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Abstract Traditional numerical time stepping allows variable node densities in
space, but not also in time. Having the ability to utilize nodes that are placed
irregularly in the space-time domain leads to many advantages when solving time
dependent problems. In this paper we introduce a new method utilizing the radial
basis function generated finite difference (RBF-FD) approach in order to accom-
plish this goal. Benefits include improved stability conditions and the option to
use small time steps only in select spatial regions.
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1 Introduction

Efficient numerical simulation of time dependent PDEs are important for investi-
gating physical phenomena. Usually time dependent PDEs are advanced numeri-
cally in time steps that are equally long everywhere across the spatial domain. A
common such approach is method of lines (MOL), amounting to discretization in
space followed by the application of a standard ODE solver in time. While this
often works satisfactorily, and is well supported by accuracy and stability theory,
there are also important situations when this becomes very ineffective. Such cases
include when
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– geometric features locally require very small space steps; CFL conditions may
then force explicit time stepping methods to use much smaller time steps than
what are required for temporal accuracy and

– high resolution is needed only in small regions of the space-time domain (such
as around narrow propagating pulses).

Whenever resolution requirements or CFL restrictions force time steps to be small
somewhere in space, the MOL concept requires them to be equally small every-
where. A somewhat related situation arises for stiff ODE systems, when different
equations evolve on different time scales (discussed in the context of space-time
discretization in [7]). The two main ideas in the literature for allowing time steps
of different sizes in different parts of a spatial domain are

– use block-like (or, more generally, patch-like) space-time domain decomposi-
tion, where discretizations can differ between blocks, and

– use a ‘tent pitching idea’, where a piecewise linear time front is advanced
sufficiently short in time by raising ‘tents’ with ‘tent poles’ that the tent’s side
slopes are small enough so that no characteristics can enter through these sides.
The numerical solution is then advanced independently within the different
‘tents’.

In the first case, various idea of interpolation, extrapolation, and projections have
been considered for matching solutions along the sides of the blocks. The tent
pitching concept is mainly applicable to wave equations (with limited characteristic
speeds). In localized refined patches, fully implicit or implicit-explicit (IMEX)
time stepping may be cost-effective. Several papers contain in their introductions
reviews of these (and other) concepts for achieving ‘local time stepping’ (often
given the acronym LTS); see for example [1,2,8,9,19].

In the context of using RBFs, partly grid-based linked space-time approaches are
described in [10,24]. Regarding fully scattered nodes in the space-time domain,
all versions so far are based on the idea of collocation within extended regions of
the space-time domain, followed by solving the resulting large coupled systems of
equations (which may be of least squares type). Within this approach, the space-
time domain RBF approximations can themselves be global [22,23,26] or local [20]
(if so, producing sparse systems). In this latter case, moving least squares (MLS)
approximations can be a viable alternative to (also local) RBF-FD approximations
[24] 1.

In this paper we present a new and conceptually entirely different approach, uti-
lizing radial basis function generated finite difference (RBF-FD) for explicit time
stepping. This approach is mesh-free on all scales with nodes scattered throughout
the space-time domain. Local node densities are chosen to match local resolution

1 Although similar in many respects, RBF-FD (in its form known as PHS+poly, see Sections
5.1.5 and 5.1.7 in [16]) and MLS have also significant differences, as analyzed in [3]. The last
paragraph in the Conclusions of this paper notes: “Overall, PHS+poly has performed superior
than MLS. It can not only achieve at least the same accuracy than MLS, but can also overcome
the harmful Runge’s phenomenon for any polynomial degree. This result potentially opens new
opportunities for PHS+poly in areas of application where MLS is the preferred choice.”
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requirements. We abbreviate it RBF-TD, standing for RBF-based time discretiza-
tion. No matter how the nodes are scattered in space-time, the PDE solution is at
each step advanced to the lowest node in time that has not yet received a solution
value.

This paper is organized as follows: we first demonstrate the RBF-TD procedure
for a 1-D wave equation in Section 2.1. We note in Section 2.4 that, even if the
nodes are restricted to a Cartesian grid in space-time (i.e. not utilizing any of
RBF-TD’s local space-time refinement capability), it can still improve both accu-
racy and stability compared to standard explicit MOL discretizations. Section 2.5
demonstrates the RBF-TD approach for the 1-D heat equation. Further equations
are considered in Section 3, including variable speed for the 1-D transport equa-
tion and the viscid Burger’s equation. Some concluding observations are given in
Section 4.

2 Description of the RBF-TD procedure

The RBF-TD procedure is most easily first described for a 1-D one-way wave equa-
tion test case. We first discuss the test problem and node setup for the transport
equation in Section 2.1. In Section 2.2 the calculation of each stencil is explained.
Sections 2.3 and 2.4 demonstrate the results of the one-way transport equation.
Finally, in Section 2.5, the heat equation is examined.

2.1 Demonstration problem: 1-D wave equation

We consider first the problem of solving the PDE

∂u

∂t
+
∂u

∂x
= 0 (1)

together with an initial condition (IC) at t = 0 and a boundary condition (BC) at
x = 0 that obey the analytic solution

u(x, t) = e−(20(x−t))2 .

Figure 1 shows the node set that will be used in the (x, t)-plane in this first test.
The nodes have been placed densely along the expected path of the traveling pulse.
Node sets of this kind (with variable density, locally quasi-uniform, and conform-
ing with boundaries) can be generated very rapidly [15]. This node distribution
algorithm is of ‘moving front type’, allowing nodes either to be placed in advance
according to some preexisting knowledge of how the PDE solution is evolving in
time or placed adaptively (discussed later in Section 3.1.1). The present case fea-
tures N = 3, 481 nodes separated by distances between 0.01 and 0.06. The nodes
at which IC or BC are provided (along the bottom and left boundaries, respec-
tively) are marked with small squares. At all other node locations, the solution
will be calculated by the present RBF-TD algorithm. In contrast to typical high



4 Dylan Abrahamsen, Bengt Fornberg

order lattice based discretizations, no special treatment is called for near or at
boundaries.

In preparation for advancing (1) forwards in time, we first create a stencil of size
n (with n� N) for each node where the solution is sought. Each stencil includes
the node itself and its n− 1 nearest neighbors that are located below it in time. For
each of these n stencil entries, we then calculate a set of weights as described next
in Section 2.2. The weights for all these different stencils can be computed entirely
independently of each other, i.e. their calculation is an ‘embarrassingly parallel’
task. The stencils are then applied to advance the PDE solution one node at a
time. This explicitly solves the PDE with no need for a space-time mesh (i.e. ‘grid’
with regular node separations in space and time).
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Fig. 1 Node set used over 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 in the first test problem: one-way scalar wave
equation (1). The nodes at which IC or BC are provided are marked by small squares.

2.2 Weight calculation for single time-space stencil

Figure 2 (a) illustrates a typical single stencil with n = 20 nodes. The top node,
marked by a square, is the location of the node we want to use the stencil to
compute a solution value at, once solution values already have been obtained at
all the lower node locations. Figure 2 (b) illustrates the weights obtained for the
nodes in (a) by the RBF-TD algorithm applied to ∂

∂t + ∂
∂x . The sign of the weight
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is indicated by the line type for its surrounding circle and the absolute value is
indicated by the area inside each circle. When using these weights, the computed
solution value at the top node will become greatly dominated by the values below
it and to the left in the (x, t)-plane, in excellent agreement with the analytic
character of this PDE. We also note that this stencil comes close to being stable
even in max-norm since the area of the top circle roughly matches the sum of the
other circle areas. We next describe the process to arrive at these weights given
node locations and the PDE.
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Fig. 2 (a) Example of node layout for a n = 20 stencil in the (x, t)-plane, with the top node
marked by a square. (b) The associated weights in the case of equation (1). Here the area of
each circle indicates the magnitude of the weight used at that node location. Solid circles and
dashed circles represent positive and negative weight respectively.

2.2.1 Some background about RBF-FD stencils and their weights

Several monographs provide general surveys of RBFs [11,16,27]. It has furthermore
been demonstrated convincingly in the last decade that RBFs can be particularly
effective in a ‘local’ RBF-FD mode generalizing FD-like computing to mesh-free
node sets [5,12–14,17,25,28]. For key RBF-FD formulas and summaries of their
applications, see in particular [16], Chapter 5. In the present work, we limit our-
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selves to weight calculations represented by the formula



φ(||x1 − x1||) φ(||x2 − x1||) · · · φ(||xn − x1||) 1 x1 t1
φ(||x1 − x2||) φ(||x2 − x2||) · · · φ(||xn − x2||) 1 x2 t2

...
...

...
...

...
...

φ(||x1 − xn||) φ(||x2 − xn||) · · · φ(||xn − xn||) 1 xn tn
1 1 · · · 1 0 0 0
x1 x2 · · · xn 0 0 0
t1 t2 · · · tn 0 0 0





w1

w2

...
wn
wn+1

...


=



Lφ(||x− x1||)|x=xc

Lφ(||x− x2||)|x=xc

...
Lφ(||x− xn||)|x=xc

L1|x=xc

Lx|x=xc

Lt|x=xc


. (2)

When approximating only spatial derivatives, x would in 2-D abbreviate x = (x, y).
In the present (x, t)-plane, x will instead stand for x = (x, t), and xi be the location
of the ith stencil node. When solving (1), L = ∂

∂t + ∂
∂x and xc denotes the location

at which we impose that the stencil-wide RBF interpolant obeys the PDE. We note
in (2) both column and row vectors {1, 1, · · · , 1}, {x1, x2, · · · , xn}, {t1, t2, · · · , tn}
(more generally, also vectors with higher degree terms). The column vectors enrich
the approximating function space (beyond the RBFs alone) and the row vectors
ensure a matching formal order of accuracy. The full system matrix is symmetric
and, in general, non-singular. The norm || · || is the Euclidean 2-norm, and φ(r)
denotes the radial function, which we will choose as either a polyharmonic spline

(PHS), φ(r) = rm (m odd), or as a Gaussian φ(r) = e−ε
2r2 . However, in the

latter case, the shape parameter ε for the large number of varying stencils may
become difficult to optimize. Furthermore, it has been shown that polyharmonic
splines with polynomials maintain excellent accuracy at boundaries [4,5], making
PHS+poly the ideal choice of RBF. The order of accuracy for a PHS+poly type
stencil is typically determined by the order of the polynomial terms attached in
(2). Since PHS derive their accuracy through polynomials and initial nodes are
placed at a single time, it transpires that no accuracy can be obtained in the time
direction initially. Thus, another approach is required to start the calculation.
RBF-TD using Gaussians can fill this role until far enough into the computational
domain.

2.2.2 L1 optimization of stencil weights

An analytic solution satisfies its governing PDE at all (x, t)-locations. Like for
regular FD stencils applied on a grid, there is some arbitrariness in the choice of
location xc at which each stencil is enforced to be exact. We consider for each
stencil several xc choices, namely xc is chosen as the midpoints between the latest
unresolved node and its closest p < n neighbors. In the style of Figure 2, Figure
3 shows the RBF-FD generated weights with L = ∂

∂t + ∂
∂x for nine such choices

of xc, each marked by a black square. While all the nine weight sets are accurate
representations of the PDE, none is suitable for stepping forward in time since
stability is doubtful unless the top circle’s area dominates the remaining ones.
The key to remedying this is to note that any linear combination of these weight
sets will also be an accurate weight set. We look for the combination such that, for
the resulting weights, w1 = 1 while

∑n
i=2 |wi | is minimized. This creates accurate

stencils while being dominated by the “top” weight.
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A convenient way to arrange this minimization calculation starts by placing the
p (here with p = 9) weight vectors side-by-side to form an n × p matrix W . We
next choose a linear combination of the weight vectors such that the right-hand
side of equation (3) is achieved. This process can also be expressed as a matrix
multiplication with any non-singular p× p matrix B such that WB takes the form

WB =


1 0 · · · 0

−b A

 , (3)

(with zeros in the last p − 1 positions in the top row). The desired weight set

w =


1

w2

 is now found by determining the vector v that minimizes ||Av − b||1

with w2 = b − Av. For this, we use the MATLAB routine l1decode pd.m from
the package L1-Magic [6]. These steps produce the single stable weight set shown
in Figure 2 (b) from the p = 9 different unstable weight sets shown in Figure 3.
Algorithm 1 below shows the pseudo-code implementation of the RBF-TD method
described thus far.
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Fig. 3 Nine different sets of weights, obtained by choosing different locations (black squares)
at which we require that the RBF-FD (Gaussian) approximation match the PDE. The locations
of the squares are half-way between the top node and, in turn, each of its 9 nearest neighbors.
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Algorithm 1: RBF-TD

while Unsolved nodes exist do

Find the lowest unresolved node in time.
if node has IC or BC then

Apply solution at node.
else

Find the n closest neighbors below the unresolved node.
Choose p < n center points xc.
Compute W using (2) for each center point with Gaussians or PHS and
desired polynomials.

Form the WB matrix and collect A and b.
Find the weight vector w that minimizes ||Aw2 − b||.
Apply w to find solution at unresolved node.

end

end

2.3 Time stepping of the 1-D wave equation test case

Stepping forward in time over the N = 3, 481 nodes shown in Figure 1 as described
above produces the solution seen from two perspectives in Figure 4 2. Gaussians
(ε = 20) were used to initialize the solution a distance of 0.05 (an arbitrarily suit-
able choice) into the time domain, followed by PHS with fourth degree polynomials
for the remaining distance of 0.95. The error reaches a maximum magnitude of
just less than 0.025. In order to put this accuracy in some perspective, we com-
pare against standard MOL discretizations, using a space step of h = 0.01 (thus in
space with the same node separation in x as the densest one appearing anywhere
in the scattered node discretization).

If we combine centered fourth order FD (FD4) in space with third order Adams-
Bashforth (AB3) in time, von Neumann analysis shows the stability condition to be

λ = k
h ≤

24
25

√
8
√
6−3
55 ≈ 0.52734. Obeying this by choosing k = 0.5h = 0.005 leads

to a grid with N = 20, 301 space-time grid points, and gives a maximum error of
0.17, i.e. about 7 times larger error in spite of using nearly 6 times as many nodes.
Changing from AB3 to AB4 in time helps very little. The stability restriction then

becomes λ = k
h ≤

8
375

√
13
√

6− 3 ≈ 0.31335. Using k = 2h/7 ≈ 0.29h = 0.0029
gives a grid of N = 35, 451 points and an error of 0.15 (i.e. a very moderate
error reduction in spite of many more grid points). In contrast to the RBF-TD
approach, both these schemes need special modifications at all boundaries (apart
from at the top one, t = 1), since their stencils would otherwise extend outside
the computational domain. For Runge-Kutta methods the stability conditions are
comparable. Accounting for their internal stages, they are λ < 0.420 for RK3 and
λ < 0.515 for RK4.

2 A code for producing this figure can be downloaded from
https://github.com/DylanAbrahamsen/RBF-TD
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Fig. 4 Two perspectives of the RBF-TD solution to the one-way transport equation detailed
in Section 2.3 with n = 30 and φ(r) = r5 + fourth degree polynomials.

Figure (5) demonstrates the convergence rate using different order polynomials
on globally quasi-uniform node sets. No local refinement was used for this conver-
gence rate testing to simplify the interpretation of the result. It is clear that the
convergence rates match the polynomial powers included.
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Fig. 5 RBF-TD `∞ error to the test problem in Section 2.3 for varying N using φ(r) = r5

+ fourth degree polynomials with n = 30 and φ(r) = r5 + sixth degree polynomials with
n = 40. The dashed lines represent fourth and sixth order convergence rates recalling that

N = O
(

1
h2

)
.
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2.4 Comparison between AB3-FD4 and RBF-TD on a Cartesian grid

The AB3-FD4 scheme for (1) has a stencil shape which can in the (x, t)-plane be
illustrated as3

�
|

� − � − � − � − �
� − � − 0 − � − �
� − � − 0 − � − �

(4)

With the two entries associated with the time step being assigned weights 1 and
-1, respectively, the 3× 5 block of entries will be given by the rank 1 matrix

AMOL = −λ

 23
12

− 4
3

5
12

[ 1
12 −

4
3 0 4

3 −
1
12

]
, (5)

where λ = k/h. The top row of subplots in Figure 6 display the weights that this
approximation to (1) produces for λ = 0.5, 0.75, 1.0, respectively. The restriction
of the AMOL-matrix to be of rank 1 and also to be left-right anti-symmetric forces
a number of weights in the AB3-FD4 stencils to become quite large for increasing
λ. The corresponding set of weights produced by the RBF-TD approach with
Gaussians (ε = 0.08) on the same node set, bottom row of subplots (based on
using 7 values for xc, as shown by black squares), reflect more directly the PDE’s
characteristic direction (in all the six subplots marked by a dashed line segment).

2.4.1 Action of the stencils on a Fourier mode

The Fourier modes eiωx that can be present on a grid of spacing h satisfy − π
h ≤ ω ≤

π
h . When advancing the solution to (1) forward by a time distance k, each mode

should (analytically) get multiplied by e−iωk, i.e. by e−iξ with ξ = ωk. The small
circles in each subplot of Figure 7 display this factor e−iξ for 40 equispaced values
of ξ across its range of |ξ| ≤ π. Both of the numerical schemes under consideration
have 4 levels in time, and thus, for each ξ-value, 3 roots in their characteristic
equation. One of these three roots should ideally match each circular marker in
turn, whereas the remaining two roots should be ‘harmlessly’ located well inside
the unit circle. These roots are shown as dots for each subplot.

3 We focus here on AB-FD4 schemes (rather than on RK-FD4 schemes, with internal stages)
since these can be displayed as space-time stencils.
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Fig. 6 Top row of subplots: Weights obtained for the the AB3-FD4 discretization of (1) for
three choices of λ = 0.5, , 0.75, 1.0, respectively. The dashed line marks the characteristic
direction of the analytic solution. Bottom row of subplots: The equivalent data when the
weights are instead calculated by the RBF-TD approach. All stencil weights are normalized
with the “top” weight being one.

In the three AB3-FD4 cases, we see at first good agreement for the lowest modes.
However, as λ increases, fewer modes approximate the analytic solution well and
already at λ ≈ 0.52734 (as noted above, using von Neumann analysis) stability
is lost as spurious roots exit the unit circle. In the RBF-TD cases, the accuracy
remains high also for larger λ-values, and stability is not lost until just before λ
reaches one. A very small amount of hyperviscosity [18] is well suited for ‘nudging’
roots to the inside the unit circle if they are marginally outside due to some
inherent ‘noise’ in the L1 minimization (in the first two cases, less than 10−4 in
the positions of the roots). If the governing equation is not purely hyperbolic, but
has some low level of natural dissipation, or if nodes are scattered rather than
purely lattice based, this will not be an issue.
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Fig. 7 The layout of the subplots is the same as for Figure 6. The ‘actions’ of the schemes
are shown when applied to the Fourier modes eiωx as described in Section 2.4.1.

2.4.2 Heuristic discussion about stability restrictions

The previous Section 2.4.1 gave some indication that stability conditions can be-
come more relaxed when using the RBF-TD approach compared to grid-based
MOL. Key reasons for this include:

(i) MOL approximations come with severe constraints (such as the AMOL-matrix
in (5) being rank one and anti-symmetric) whereas the RBF-TD approach
naturally finds weights that more directly reflect the ‘character’ of the PDE.
As a consequence of this, noted above and seen in Figure 7, spurious roots
grow much larger for MOL.

(ii) An explicit MOL scheme on a lattice (compare (4) with Figure 2 (a)) is an
extreme case of the evaluation node being particularly far ahead of any neigh-
boring node. When using RBF-TD stencils on scattered nodes in the space-
time domain there are typically nearby nodes (with data) at an almost equally
advanced time.

(iii) A lattice-based MOL scheme is unstable if just a single spatial Fourier mode has
a growth factor larger than one in magnitude (since exactly the same growth
will then repeat for every subsequent time step). With scattered time-space
nodes, every stencil is different in this regard. If some modes grow for one
particular stencil, chances are that they will decay for other stencils. Overall
spurious growth becomes less likely.
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2.5 Demonstration problem: 1-D heat equation

2.5.1 Test problem

We consider here the PDE
∂u

∂t
= α

∂2u

∂x2
(6)

over the domain x ∈ [0, 1], t ∈ [0, 1], with initial and boundary conditions that
match the analytic solution

u(x, t) =
1√

4πα(t+ τ)
e−(x− 1

2 )2
/(4α(t+τ)),

choosing α = 1
30 and τ = 1

50 .

2.5.2 RBF-TD solution

Figure 8 shows the solution, advancing in time from the left far boundary to the
right as calculated with the RBF-TD approach using the node set illustrated in
Figure 9 (a). This node set is refined near t = 0, x = 1

2 (motivated by the initial
steepness of the solution) and also around t = 1

2 , x = 1
2 (in order to to further

test its numerical stability). This calculation arbitrarily used GA-type RBFs, with
shape parameter

ε = 0.2 / {distance from top stencil node to the node nearest to it}

to demonstrate that both GA and PHS with polynomials are viable options. Each
stencil contained n = 15 nodes and was based on L1-minimization combining p = 7
different stencils (centered at the half-way locations between the top node and its
p nearest neighbors below it).

The quasi-uniform node set has locally the same spacing in both the x− and
t−directions. To assess if its stability restriction is comparable with grid-based
MOL approaches, we compare against the ‘routine’ explicit time stepping scheme
for the heat equation

u(x, t+ k)− u(x, t)

k
= α

u(x− h, t)− 2u(x, t) + u(x+ h, t)

h2
.

This is stable if λ = k
h2 ≤ 1

2α . If we use k = h, this condition translates to 2α
h ≤ 1.

This constant value 1 forms the bottom surface in Figure 9 (b). In the RBF-
TD calculation, k ≈ h, this quantity 2α/{distance to nearest node} is varying as
shown on the top surface. We see that this RBF-TD implementation used steps
that exceeded what would be possible with the FD scheme by factors that vary
between 2 and 8. The stability situation is again greatly improved over traditional
explicit FD / MOL schemes.
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Fig. 8 Solution to the heat equation test problem described in Section 2.5.1, as obtained by
the RBF-TD approach described in Section 2.5.2.
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(a) Distribution of N = 1, 533 nodes. (b) Stability comparison.

Fig. 9 (a) Node set used in test calculation of the heat equation and (b) values for 2α
h

, as
described in Section 2.5.2, upper limit in the FD case (bottom plane) vs. actually used in the
RBF-FD case (top surface)

3 Additional test problems

3.1 Transport equation with variable velocities

We consider next the transport equation with variable wave speed in time,

ut + α(t)ux = 0 (7)

where α(t) = 6
(
1
2 − t

)
. In the case that α(t) is large, waves will travel long

distances in short time. This could potentially cause CFL conditions to be vi-
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olated. To better account for this, it becomes natural to correspondingly stretch
the RBFs horizontally, i.e. to replace the Euclidean distance definition ||x1−x2|| =√

(x1 − x2)2 + (t1 − t2)2 by a Mahalanobis counterpart,

||x1 − x2|| =
√

(x1 − x2)2 +
(
t1 − t2
σ

)2
. (8)

The RBF is accordingly stretched using r =
√
x2 +

(
t
σ

)2
. The parameter σ is in

our present test case chosen as 1
α when α > 1, otherwise as σ = 1 (then resulting

in the standard Euclidean distance).

(a) Numerical solution (b) Error

Fig. 10 (a) Numerical RBF-TD solution of (7) using stencil size n = 30 and PHS+poly of
the form φ(r) = r5 + fourth degree polynomials on N = 9, 405 nodes. (b) Difference between
numerical and analytic solution.

The same Gaussian pulse from Section 2.1 is used as an initial condition. Figure
10 shows that the error initially increases roughly linearly in time, as expected due
to the trailing waves. The amplitude of the main pulse has decayed by roughly 2%
at t = 1. Below is the augmented pseudo-code for RBF-TD with high wave speed.
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Algorithm 2: RBF-TD for high wave speed

while Unsolved nodes exist do

Find the lowest unresolved node in time.
if node has IC or BC then

Apply solution at node.
else

Check the wave speed α at node location.
if α ≤ 1 then

Find the n closest neighbors below the unresolved node using
standard Euclidean norm.

else
Find the n closest neighbors below the unresolved node using (8) with
σ = 1

α .

end

Choose p < n center points xc.
Compute W using (2) for each center point with Gaussians or PHS and
desired polynomials.

Form the WB matrix and collect A and b.
Find the weight vector w that minimizes ||Aw2 − b||.
Apply w to find solution at unresolved node.

end

end

3.1.1 Adaptive node generation

Placing densely packed nodes in regions of high activity and sparely otherwise
takes full advantage of the geometric flexibility of RBF-TD. However, creating
node sets for different problems can be time consuming and can result in non-
optimal node placement. RBF-TD can easily be combined with adaptive node
generation, for example based on [15]. Rather than generating the node set prior
to running RBF-TD, the process runs alongside RBF-TD. A variety of stratagies
are possible for dynamic node placements. Just to test the concept, we here choose
an exclusion radius at each node that is determined by a ‘curvature’ measure

ω

∣∣∣∣∣ ux(x0, t0)

max
x

ux(x, t0)

∣∣∣∣∣+ (1− ω)

∣∣∣∣∣ uxx(x0, t0)

max
x

uxx(x, t0)

∣∣∣∣∣ (9)

at the latest node in time located at (x0, t0). Here ω ∈ [0, 1] is some weighting
between the first and second derivative in space. The derivative values are found
by extrapolating across the spatial domain at the latest time t0. Finally, the ex-
clusion radius is scaled from a prescribed minimum and maximum value based
on the nodes relative ‘curvature’. Figure 11 illustrates the concept. We have here
generated nodes with no effort to (i) use local refinement during the initialization,
or to (ii) correct for edge-related issues. Nevertheless, the errors seen in Figure
11(b) are comparable to those in 10(b) in spite of only using N = 5, 084 nodes
(versus N = 9, 405 nodes).
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Fig. 11 (a) Adaptive node set generated to solve (7) with N=5,084 and ω = 1
2

. The line rep-
resents the peak of the moving pulse. (b) Difference between numerical and analytic solution.

Figure 11 demonstrates the proof of concept for adaptively creating node sets
alongside RBF-TD. Also, a slight exclusion radius averaging is used to smooth the
node density and can create node placements that favor the trailing edge of the
wave. The method currently is being developed further to help eliminate phenomea
like the edge effects seen above.

3.2 Viscid Burger’s equation

Our last test case is the viscid Burger’s equation,

ut + uux = νuxx. (10)

The nonlinear term uux requires special attention when generating accurate sten-
cils. Multiple accurate stencils that depend on u at center points xc are desired.
Due to this, each stencil requires some iteration. First u|xc is approximated using
RBFs at nodes with known values. Next the weights for the differential opera-

tor L = ∂
∂t +

(
u|xc

)
∂
∂x − ν

∂2

∂x2 are found using (2) utilizing the closest neighbors
with known values of u. Use these weights to approximate u|xc using the previous
known values of u. This process can be repeated until desired accuracy is reached.
Typically two or three iterations are sufficient. Finally, the weights for L are found
that now include the unresolved node. This process generates accurate stencils for

the differential operator ∂
∂t +u ∂

∂x−ν
∂2

∂x2 at the p chosen center points. The process
of Section 2.2.2 is then used on these p stencils to create a single stable stencil.
Below are the corresponding pseudo-codes.
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Algorithm 3: RBF-TD for viscid Burger’s

while unsolved nodes exist do

Find the lowest unresolved node in time.
if node has IC or BC then

Apply solution at node.
else

Find the n closest neighbors below the unresolved node.
Choose p < n center points xc.
Compute W using algorithm 4.
Form the WB matrix and collect A and b.
Find the weight vector w that minimizes ||Aw2 − b||.
Apply w to find solution u at unresolved node.

end

end

Algorithm 4: Stencil Iteration

Use RBFs at nodes with known values of u to approximate u|xc for each center

point.
while u|xc is below desired accuracy do

Find the weights Wtemp that approximate L at each center point using (2) on
the closest neighbors with known values of u with Gaussians or PHS and
polynomials.

Use Wtemp to approximate u|xc for each center point.

end

Find the weights W that approximate L at each center point using (2) on the
closest neighbors that also include the unresolved node with Gaussians or PHS
and polynomials.

To test this approach an analytic solution is chosen as

u(x, t) =

[
α+ β + (β − α) eζ

]
1 + eζ

(11)

where ζ = α
ν (x− βt− η), α = 0.4, β = 0.6, and η = 0.125 taken from [21]. The

approach in [21] is to use RBF-FD in space and Crank-Nicolson in time to solve
(10). The reported `∞ errors were 8.65E-5, 1.25E-2, and 1.25E-2 when using three
different RBF choices of MQ, GA, and IQ respectively, on roughly N = 100, 000
nodes.
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Fig. 12 Solution to the viscid Burger’s test problem described above as obtained by the RBF-
TD approach using r5 with fourth degree polynomials on N = 2, 483 globally quasi-uniform
nodes. The bottom plot shows the full surface in the top plot viewed along the direction of
travel in the (x, t)-plane.

10
4

10
5

10
6

10
-10

10
-8

10
-6

10
-4

Fig. 13 Convergence plot for solving equation (10) using RBF-TD with r5 and sixth degree
polynomials with initial conditions given by equation (11) on globally quasi-uniform nodes.
The dashed lines represent fourth and sixth order convergence.



20 Dylan Abrahamsen, Bengt Fornberg

Figure 13 demonstrates the convergence rate of the present iterative approach to
RBF-TD for the same test case as described above for [21]. RBF-TD has reached
an error of 1.94E-5 on N = 16, 740 nodes (with no local space-time node refine-
ment) converging between fourth and sixth order as N is increased further. More
iterations of Algorithm 4 may be needed to maintain higher order. No local refine-
ment was used for convergence rate testing, to simplify the interpretation of the
result. As just noted the number of nodes, N , can be drastically lowered by using
fewer nodes in regions where the solution is less steep.

4 Conclusions

This study introduced the idea of utilizing the geometric flexibility of RBF-FD
to place locally quasi-uniform nodes in the space-time domain. This has been
demonstrated to be very advantageous in several regards:

– Larger temporal spacing of nodes may be used (even on Cartesian lattices
compared with MOL).

– Geometric freedom to place nodes densely in areas of high interest and sparsely
in regions of low interest, thereby greatly reducing the total number of nodes
needed for a prescribed accuracy.

– The generated stencils accurately ‘pick up’ the natural characteristics of the
problem.

These highly useful features of RBF-TD also provide ideas for further improve-
ments. Some logical next steps are

– Finding a way to speed up the L1 minimization process while calculating stencil
weights (training a neural network is one option to consider).

– Further improve dynamic node placement.
– Application to higher space dimensions plus time.
– Tests on nonlinear wave equations (such as interacting soliton waves).
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