1

24

5 −469
720

59
240 − 29

240
19
720

6 −193
288

77
240 − 7

30
73
720 − 3

160

7 −41393
60480

23719
60480 −11371

30240
7381
30240 − 5449

60480
863

60480

8 −12023
17280

6961
15120 − 66109

120960
33
70 − 31523

120960
1247
15120 − 275

24192

9 −2558783
3628800

1908311
3628800 −299587

403200
115963
145152 −426809

725760
112477
403200 − 278921

3628800
33953

3628800

10 −63887
89600

427487
725760 −3498217

3628800
500327
403200 -64675670

2616161
3628800 −24019

80640
263077
3628800 − 8183

1036800

...
...

...
...

...
...

...
...

...
...

. . .

Table 1: Corrections dk to the weights all being one, according to Gregory’s formulas, up through
order p = 10. The middle entry on the p = 10 line shows the first instance of a correction < −1,
leading to a negative weight wk = 1 + dk.

Figure 2: Brief extract from the bottom of page 208 and the top of page 209 in [10].
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Figure 3: The life spans of the pioneering mathematicians in the early history of numerical quadra-
ture.

2.2 Some comments on the Newton-Cotes (NC) family of methods

The TR can be thought of as integrating exactly a piece-wise linear interpolant to f(x). Simp-
son’s rule is obtained if one divides the interval in node groups {x0, x1, x2}, {x2, x3, x4}, . . .,
{xN−2, xN−1, xN} and, separately for each, fits a parabola. In place of the TR weight sequence
h{12 , 1, 1, . . . , 1,

1
2}, one then obtains h

3{1, 4, 2, 4, . . . , 4, 2, 4, 1}. Already Kepler used this approach5,
and Newton and Cotes carried this concept to increasingly high orders (as known from from their
notes, edited and published by Simpson). This NC approach is conceptually questionable for several
reasons:

• It attempts to correct for end errors by changing weights across the entire interval,

• For periodic problems (or integrals over very long intervals), TR with its weights equal, is
optimal. Under refinement, the Simpson weights lose approximately half of the digits of
accuracy that TR gives (and worse still for higher order NC versions).

• The NC weights diverge for increasing orders even faster than the Gregory weights (and do
so across the entire interval).

Surprisingly, modern numerical analysis text books rarely mention the Gregory approach while
often discussing the NC approach at great length.

History is often unjust in how methods become named after different individuals. As a reference
to the names mentioned so far, Figure 3 shows timelines of their lives. We can note how Gregory’s
brief life preceded the active time spans of many who later became credited with results he had
understood (and had mentioned in his letters).

3 The present method

At clear indication that the Runge problem can be eliminated (or at least greatly reduced) for
increasing order Gregory-type methods emerged from [12]. The problem considered there was more
general – numerical quadrature using scattered nodes over bounded curved surfaces in 3-D space.
To verify that the RBF-FD (radial basis function-generated finite difference) approach employed
was computationally competitive in its handling of surface edges, an extremely simplified test case

5In the non-astronomical context of approximating volumes of wine barrels.
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was considered: 1-D equi-spaced nodes on a finite interval. It then transpired that this approach
produced Gregory-like methods of high orders, but with much reduced Runge phenomenon (for
a general background on RBF-FD approximations, see [7, 8]). These observations motivated the
work in [9]. In yet another context (numerical evaluation of singular integrals), ideas similar to the
ones exploited here were considered in [2], in turn building on ideas in [13] (for non-equi-spaced
quadrature).

3.1 Derivation of linear system for TR corrections

Weights wk that make (4) exact for all functions e−z x would satisfy 1
z =

∑∞
k=0wke

−z k (with
Re z > 0). Subtracting from this the identity 1

1−e−z =
∑∞

k=0 1 · e−z k gives

1

z
− 1

1− e−z
=
∞∑
k=0

dke
−z k, (10)

where dk = wk−1. The order of accuracy of the quadrature method can be shown to correspond to
the number of Taylor coefficients that match between the two sides of (10) when expanding around
z = 0.6 The variable change (7) gives

−
(

1

log(1− w)
+

1

w

)
=

∞∑
k=0

dke
k log(1−w)

=

∞∑
k=0

dk(1− w)k =

∞∑
k=0

dk

(
k∑
i=0

(
k

i

))
(−1)iwi =

=

∞∑
i=0

(−1)iwi

( ∞∑
k=i

dk

(
k

i

))
.

By (8), the left hand side (LHS) above equals
∑∞

i=0(−1)ibiw
i. We next equate the coefficients for

powers wi, i = 0, 1, 2, . . . , n , and include coefficients dk, k = 0, 1, 2, . . . , N , with N ≥ n. This gives
rise to n+ 1 linear equations in N + 1 variables, under-determined if N > n:



1 1 1 1 1 · · · · · · · · ·
1 2 3 4 · · · {Pascal’s · · ·

1 3 6 · · · triangle} · · ·
1 4 · · · · · · · · ·

1 · · · · · · · · ·
. . . · · · · · ·


(n+1)×(N+1)



d0
d1
...
dn
...
dN


N+1

=


b0
b1
...
...
bn


n+1

. (11)

This formulation is well suited for numerical calculation of the correction coefficients dk, k =
0, 1, 2, . . . , N , as described in Section 4.

3.2 A re-formulation of the linear system

We get additional analytic insights by noting that the inverse of the square leftmost (n+1)×(n+1)
block of the Pascal matrix in (11) becomes again an upper triangular Pascal matrix, but with

6The topic of Prony’s method is to obtain good matches not just at z = 0 but along lines satisfying Re z ≥ 0.
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alternating signs:

1 1 1 1 1 · · ·
1 2 3 4 · · ·

1 3 6 · · ·
1 4 · · ·

1 · · ·
. . .



−1

=



1 −1 1 −1 1 · · ·
1 −2 3 −4 · · ·

1 −3 6 · · ·
1 −4 · · ·

1 · · ·
. . .


.

Multiplying (11) by this inverse from the left produces

1 · · · · · · · · ·
1 · · · · · · · · ·

1 · · · B · · ·
1 · · · · · · · · ·

1 · · · · · · · · ·
. . . · · · · · · · · ·





d0
d1
...
dn
...
dN


=



1 −1 1 −1 1 · · ·
1 −2 3 −4 · · ·

1 −3 6 · · ·
1 −4 · · ·

1 · · ·
. . .




b0
b1
...
...
bn

 .

(12)
By (5) and (6), the RHS becomes the Gregory method’s correction coefficients. In the N = n case
(meaning that the B-matrix is absent), this vector obviously matches the LHS. With the b-sequence
(9) having alternating signs, there will be no cancellations when the RHS is evaluated - and it is
clear that the Gregory coefficients will grow in magnitude at about the same exponential rate as
do the Pascal triangle entries.

The opportunity to eliminate this growth in the dk-entries for increasing orders p arises from
choosing N > n = p− 2, i.e with the B-matrix present in the LHS of (12). Its entries can readily
be expressed in closed form. Counting its rows i = 0, 1, . . . , n and its columns j = 1, 2, . . . , N − n,

then Bi,j = (−1)i j
n+j−i

(
n+j
j

) (
n
i

)
. For example in the case of n = 8 and N = 10, equation (12) becomes



1 1 9
1 −9 −80

1 36 315
1 −84 −720

1 126 1050
1 −126 −1008

1 84 630
1 −36 −240

1 9 45





d0
d1
...
...
...
...
d8
d9
d10


=



−63887
89600

427487
725760

−3498217
3628800
500327
403200
−6467

5670
2616161
3628800
−24019

80640
263077
3628800
− 8183

1036800


, (13)

where the RHS vector exactly matches the p = 10 row in Table 1. This system can equivalently be
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written as 

d0
d1
...
...
...
...
d8


=



−63887
89600

427487
725760

−3498217
3628800
500327
403200
−6467

5670
2616161
3628800
−24019

80640
263077
3628800
− 8183

1036800


−



1 9
−9 −80
36 315
−84 −720
126 1050
−126 −1008

84 630
−36 −240

9 45



[
d9
d10

]
. (14)

It is from this form clear that we can obtain smaller (in magnitude) values for d0, d1, . . . , d8 by
selecting appropriate (also small) values for d9, d10 (rather than leaving both of these as zero; for
any values of these coefficients, the accuracy order remains p = 10). This concept generalizes to
any N > n, and offers the opportunity to eliminate the exponential growth in the classical Gregory
weights, at the expense of including a few additional weights.

4 Numerical implementation

4.1 Floating point calculation of weight sets

The strategy already outlined is to choose N > n, making (11) under-determined, and then look
for solutions that, for example, minimize

(L2) :
N∑
k=0

s2k d2k. (15)

Here, s is a scalar number somewhat larger than one (forcing the {dk} sequence to be mostly
decaying in magnitude). The choice of s represents a compromise between (i) s is close to one:
The N + 1 non-trivial weights wk, k = 0, 1, . . . , N will not converge towards one, and (ii) s large:
The first n + 1 weights will approach a Gregory-type case, with large oscillations. Somewhere in-
between, best found by trial-and-error, the weight oscillations will be mild and the weights approach
the value of one (before becoming identically one). The under-determined system (11) is somewhat
ill-conditioned. Regular double precision is adequate to find weights in schemes up to around order
p = 15, and quad precision (about 34 decimal digits) easily suffices up to orders well into the 20’s.

The Appendix contains a simple MATLAB code for solving the L2 minimization problem (15) using
the pinv function (Moore-Penrose pseudo-inverse), available in standard MATLAB as well as in the
main extended precision toolboxes (e.g. MATLAB’s Symbolic Toolbox and the Advanpix package
[1]).

When going to very high orders of accuracy (well beyond p = 20), one might prefer to instead
minimize using library routines that include options for imposing inequality constraints (such as
not allowing any dk < −1, corresponding to no weight wk = dk + 1 becoming negative). Such
routines are available both for L2 and L1 minimization (i.e. of minimizing

∑N
k=0 s

k |dk|).
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4.2 Weight sets with rational coefficients

Considering for example order p = 10 schemes, the Gregory version is given in the last row of Table
1 (n = N = 8). After factoring out 1/10, we can write the corrections dk as

1
10

{
−63887

8960 ,
427487
72576 ,−

3498217
362880 ,

500327
40320 ,−

6467
567 ,

2616161
362880 ,−

24019
8064 ,

263077
362880 ,−

8183
103680

}
. (16)

As well as striving for smaller corrections (in magnitude) and non-negative weights, one can simul-
taneously search for corrections dk that involve rational numbers with relatively small numerators
and denominators. Again for accuracy order p = 10, there are for ex. many n = 8, N = 10 schemes
with no numerator or denominator above 5 and 4 digits, respectively. Two somewhat arbitrarily
chosen cases include

1
504

{
−22763

64 , 59501
225 ,−

64849
180 ,

11027
32 ,−40069

225 ,
6071
7200 ,

45847
800 ,−

40171
1440 ,−

289
2880 ,

2917
800 ,−

1957
2400

}
, (17)

and

1
480

{
−35351

105 ,
18751
80 ,−60167

216 ,
4643
24 ,

4777
7560 ,−

47189
378 ,

26249
280 ,−

17389
1512 ,−

29921
1512 ,

6143
560 ,−

6949
3780

}
. (18)

One strategy to search for such cases starts by noting that the least common multiple of the
denominators in (14) is lcm = 7257600. It follows then from (14) that, if we choose d9 and d10 to
be integer multiples of 1/lcm, that will also become the form of d0, d1, . . . , d8. A random selection
of such values for d9 and d10 will reveal many cases (such as (17) and (18)) when all the rational
numbers d0, d1, . . . , d8, d9, d10 simplify greatly.7

4.3 Numerical tests

Figure 4 illustrates five different weight sets based on the discussion above. In none of the cases
are there any negative weights present8.

We consider at first the following two functions, defined over [0, 1]:

f(x) = cos(20
√
x) , (19)

(also used in [9]), and

f(x) = e−1000(x−
1
2
)2 , (20)

shown in Figures 5 (a,b). Both functions are infinitely differentiable, with
∫ 1
0 cos(20

√
x)dx =

1
200(cos 20 + 20 sin 20− 1) and

∫ 1
0 e
−1000(x− 1

2
)2dx = 1

10

√
π
10 Erf (5

√
10), respectively. The two func-

tions have quite different character in that the first integrand is most challenging very near the left
boundary, whereas the second one mainly tests quadrature accuracy in the domain interior.

7Acknowledgment: The rational solutions (17), (18) were found using a Quadro P6000 GPU board, donated by
Nvidia.

8In the last case of order p = 20, corresponding Gregory and NC schemes have weights in the ranges [−276, 273]
and [−496, 546], respectively.
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Figure 4: The equi-spaced weights used for the test problems. Non-trivial weights (meaning weights
not equal to one) are shown in blue. Only in the Simpson case do these extend past what is
illustrated here.
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4.4 Some comments on Gaussian quadrature

While this study is focused on quadrature based on equi-spaced nodes (in many applications im-
posed by the data availability), there also are applications where the nodes can be chosen freely -
and thus can be selected purely for the purpose of optimizing quadrature accuracy. In such cases,
domain decomposition (adaptive quadrature) is often used. Clustering nodes towards the ends of
each sub-interval provides the most common approach for overcoming the Runge phenomenon. In
order to place the presently developed TR enhancements in a broader context, we include in the
first two tests also Gaussian quadrature and the Clenshaw-Curtis method (which amounts to inte-
grating exactly the Chebyshev polynomial interpolant obtained through a fast cosine transform).
These two approaches are surveyed in [15]. A hybrid Gauss-trapezoidal rule is described in [3]
(using equi-spaced nodes across most of the domain interior, and clustering only near each end).

4.5 Test results and discussion

4.5.1 First test problem

Figure 6 (a) shows the convergence rates when integrating the first test function (19). Since
the steepest gradients occur at a boundary, it is not surprising that Clenshaw-Curtis and Gauss
quadrature (dotted curves) excel, since these both cluster their nodes towards the boundaries
(however, for the entirely different reason of suppressing the Runge phenomenon). The theoretically
known factor-of-two difference between their convergence rates is clearly evident.

Regarding the equi-spaced methods, the higher order ones need increasing numbers of sub-intervals
before they can be applied. From the slopes in this log-log display, it is clear that their convergence
rates correspond well to their theoretically known orders of accuracy.

4.5.2 Second test problem

Figure 6 (b), with emphasis of the interval interior, shows that the Clenshaw-Curtis and Gauss
quadrature methods both suffer in performance from having their node density in the interior
reduced by a factor of 2/π (as a consequence of having clustered nodes towards the boundaries).
In line with the analysis in [15, 19], these two methods perform here similarly at low accuracies,
before their asymptotic factor-of-two rate difference enters.

The curves for the equi-spaced TR versions of orders p = 2 and p = 10 in Figure 6 (b) overlap from
an early point on, to be joined shortly thereafter by the p = 14 scheme (and eventually, outside
the diagram, by the p = 20 scheme). The p = 4 Simpson method requires about twice as many
nodes for comparable accuracy (with higher order Newton-Cotes schemes needing still more; not
displayed here).

4.5.3 Third test problem

The integrand in this case is chosen as the sum of the ones in the previous two cases, thus repre-
senting a function that is challenging for numerical quadrature both at an end and in the interior.
Since our primary interest is quadrature using equi-spaced nodes, the Clenshaw-Curtis and Gauss
quadrature schemes have not been included. The results in Figure 6 (c) show that the new higher
order schemes decisively outperform both the trapezoidal and Simpson rules. For very large number
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Figure 5: The two test functions used in Section 4.3.

of nodes, higher order is better. However, the ‘robust’ performance and simplicity of the p = 10
scheme (17) makes it an attractive replacement of the classical trapezoidal and Simpson’s rules.

5 Conclusions

Computational algorithms often become more cost-effective when their formal order of accuracy is
increased, be it for solving ODEs, PDEs, interpolation, or numerical quadrature. In cases where
only equi-spaced (non-periodic) data is available, the well-known Runge phenomenon commonly
arises. Traditionally, numerical quadrature methods for this case have been limited to low orders
of accuracy. Key features of the higher order methods described here include

1. All weights are non-negative,

2. Apart from very near to the ends of the interval, the weights are identical to those of the trape-
zoidal rule (making the scheme fully able to utilize the trapezoidal rule’s spectral accuracy
over the interior of intervals).

For everyday usage, the scheme (17) is an attractive compromise between simplicity and accuracy
(10th order). However, for applications that require results close to standard machine accuracy of
16 digits (and assuming integrands of sufficient smoothness), still higher orders of accuracy may
become even more more cost-effective.

In applications where function data can be obtained at arbitrary spatial locations (rather than
only being available at equi-spaced points), a more traditional approach for eliminating the Runge
phenomenon is to cluster nodes heavily towards the ends, as in Gaussian quadrature methods.
However, doing this depletes nodes throughout the rest of the interval. Certain applications, es-
pecially in Experimental Mathematics, require integrals to be evaluated to several thousands of
decimal places. It is noted in [4] that the tanh-sinh method [14] then often is viewed as the best
option. In this approach, a variable change designed to reduce errors from the ends of the interval
is followed by equi-spaced TR integration.
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Figure 6: Log-log plots of errors vs. the number of sub-intervals for the two test problem in Section
4.3, when using the five different methods illustrated in Figure 4 and also, with non-equi-spaced
nodes, Clenshaw-Curtis and Gaussian quadrature results.
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6 Appendix: MATLAB code for finding weights by L2 minimization

The following shows a MATLAB script that specifies a weight set to be calculated by L2 minimiza-
tion and plots the result. This is followed by the function that carries out the calculation.

% Main s c r i p t to t e s t the func t i on L 2 co r r
N = 14 ; % Weight c o r r e c t i o n s e t extending over nodes 0 :N
n = 10 ; % Match Taylor powers 0 : n ; accuracy order p = n+2
s = 1 . 3 ; % Weighting to be used in the minimizat ion
d = L 2 co r r (N, n , s ) ; % Ca lcu la te the non−t r i v i a l quadrature weights
p l o t ( 0 :N, ( d+1) ’ , ’ bs ’ , ’ MarkerFaceColor ’ , ’ b ’ ) ; yl im ( [ 0 , 2 ] ) ; % Display the weights

func t i on d = L 2 co r r (N, n , s )
% Input parameters
% N S t e n c i l extent 0 :N
% n Taylor c o e f f i c i e n t s 0 : n matching , i . e . order o f accuracy p = n+2
% s Sca l i ng parameter to c o n t r o l r a t e by which weights approach one
% Output parameter
% d Column vecto r with computed c o r r e c t i o n s

b k = ones (1 , n+2); % Create a column vecto r with
v = −cumprod(−ones (1 , n + 1 ) ) . / ( 2 : n+2); % the n+1 f i r s t Gregory c o e f f i c i e n t s
f o r k = 2 : n+2 % b k , k = 0 , 1 , . . . , n

b k ( k ) = v (k−1:−1:1)∗ b k ( 1 : k−1) ’ ;
end
b k = −b k ’ ; b k (1 ) = [ ] ;

P = abs ( pasca l (N+1 ,1) ’ ) ; P = P( 1 : n+1 ,1:N+1); % Create the Pasca l matrix
sv = cumprod ( [ 1 , s ∗ ones (1 ,N) ] ) ; Ps = P. / sv ; % Sca l e i t s colums
d = pinv ( Ps )∗ b k ; d = d . / sv ’ ; % Find the minimal norm s o l u t i o n
end
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