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Abstract

There exists a growing literature on using the Fokas method (unified transform method) to solve
Laplace and Helmholtz problems on convex polygonal domains. We show here that the convexity re-
quirement can be eliminated by the use of a ‘virtual side’ concept, thereby significantly increasing the
flexibility and utility of the approach. We also show that the inclusion of singular functions in the basis to
treat corner singularities can greatly increase the rate of convergence of the method. The method also com-
pares well with other standard methods used to cope with corner singularities. An example is given where
this inclusion leads to exponential convergence. As well as this, we give new results on several additional
issues, including the choice of collocation points and calculation of solutions throughout domain interiors.
An appendix illustrates the algebraic simplicity of the methodology by showing how the core part of the
present approach can be implemented in only about a dozen lines of MATLAB code.

Keywords:— Fokas Method/Uniform Transform Method; Elliptic PDEs; Boundary Value Problems; Cor-
ner Singularities

1 Introduction

1.1 Background to the Fokas Method
For many years, the most important open problem associated with non-linear integrable evolution equations
was the solution of initial boundary as opposed to initial value problems. A novel approach for the analysis
of this problem was introduced by Fokas in [1] and the linear limit of this approach gave rise to a completely
new method for solving linear evolution PDEs [2]. Later, it was realised that this method yields new integral
representations for the solution of boundary value problems (BVPs) for linear elliptic PDEs in polygonal do-
mains, which in the case of simple domains, can be used to obtain the analytical solution of several problems
which apparently cannot be solved by the standard methods [3, 4]. The method gives rise to algebraic rela-
tions linking the (generalised) Fourier transform of the known boundary data and of the unknown boundary
values, which has become known as the global relation. Although the global relation is only one of the ingre-
dients of the Fokas method, still this relation has had important analytical and numerical implications: first, it
has led to novel analytical formulations of a variety of important physical problems from water waves [5–7]
to three-dimensional layer scattering [8]. Second, it has led to the development of new numerical techniques
for the Laplace, modified Helmholtz, Helmholtz and biharmonic equations on convex domains. In this paper
we shall extend the implementation of this method to solve BVPs on non-convex polygons and introduce
basis functions that capture the corner singularities of solutions of generic elliptic BVPs in order to increase
the rate of convergence.

Given a bounded polygon Ω with sides Γj listed in positive orientation (anticlockwise), our aim is to
numerically solve the elliptic BVP

uxx + uyy ± k2u = f in Ω,

δju
N
j +Ajuj = gj on Γj , j = 1, ..., n,

(1.1)

∗Corresponding author:
E-mail: mjc249@cam.ac.uk (M.J. Colbrook)

1



where uNj denotes the (outward) normal derivative along side Γj and gj , f are given data. For any side Γj
we consider two cases: either a Dirichlet boundary condition j ∈ D with δj = 0 and Aj = 1, or a Robin
boundary condition j ∈ R with δj = 1 and Aj is a (real) constant. We will deal exclusively with real data
gj and real solutions u, but remark that the method can handle complex solutions. We take k ∈ R≥0 with
k = 0 corresponding to the Laplace/Poisson equation, +k2 the Helmholtz equation and −k2 the modified
Helmholtz equation. The generalised ‘Dirichlet-to-Neumann’ (D2N) problem consists in computing the
complementary boundary values, which we denote by wj . If j ∈ D then this is simply wj = uNj , otherwise
we set wj = Aju

N
j − uj . The values gj and wj then determine completely the Dirichlet and Neumann

boundary values from which the solution can be reconstructed.
For example, consider the case of the two-dimensional Laplace equation in the variable u(x, y) formu-

lated in the interior of a closed polygon characterized by the corners zj = xj + iyj , zj ∈ C, j = 1, ..., n.
Define ûj(λ) as the following Fourier transform along the side (zj , zj+1):

ûj(λ) =

∫ zj+1

zj

e−iλz
(
uNj ds+ λujdz

)
, j = 1, ..., n, λ ∈ C, (1.2)

with s denoting the arc length parametrizing this side. The global relation in this case is given by

n∑
j=1

ûj(λ) = 0, λ ∈ C, (1.3)

and links the Dirichlet and Neumann boundary values. More generally, the global relation is a key algebraic
equation coupling the finite Fourier transforms of the known boundary data gj and the unknown boundary
values wj . In some cases the analysis of the global relation implies that the unknown transforms can be
computed through the solution of a Riemann–Hilbert problem [9] and for particular boundary conditions and
simple domains this can be bypassed with the unknown transforms computed using only algebraic manipula-
tions. A simple example is the equilateral triangle for which several results generalising the classical results
of Lamé can be obtained [10, 11].

As mentioned, there has been considerable interest in using the global relations of the Fokas method
to evaluate numerically the generalised D2N map [12–27]. The approach consists of two steps. First, one
expands the unknown boundary values in some suitable basis. Second, one evaluates the global relations to
set up a finite linear system of equations. Assuming the existence of a unique solution to the generalised D2N
map, this can be inverted for an approximation of the unknown boundary values given the known boundary
data. This method is a spectral space collocation method since it involves evaluating a set of equations at
different values λ in the complex Fourier plane1. It is found that over-determining the system yields smaller
condition numbers and we shall take advantage of recent developments in this area [18,25]. This method has
recently been put on a more rigorous footing by Ashton [21, 28].

1.2 Present Novelties
Despite its success, the Fokas method has so far been implemented only in convex polygons (for numerical
reasons we give below) and has mainly been tested on smooth solutions, where it yields exponential con-
vergence. These drawbacks are serious when accessing the ability of the Fokas method to solve generic
BVPs. This paper addresses these issues and extends the Fokas method in two ways. First, we shall show
that a simple decomposition of the domain allows one to deal with non-convex polygons in the numerical
implementation of the method. In Section 3, we give a heuristic motivation for the convexity requirement
for numerical implementations so far presented in the literature. Rigorous results for the Fokas method have
only been proven in convex domains, but this is an artificial limitation given the decomposition [21]. A prin-
ciple of Ehrenpreis [29, Chapter 7] has been described in [24, 30, 31]: “any solution to a constant coefficient
PDE on a convex domain can be written as the superposition of exponential solutions.” This result may also
have discouraged explorations with non-convex domains and we stress that the integral representations of
the Fokas method do not require convexity [3], though the integral representation is slightly different in the
non-convex case. In particular, the degradation in accuracy when a domain ceases to be convex is not an
inevitable consequence of the ‘global relation’ formulation, but instead of a mathematical ‘simplification’,

1Often when solving PDEs, collocation refers to evaluating at the boundary (e.g. boundary integral methods) and in some cases the
interior of the domain. This is not to be confused with collocation in this paper which occurs in spectral, rather than physical, space.

2



leading to the essence of the proposed novel implementation of the Fokas method. Our implementation does
not simplify the resulting matrix and yields a well conditioned numerical method.

Second, we shall present analysis of the inclusion of singular functions in the basis, corresponding to
corner singularities. We demonstrate that the inclusion of singular functions dramatically increases the rate
of convergence of the Fokas method for non-smooth solutions. In particular, it is found that the computed
unknown boundary values converge at the same rate as their expansion in the chosen basis. This considerably
extends the example in [19] that includes one singular function for one corner in the case of Laplace’s
equation which is the only example so far in the literature on the Fokas method. For example, we demonstrate
that if the solution can be written as an expansion around a singular point in the entire domain, then the Fokas
method yields exponential convergence. Scenarios with multiple singular points are also considered, where
high-order algebraic convergence is obtained.

There are of course many other methods which seek to solve the BVP in (1.1) such as finite element
(FEM), finite difference (FDM), boundary element (BEM), spectral methods etc. Methods designed to cope
with corner singularities are extensively reviewed in [32] with strategies such as mesh-refinement [33–35]
and schemes which take into account the exact form of the singularities if they are known (an approach
which we adopt here). Well known examples include the hp-version of finite element method [36–38],
boundary integral methods [39, 40], multigrid finite element methods [41] and collocation methods (such
as Trefftz methods and radial basis methods) [42, 43]. A review of these methods including comparisons
with the Fokas method is beyond the scope of this paper, and we limit ourselves to an example in Section
4.3.1 which demonstrates the Fokas method compares well against the singular function boundary integral
method, hp-FEM and a boundary element formulation treating the corner singularities. For a comparison
between the Fokas method and a spectral implementation of the boundary integral method we refer the reader
to [19,27]. Rather, our aim is to demonstrate how the limitations of convex domains and smooth solutions can
be overcome in the implementation of the Fokas method and we leave to future study further comparisons.
Some advantages of the Fokas method studied in this paper include:

(a) In a similar fashion to boundary integral methods, the Fokas method reduces the dimension of the
problem by one and hence the computational cost is much lower than methods which discretise the
entire domain (such as FEM and FDM). In addition, all the relevant integrals can be given in closed
form and efficiently evaluated in standard environments such as MATLAB. This is in contrast to
standard boundary integral formulations which involve the integration of singular functions.

(b) It is easy to implement. This is illustrated by two short MATLAB codes in the appendix and fur-
ther example code at the first author’s website: http://www.damtp.cam.ac.uk/user/mjc249/code.html.
After we have increased the convergence rate through the use of singular functions, this makes it an
attractive alternative to hp-FEM and other adaptive versions of FEM or BEM which can be difficult to
implement. It is also simpler to implement than most collocations methods.

(c) It is fast, taking typically at most the order of a few seconds on a standard desktop computer (and this
can be extended in an efficient manner to evaluate in the domain interior [27]). It shares the efficiency
of many collocation methods in that a single (small) linear system is inverted for the solution, with no
mesh or discretisation of the domain required.

(d) The convergence rate is determined by the convergence rate of the expansion of the unknown boundary
values, wj , in the given basis. For smooth solutions we use a Legendre basis and recover exponential
convergence. Once singular functions have been incorporated into the basis, high-order algebraic
convergence (and even exponential in some cases) can be achieved for singular solutions.

(e) In contrast to many collocation methods which typically collocate along the boundary of the domain
(or in some cases the domain’s interior), there is a larger degree of freedom in the collocation points
(typically C\{0}) for the Fokas method. This can be exploited for well-conditioned linear systems [25]
and allows for over-determined systems without the clustering of collocation points2.

1.3 Paper Structure
In Section 2 we discuss the problem in more detail and the type of solutions we consider. We also introduce
the Fokas method and describe in detail its numerical implementation. Section 3 discusses the implementa-
tion in non-convex polygons, including an explanation for ill-conditioning and the idea of virtual sides. We

2This point has been discussed extensively in [27] in a comparison with the boundary integral method.
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then give numerical examples for the Laplace, modified Helmholtz and Helmholtz equations, finishing with
a motivating example for the inclusion of singular functions. Section 4 discusses how to adapt the method
to cope with corner singularities and includes numerical examples for the Laplace, modified Helmholtz and
Helmholtz equations. Section 5 concludes the paper and discusses future work.

2 The Fokas Method

2.1 Conventions and Solution Type
Before we recall the Fokas method, we will briefly discuss some conventions and the type of solution we
are seeking. We list the corners of the polygon in anticlockwise order z1, ..., zn such that Γj joins zj to
zj+1 with the convention that zn+1 = z1 and each corner zj has an internal angle αj ∈ (0, 2π). Since our
domain is not smooth, we cannot expect smooth solutions in general. It is well known that if a polygon (or
domain with conical points in two dimensions) Ω has an angle απ between Neumann and Dirichlet edges
corresponding to θ = 0 and θ = απ respectively, then for 1/(2α) /∈ Z the leading order singularity for the
solution of Laplace’s behaves like

u ∼ r1/(2α) cos(θ/(2α)) (2.1)

near the corner. Taking α ↑ 1 we see that even for convex polygons, mixed boundary conditions do not
necessarily imply that solutions in H1+ε(Ω) for smooth data (this can be made precise and proven with
cut-off functions). We refer the reader to [44–47] for some general results on Lipschitz domains.

Let ΓD be the union of the edges on which we prescribe Dirichlet boundary conditions, along with the
corner points between any two adjacent such sides. Similarly define ΓR for Robin boundary conditions. The
following is well known (see for example [48]) and states the well-posedness of our problem if f and gi are
sufficiently smooth:

Theorem 2.1. Suppose that f ∈ H1(Ω)∗ (the dual of H1(Ω)), gD ∈ H1/2(ΓD) and gR ∈ H−1/2(ΓR).
Either there exists a unique u ∈ H1(Ω) that solves (1.1), or there exists a non-zero solution u to the corre-
sponding homogeneous problem with gi = 0.

It is precisely for this unique H1(Ω) solution that we numerically compute the generalised D2N map.
The points where we have a non-zero solution to the homogeneous problem correspond to when ∓k2 is an
eigenvalue of the Laplacian on Ω with homogeneous boundary conditions of the given type. Our numerical
experiments will assume that ∓k2 does not belong to this discrete set.

Remark 2.2 It is possible to study the method’s global relation (see below) for distributional data [49]
and more generally one can study corner asymptotics for maximal domains [50] or distributional boundary
data [51, 52]. However, we shall stick to the case in Theorem 2.1 for simplicity.

2.2 Integral Formulation
We now describe how the Fokas method is usually implemented. The starting point is Green’s second identity∫

∂Ω

(
v
∂u

∂n
− u∂v

∂n

)
ds =

∫
Ω

fvdV, (2.2)

where v is any solution of the formal adjoint equation

vxx + vyy ± k2v = 0 in Ω. (2.3)

Letting z = x+ iy and z = x− iy, for the Poisson equation we take v = exp(−iλz) for λ ∈ C. Using
the general identity (treating z and z as independent)

∂F

∂n
ds = −i∂F

∂z
dz + i

∂F

∂z
dz, (2.4)

this yields the equation ∫
∂Ω

exp(−iλz)
(∂u
∂n

+ λu
dz

ds

)
ds =

∫
Ω

exp(−iλz)fdV. (2.5)
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Similarly for the modified Helmholtz equation, we take v = exp
(
(ik/2)(z/λ−λz)

)
for λ ∈ C\{0} yielding∫

∂Ω

exp
(

(ik/2)(z/λ− λz)
)(∂u

∂n
+
ku

2

(
λ

dz

ds
+

1

λ

dz

ds

))
ds =

∫
Ω

exp
(

(ik/2)(z/λ− λz)
)
fdV. (2.6)

Finally, for the Helmholtz equation we take v = exp((−ik/2)(z/λ+ λz)) for λ ∈ C\{0} yielding∫
∂Ω

exp
(

(−ik/2)(z/λ+λz)
)(∂u

∂n
+
ku

2

(
λ

dz

ds
− 1

λ

dz

ds

))
ds =

∫
Ω

exp
(

(−ik/2)(z/λ+λz)
)
fdV. (2.7)

These equations are known in each case as the global relation, and in fact are an infinite number of
equations depending on the complex parameter λ. This is the key property of the Fokas method and is
crucial for the following numerical implementations. If u is real then we obtain a second global relation
via Schwartz conjugation (i.e. via taking the complex conjugate and then replacing λ with λ). A complex
formulation with exponential type solutions for v is used due to a deep connection with Fourier analysis that
allows one to prove rigorous results [21,28,53], as well as representation formulae (which require integration
in the complex plane). Exponential solutions v also allow explicit expressions for the integrals on the left-
hand sides of (2.5)–(2.7) when we expand u and its normal derivatives in terms of Legendre polynomials and
functions that capture corner singularities.

In the particular case of the Helmholtz equation, there is the following similarity of this method with the
null-field method [54]: they are both based on Green’s (second) identity with one of the two functions equal
to the solution of the BVP, and the other function equal to a family of solutions to the adjoint equation (with
no boundary conditions). However, even in this particular case there are significant differences: first, the null-
field method is specific to the exterior Helmholtz scattering problem, whereas the Fokas method is applied
to interior problems. Second, in the former method one chooses the adjoint solutions to be outgoing wave
functions found by separation of variables in polar coordinates, whereas in the latter method one chooses the
adjoint functions to be the exponential functions found by separation of variables in Cartesian coordinates.
Third, and most importantly, in the null-field method one expands the unknown boundary values wj in a
‘global basis’, i.e. the basis functions used for the expansion are supported on the whole of the boundary;
common choices of the basis are either the outgoing wave functions themselves, or their normal derivatives
(see Section 7.7.2 of [55]). In contrast, in the Fokas method one expands the unknown boundary values wj
in a ‘local basis’, i.e. the basis functions are not supported on the whole of the boundary.3 Using a local
basis gives much more flexibility, for example it allows one to incorporate singularities of the solution into
the basis.

For the considered case of a polygon, we can parametrise the side Γj joining zj to zj+1 by z = mj +
thj , t ∈ [−1, 1], with mj = (zj + zj+1)/2 the midpoint and hj = (zj+1 − zj)/2 the relevant direction. It
follows that ds = |h|dt and we can express the left-hand sides of (2.5) conveniently as

n∑
j=1

exp(−imjλ)

∫ 1

−1

exp(−iλhjt)
(
uNj |hj |+ λhjuj

)
dt. (2.8)

Similar expressions can be written down for (2.6) and (2.7). The aim of the method is to approximately solve
the linear system for the unknown functions wj using the known functions gj by evaluating at certain λ.

2.3 Approximate Global Relation and Basis Choice
An approximate global relation is obtained by expanding the unknown boundary values wj in some suitable
basis. Various choices of basis can be found in [13, 15, 17–20, 25]. Assuming that the boundary values
lie in L2(Γj), it appears that the best choice of basis is Legendre polynomials. A Fourier basis gives only
give quadratic convergence for the evaluation of the D2N map for smooth boundary values. Whereas, for
sufficiently smooth unknown boundary data (no corner singularities), the use of Chebyshev or Legendre
polynomial expansions gives exponential convergence. The key advantage of Legendre polynomials is that
we can explicitly compute in closed form the relevant integral transforms.

First expand the unknown boundary values wj and the known boundary values gj in the Legendre poly-
nomial basis on each side and truncate to N terms:

wj(t) ≈
N−1∑
l=0

ajlPl(t), gj(t) ≈
N−1∑
l=0

bjlPl(t), (2.9)

3These are not to be confused with the ‘test functions’ which in this case are the separable wave solutions v which give (2.5)–(2.7).
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where Pm denotes the mth Legendre polynomial (normalised so that Pm(1) = 1). Assuming the boundary
data lies in L2(∂Ω), this approximation holds in the L2 sense and the Fourier transform preserves this. We
then let

P̂l(λ) =

∫ 1

−1

exp(−iλt)Pm(t)dt, (2.10)

denote the Fourier transform of Pl. Note that this integral transform can be computed in closed form thanks
to the relation ∫ 1

−1

exp(αt)Pl(t)dt =
2l+1αll!

(2l + 1)
0F1

(
l +

3

2
,
α2

4

)
=

√
2πα

α
Il+ 1

2
(α), (2.11)

where Iν denotes the modified Bessel function of the first kind of order ν. This expression is entire in α and
we have chosen to use

√
2πα/α instead of

√
2π/α so that the relevant branch cuts along the negative real

axis cancel. Most numerical packages have built in functions that can evaluate this closed from expression
quickly and accurately such as MATLAB’s besseli.

2.4 Collocation Points
For the Fokas method, collocation occurs in the complex spectral plane, i.e. we evaluate the global relation at
different points λ. Various choices of λ have been proposed in the literature, including Halton nodes [19] or
certain rays in the complex plane [25]. Given a side j, we wish to choose λ such that the terms corresponding
to this side dominate the approximate global relation. It was shown in [17] (a similar argument holds for the
Helmholtz equation) that for a convex polygon this can be achieved by choosing

λhj = −`, k

2
[−hj/λ+ λhj ] = −`, k

2
[hj/λ+ λhj ] = −` (2.12)

for some positive real ` for the Poisson, modified Helmholtz and Helmholtz equations respectively. After
evaluating the system at this point, and multiplying the resulting system by exp(imjλ), exp(−ik/2[mj/λ−
λmj ]) or exp(ik/2[mj/λ+λmj ]) in each case, we find that the exponential contributions from adjacent sides
decay linearly for large ` and the contributions from other sides further from side j to decay exponentially
as l → ∞. This argument depends crucially on the convexity of the polygon. We also want our system to
have similar condition numbers as we vary k, hence we choose to evaluate the global relation at the points

λ = −
2`/k +

√
(2`/k)2 + 4 |hj |2

2hj
, λ = −

2`/k +
√

(2`/k)2 − 4 |hj |2

2hj
, (2.13)

for the modified Helmholtz and Helmholtz equations respectively (see for example [26]). This is done for
each side j = 1, ..., n and ` on M evenly spaces points in the interval [R1, R2]. Given these points, we
evaluate the second global relation (i.e. the Schwartz conjugate) at the complex conjugates of (2.12) and
(2.13). We shall refer to (2.12) and (2.13) as ‘ray’ choices. As well as this choice, we shall sometimes
choose Halton nodes in a circle of radius R about the origin, with the idea that this choice avoids clustering
of collocation points. Halton nodes have the advantages of simplicity and being independent of the geometry
of the domain but generally result in larger condition numbers and loss of accuracy in the method.

2.5 Numerical Implementation in Convex Case
ChoosingK λ-values, and discretising along each side withN Legendre coefficients, the discrete counterpart
to (2.5) and its Schwartz conjugate can for a quadrilateral be written for f = 0 as (R, S, D and N stand for
‘Regular’, ‘Schwartz conjugate’, ‘Dirichlet’ and ‘Neumann’ respectively):
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

RD(1) RN (1) RD(2) RN (2) RD(3) RN (3) RD(4) RN (4)

SD(1) SN (1) SD(2) SN (2) SD(3) SN (3) SD(4) SN (4)





u1

uN1
u2

uN2
u3

uN3
u4

uN4


=



0
...
...
...
...
0


, (2.14)

Here [ui] and
[
uNi
]

are column vectors, each containing N Legendre coefficients (corresponding to
degrees m = 0, 1, . . . , N − 1) of the functions ui(t) and uNi (t), i = 1, 2, 3, 4. In the case of collocation
points (2.12) and (2.13), the Schwartz conjugate of the global relation is not evaluated at the same points
and this corresponds to replacing SD(i) and SN (i) by the element-wise complex conjugates of RD(i) and
RS(i) respectively. For simplicity, we will use the notation SD(i) and SN (i) in this case also. Note that
each expansion function for the unknowns corresponds to a column of the matrix, whereas the test functions
v used in Green’s identity correspond to two rows (after taking the Schwartz conjugate).

We have graphically displayed the matrix blocks as tall and narrow, to reflect that there typically are
many more λ-values than m-values. The combined matrix (of size 2K × 8N) contains in the blocks RD(i),
RN (i), SD(i) and SN (i) the values for the four integrals in (2.5) and its Schwartz conjugate. For example,
listing the collocation points as {λ1, ..., λK} and treating the case of Laplace’s equation, we have from (2.8)
that

{RD(j)}a,b = exp(−imjλa)λahj

∫ 1

−1

exp(−iλahjt)Pb−1(t)dt

= exp(−imjλa)λahjP̂ (λahj) a = 1, ...,K, b = 1, ..., N.

(2.15)

Numerical construction of this full matrix is remarkably simple, and requires less than a dozen lines of
MATLAB; see the function AB in Appendix A. Given the start and the end point of a side, plus a vector
with all theK different λ-values and the value forN , this function AB returns the corresponding four matrix
blocksRD,RN , SD and SN . This is repeated for each side. Due to variations in the λ-values, the norms can
become very different for different rows in (2.14). While scaling of rows does not affect solutions of linear
systems with equally many equations as unknowns, it does affect least squares solutions of overdetermined
systems. Hence, before proceeding, we normalize to make each row in the coefficient matrix, A, to have unit
l1 norm

∑2nN
j=1 |Ai,j | = 1. We then invert in the least squares sense using MATLAB’s backslash command

(which in this case uses a QR solver).
For example, consider the case of u(x, y) = e1+x cos(2 + y) = Re(e1+2i+z) on the domain shown in

Figure 1(a). Exact values in this case for all entries in the u-vector can be obtained by calling the 4-line
MATLAB function BV, also given in Appendix A. For standard choices of the parameters, such as N = 14
and K = 180 Halton nodes in a circle of radius R = 40, multiplying out the matrix-vector product in (2.14)
gives a residual less than 2 ·10−14. To solve the D2N problem with, say, u1(t), u2(t), uN3 (t), u4(t) given, we
first compute the corresponding Legendre coefficient vectors u1, u2, u

N
3 , u4 with the function BV. Inserted

into (2.14) and moved to the right hand side, half of the blocks in the matrix (2.14) will be gone, and we are
left with a linear system for the remaining vectors uN1 , u

N
2 , u3, u

N
4 (overdetermined if 2K > 4N).With the

parameter choices above, these computed solution vectors have a max norm error of about 2.2 · 10−12. The
total time for this simple example, averaged over 1000 runs, was ≈ 0.05s on a standard desktop computer.
Exactly the same procedure is used for the mixed Dirichlet-Robin boundary conditions in (1.1) where the
integral transforms of the known boundary data are moved to the right hand side.
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Figure 1: (a) Original quadrilateral in the first test problem, (b) Deformed quadrilateral, with the corner z4

moving towards the corner z2 = 1 (which will be used in the non-convex case in Section 3). The color
scale shows the magnitude of a plane wave which, before the non-convex deformation, is dominant on side
3. Oscillations in the plane wave occur along the lines of constant color shade. No such plane wave exists
for points on the boundary near z4 when we deform as in (b).
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Figure 2: Max error in the Legendre coefficients along all four sides of the quadrilateral, as the corner z4 is
moved towards z2. In this case we choose K = 180 λ-values and set N = 14. For the choice corresponding
to Halton nodes we setR = 50 and for the choice in (2.12) (‘rays’ in the complex plane) we setR2 = 30 and
R1 = R2/M following [25]. Parameter dependence is discussed in Section 3.2 but these are near optimal.

Remark 2.3 The method presented here can easily be extended to more general constant coefficient elliptic
PDEs. One can either write the PDE in divergence form itself, or after a change of variables, the equation can
be transformed into (1.1) except now with Robin boundary conditions replaced by general oblique derivative
conditions. This is explored in [11, 15, 20, 26].

3 Non-convex Polygons
Figure 1 (b) shows how the quadrilateral in part (a) changes if we gradually move the corner point z4 from
its original position towards z2. When x4 = Re(z4) passes 1/3, the domain ceases to be convex. It is clear
from Figure 2 (dashed curves) that a significant degradation occurs when the domain ceases to be convex.
We have shown the maximum error in computed Legendre coefficients for the test problem discussed in
Section 2.5 (Laplace).4 We found similar behaviour for the modified Helmholtz and Helmholtz equations.

A heuristic explanation for this ill-conditioning is as follows: the plane wave ‘test functions’ e−iλz in
(2.5) (and their counterparts for modified Helmholtz/Helmholtz) grow/decay exponentially in certain direc-

4Note also that for the choice of collocation points (2.12), the error blows up when the polygon becomes degenerate and h5 → 0.
This is not a problem in practice since one bounds the values of λ or replaces 1/hj by h̄j .
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tions of λ. When using a sufficiently large selection of complex λ-values, located in all directions from the
origin, each side of a convex polygon will for many of these λ-values encounter larger test functions than do
the remaining sides, i.e. values along this side will dominate the contributions from the remaining sides. In
contrast, for a non-convex polygon, boundaries (and corners) in indented regions will always be dominated
by effects from other boundary parts, no matter the λ-value. This is exactly the same argument that motivates
the ‘ray’ choice of collocation points, (2.12), for convex polygons and is shown visually in Figure 1.

3.1 Proposing a numerically well-conditioned approach - virtual sides
Figure 1 (b) suggests that the quadrilateral can naturally be split into two triangles by the insertion of a ‘side
5’ between the corners z4 and z2. Integration of (2.5) around the outer edge of the quadrilateral (sides 1,
2, 3 and 4) could have been done as follows: add the results from following sides 1, 2, and 5 to those from
following sides 5 (in reversed direction), 3, and 4. The contributions from side 5 and the values for uN5 and
u5 would then cancel. Mathematically, the result becomes identical to just following sides 1, 2, 3 and 4 if we
evaluate at the same λ-values.

However, formulas that are mathematically equivalent need not be numerically equivalent. For example,
the order in which the equations of a linear system are written down has no influence on the systems solution.
Nevertheless, numerical algorithms make extensive use of interchanges (i.e. pivoting) in order to secure
numerical stability. This is the situation we encounter here. When integrating along the sides 1, 2, 3 and
4, the numerical conditioning degrades for non-convex domains. In contrast, following the sides of two
triangles and then numerically eliminating the results along the shared edge combines two well-conditioned
tasks.

The above heuristic argument, together with the following two observations, has provided the impetus
for the present study: (i) Boundary integral methods do not encounter any corresponding issues when a
domain ceases to be convex, so the issue is not due to the BVP itself nor questions of well-posedness, and
(ii) Gaussian elimination with appropriate pivoting is well known not to worsen the conditioning of a linear
system; thus, letting it handle the merging of well-conditioned tasks ought to be safe. There exists a vast
array of methods in the literature that decompose the domain into subdomains and we refer the reader to the
introduction [56]. However, no such decomposition has been studied in the context of the Fokas transform.

3.2 Numerical implementation of the virtual sides approach
The counterpart to (2.14) will for the two-triangle approach described above takes the form:


RN (1) 0 0 RN (4) RD(5) RN (5)

SN (1) 0 0 SN (4) SD(5) SN (5)

0 RN (2) RD(3) 0 −RD(5) −RN (5)

0 SN (2) SD(3) 0 −SD(5) −SN (5)




uN1
uN2
u3

uN4
u5

uN5

 =

= −


RD(1) 0 0 RD(4)

SD(1) 0 0 SD(4)

0 RD(2) RN (3) 0
0 SD(2) SN (3) 0




u1

u2

uN3
u4


(3.1)

The rightmost blocks in the first matrix in (3.1) (corresponding to side 5 being followed twice, in opposite
directions) are identical except with swapped signs. This means we are matching the Cauchy data of the
solution in the two subdomains across the virtual side. As just noted, this property makes it tempting to
just add the bottom half of all the equations to the top half, eliminating these matrix blocks altogether and,
with that, also eliminate the unknowns u5, uN5 before applying a linear system solver. However, doing this,
we get back to the system (2.14), and nothing has been gained. Instead, solving (3.1) as it stands above
allows the linear solver to use entirely stable elimination strategies, giving the solid curves in Figure 2. We
no longer see any adverse effect when the quadrilateral loses convexity. The high order coefficients in the
vectors u5 and uN5 may not end up accurately determined, since side 5 may be very short. However, this
does not damage the coefficients along the other sides. Again the method is very quick with typical times
≈ 0.06s, only slightly slower for the larger system.
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Figure 3: The maximum norm error of computed Legendre coefficients, as functions of the parameters K
and R in four cases. Top row of subplots: Standard approach with a single quadrilateral: (a) Error for the
original quadrilateral shown in Figure 1 (a), and (b) worst case for any of the deformations shown in Figure
1 (b) given R and K values. Bottom row of subplots: Corresponding results when also including the internal
‘side 5’. All plots are on logarithmic (base 10) scale. We have only considered non-convex polygons up to
x4 = 0.7 to avoid polygons close to being degenerate.
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Figure 4: Same as Figure 3 but now for the ‘ray’ choice of collocation points.
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Figure 5: The geometry of the L-shaped domain and the idea of introducing a virtual side. The domain is
split into two convex subdomains Ω1 and Ω2.

The accuracy that is reached generally increases withN (the number of Legendre coefficients used along
the sides). Figure 3 shows the effect, in the present test case, of varying the collocation parameters over wide
ranges (5 ≤ R ≤ 100 and 20 ≤ K ≤ 300 for the choice of Halton nodes. In all four cases (original convex
quadrilateral vs. worst case when moving the node z4, and using original vs. new numerical implementation)
large areas emerge with near-constant optimal results, telling that no careful optimization is needed for these
parameters. However they are chosen, the standard implementation is seen to lose about four orders of
magnitude in accuracy when the domain loses its convexity. In contrast, the new implementation loses little
(if any at all). Figure 4 shows a similar plot for the ‘ray’ choice of collocation points with exactly the same
behaviour. We see that the solution is roughly an order of magnitude more accurate than choosing Halton
nodes and the errors are less sensitive to parameter choices5.

3.3 Test Case: L-shaped domain
We now use the idea of virtual sides to solve the Laplace, Helmholtz and modified Helmholtz equations in
the domain showed in Figure 5. As well as computing the unknown boundary values, we shall compute the
solution obtained in the interior by the methods in [27]. In each case we prescribe the boundary data u+uN

(Robin boundary conditions) along sides Γ1 and Γ4, Neumann data along sides Γ2 and Γ5 and Dirichlet data
along sides Γ3 and Γ6. Analogously to (3.1), this gives rise to the linear system


RN(1)−RD(1)

2 RD(2) RN (3) 0 0 0 RD(7) RN (7)

SN(1)−SD(1)

2 SD(2) SN (3) 0 0 0 SD(7) SN (7)

0 0 0 RN(4)−RD(4)

2 RD(5) RN (6) −RD(7) −RN (7)

0 0 0 SN(4)−SD(4)

2 SD(5) SN (6) −SD(7) −SN (7)





uN1 − u1

u2

uN3
uN1 − u4

u5

uN6
u7

uN7


=

= −


RN(1)+RD(1)

2 RN (2) RD(3) 0 0 0
SN(1)+SD(1)

2 SN (2) SD(3) 0 0 0

0 0 0 RN(4)+RD(4)

2 RN (5) RD(6)

0 0 0 SN(4)+SD(4)

2 SN (5) SD(6)




uN1 + u1

uN2
u3

uN4 + u1

uN5
u6

 .

The form of the approximate solution in the interior of a polygon (given the approximated Dirichlet and
Neumann boundary values) was found in [27]. It was shown that it is possible to compute the integrals very
efficiently and accurately using a Chebyshev interpolation together with a fast conversion from Chebyshev
to Legendre coefficients.

5We did not vary R1 from R1 = R2/M since we found this parameter to not be as important.
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Figure 9: Max error of the computed Legendre coefficients and the L2(∂Ω) error of the computed boundary
values for the problem in Section 3.4.

We consider the solutions

u(x, y) = Re
(

exp(z)− z2
)
, u(x, y) = exp(

k√
2

(x+ y)), u(x, y) = Re
(

exp(i
k√
2

(x+ y))
)
, (3.2)

for the Laplace, modified Helmholtz and Helmholtz equations respectively. We choose k = 2 and k = 4
for the modified Helmholtz and Helmholtz equations respectively. Figure 6 shows the analytic solutions
and Figure 7 shows the absolute errors for the computed solution in the interior for parameters R2 = 10N ,
R1 = 1/10 and M = 4N for the ‘ray’ choice of collocation points in (2.12)–(2.13) at N = 20 over a grid of
1161 points. The computation time for computing the coefficients was < 0.1s and the solution at the interior
points can be computed in a matter of seconds (see [27] for more time results). All errors are bounded
by 10−13 and the parameters chosen have not been optimised. Figure 8 shows the maximum error in the
interior over these points, the L2(∂Ω) error of the computed boundary values6 and the condition numbers as
a function of N for all three test cases. The errors decay exponentially with small condition numbers even
for the relatively large choice of N = 20. In contrast, applying the Fokas method to these problems without
the virtual side typically yields errors of at least order 10−6 for N = 20.

3.4 Motivating example with corner singularities
As a final motivating example, we shall consider solving Laplace’s equation over the same L-shaped domain
but now subject to the boundary conditions u1 = 1, uN2 = 0, u3 = 0, u4 = 0, uN5 = 0 and u6 = 1. We chose
R2 = 2N , R1 = 1/10 and M = 8N for the ‘ray’ choice of collocation points. Figure 9 shows the max
norm error of the computed Legendre coefficients and the L2(∂Ω) error of the computed boundary values.
These were computed by comparing to the accurate solution obtained in Section 4.3.1. The chosen boundary
conditions induce singularities centred at z4. Without the internal edge there is no convergence with large
sporadic errors. The picture is better with the internal edge but convergence is extremely slow. The L2 error
decreases approximately as N−1/3 consistent with the Legendre expansion of the leading singular function
along Γ3 and Γ4 as discussed in Section 4. As we shall see, the problem is in the choice of basis functions
and this example motivates the inclusion of singular functions in Section 4. We shall revisit this example in
Section 4.3.1 and demonstrate that a proper inclusion of singular functions in the Fokas method can yield
exponential convergence.

6This gives upper bounds on the errors in computed Legendre coefficients.
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4 Adapting the Basis to Cope with Corner Singularities
Previous implementations of the Fokas method have noted algebraic convergence when the boundary data
induces corner singularities but exponential convergence for real analytic solutions. This can be explained
from the convergence rates of expansions in Legendre polynomials. Suppose we have a function F ∈
L2((−1, 1)) that we want to expand in the Legendre basis. It can be shown [57], that if F can be extended
to an analytic function on a neighbourhood of the interval, then convergence is exponentially fast in the L2

or L∞ norm. However, this cannot occur if corner singularities are present in our solution.
An explicit recipe for the construction of singular functions for elliptic systems can be found in [58]. It

is well known that the corner singular functions have the asymptotic form

∑
p∈Z≥0

Q(p)∑
q=0

rλ+p logq rφp,q(θ), (4.1)

with φp,q(θ) analytic, where (r, θ) are the local polar coordinates around the corner. Here the exponents λ
depend on the angle αj as well as the boundary conditions around zj and can be derived as eigenvalues of
operator pencils [58, 59]. The following theorem found in [60] shows why we can only expect algebraic
convergence in the presence of such corner singularities.

Theorem 4.1 (Babuška-Guo [60]). Let F (x) = (x + 1)γ logν(1 + x) on (−1, 1) where γ > −1/2 and
ν ∈ Z≥0. Denoting the orthogonal projection onto the first N Legendre polynomials by PN , we have for
N ≥ max{1, γ} that

‖F − PNF‖2 = N−(2γ+1)Eν(γ,N)
(

1 +O
( 1

N

))
, (4.2)

with

Eν(γ,N) =

ν∑
k=0

Cν−k(γ) logk(1 +N). (4.3)

Furthermore, if γ is not an integer then C0 6= 0, if γ is an integer and ν > 0 then C0 = 0 but C1 6= 0.
Clearly, if γ is an integer and ν = 0 then there is no approximation error and Eν(γ,N) = 0.

However, all is not lost. It turns out that we can separate out the singular parts in the following manner:

Theorem 4.2 (Kellog [61]). Suppose we have a H1(Ω) solution of (1.1) and that f ∈ Hs(Ω), gj ∈
Hs+3/2(Γj) if j ∈ D and gj ∈ Hs+1/2(Γj) if j ∈ R for some s ≥ 0. Then there exists a set of exceptional
indices J such that if s /∈ J then we can write

u =

K∑
k=1

ckvk + w, (4.4)

where:

1. w ∈ Hs+2(Ω) and for some C > 0 independent of f , gj

‖w‖Hs+2(Ω) ≤ C(‖f‖Hs(Ω) +
∑
j∈D
‖gj‖Hs+3/2(Γj) +

∑
j∈R
‖gj‖Hs+1/2(Γj));

2. The functions vk are the singular functions and are independent of f, gj , depend only on the geometry
and type of boundary conditions imposed and may be taken to vanish outside a neighbourhood of one
of the vertices. They do not lie in Hs+2(Ω);

3. The coefficients ck are bounded linear functionals on

{f, gj} ∈ Hs(Ω)×
∏
j∈D

Hs+3/2(Γj)×
∏
j∈R

Hs+1/2(Γj);

4. The exceptional set J does not depend on the data but only on the geometry and type of boundary
conditions imposed. It consists of a countable sequence of numbers whose only limit point is +∞.
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For smooth enough data we can try to subtract off the singular functions from the boundary data using
Theorem 4.2 and improve the convergence rate of the basis expansion. We can use the following version of
the trace theorem [62] to see that the regular part behaves well on the boundary:

Theorem 4.3. Let Ω be a bounded open subset of R2, whose boundary is a curvilinear polygon of class Ck,1

(i.e. each edge is of class Ck,1). Then, denoting the trace operator to side Γj by γj , the mapping

u→ {γju, γj
∂u

∂n
}, 1/2 + 1 < s

defined for u ∈ D(Ω), has a unique continuous extension as an operator from

Hs(Ω) onto Hs−1/2(Γj)×Hs−3/2(Γj), 2 ≤ s ≤ k + 1.

It was shown in [63] that for any s ≥ 0, there exists a constant C such that

‖F − PNF‖2 ≤ CN
−s ‖F‖Hs , ∀F ∈ Hs((−1, 1)). (4.5)

Similar bounds for the uniform norm can be found in [57]. It follows that the boundary data of the regular
part of the solution can be well approximated in the basis of Legendre polynomials for large s.

As mentioned in the introduction, the idea of using these singular functions in numerical solutions of
PDEs is not new. Indeed, the singular functions are known to adversely effect the rate of convergence in many
methods such as finite element, boundary element, finite difference etc. Refining discretisations/meshes is
a standard way to overcome these issues [33–35]. However, it often more effective to directly include the
singular functions in the numerical method [64–69], which is the strategy we adopt here.

4.1 Specific Form of the Singularities
For convenience, we recall here the well known form of the singular functions for the Poisson, Helmholtz
and modified Helmholtz equations with mixed Dirichlet-Neumann boundary conditions. We suppose we are
given boundary conditions on Γ1 and Γ2 with internal angle απ and choose polar coordinates around the
corner such that θ = 0 corresponds to Γ2. By symmetry, there are three cases to consider and we restrict the
exponents so that the solution lies in H1(Ω), consistent with Theorems 2.1 and 4.2:

Case 1: We prescribe Dirichlet boundary conditions on sides Γ1 and Γ2: In this case we let λ = l/α
for l ∈ N. If λ /∈ Z then the singular functions are of the form

• rλ sin(λθ) for Laplace;

• Iλ(kr) sin(λθ) for modified Helmholtz;

• Jλ(kr) sin(λθ) for Helmholtz;

where Jλ denotes the Bessel function of order λ. If λ ∈ Z then the singular functions are of the form
rλ
(

log(r) sin(λθ) + θ cos(λθ)
)

for the Laplace equation. For the modified Helmholtz and Helmholtz equa-
tions the singular function vl are of the form

Iλ(kr)
(

log(r) sin(λθ) + θ cos(λθ)
)
, Jλ(kr)

(
log(r) sin(λθ) + θ cos(λθ)

)
, (4.6)

respectively, up to linear combinations of smooth functions and {vj} for j > l. In other words we can use
the functions in (4.6) in the expansion (4.4).

Case 2: We prescribe Dirichlet boundary conditions on side Γ1 but Neumann boundary conditions
on Γ2: In this case we let λ = (l − 1/2)/α for l ∈ N. If λ /∈ Z then the singular functions are of the form

• rλ cos(λθ) for Laplace;

• Iλ(kr) cos(λθ) for modified Helmholtz;

• Jλ(kr) cos(λθ) for Helmholtz;
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If λ ∈ Z then we replace the cos(λθ) by
(

log(r) cos(λθ)− θ sin(λθ)
)
.

Case 3: We prescribe Neumann boundary conditions on sides Γ1 and Γ2: In this case we let λ = l/α
for l ∈ N. If λ /∈ Z then the singular functions are of the form

• rλ cos(λθ) for Laplace;

• Iλ(kr) cos(λθ) for modified Helmholtz;

• Jλ(kr) cos(λθ) for Helmholtz;

Again, if λ ∈ Z then we replace the cos(λθ) by
(

log(r) cos(λθ)− θ sin(λθ)
)
.

Remark 4.4 In our numerical examples, we found it sufficient to compute just the first few most singular
terms of the asymptotic series and let the Legendre basis approximate the rest.

4.2 Numerical Implementation
Our strategy will be to simply supplement our truncated Legendre basis (2.9) along each side with the relevant
singular functions which can be computed from the geometry of Ω and types of boundary conditions. In order
to supplement the basis along the sides adjacent to the corner, we are led (possibly after a change of variables
and evaluating the first part of the asymptotic series) to the evaluation of a sum of integrals of the form

I(α,m; ρ) =

∫ 1

−1

exp(ρt)(1 + t)α log(1 + t)mdt =
∂m

∂αm

∫ 1

−1

exp(ρt)(1 + t)αdt. (4.7)

We are only considering the case of corner singularities that lie in L2(Ω), so we can restrict ourselves to
α > −1 which ensures the above integral exists. This integral is analytic as a function of ρ and the branch-
cut of (1 + t)α is taken to be R≤−1 such that the function is real and positive on the positive real axis. A
change of variables leads to the integral

∂m

∂αm
2α+1 exp(−ρ)

∫ 1

0

exp(2ρs)sαds =
∂m

∂αm
exp(−ρ)

γ(α+ 1,−2ρ)

(−ρ)α+1
, (4.8)

where γ(a, z) denotes the incomplete gamma function

γ(a, z) =

∫ z

0

ta−1 exp(−t)dt (4.9)

for |arg(z)| < π and Re(a) > 0, where the path of integration does not cross the negative real axis. Note
that the multivalued nature of γ entirely cancels out that of the power of −ρ. It is also possible to express
I(α,m; ρ) as a finite linear combination of generalised hypergeometric functions:

I(α,m; ρ) = 2α+1 exp(−ρ)

m∑
j=0

(
m

j

)
log(2)m−j

j!(−1)j

(α+ 1)j+1 j+1Fj+1(α+1, ..., α+1;α+2, ..., α+2; 2ρ).

(4.10)
This can be seen by expanding the exponential in the integral and integrating term by term. For effective
numerical evaluation when m = 0, there exist convenient continued fraction expansions (see [70] equation
(8.9.1) and also [71] for effective numerical evaluation). We found that it was sufficient to use MATLAB’s
igamma command for m = 0 and hypergeom for m > 0.

The key difference now is that we have singular functions corresponding to corners connecting adjacent
sides. For example, suppose we are solving for the Dirichlet values along sides Γj−1 and Γj and add a
singular function to our basis corresponding to τj−1(t) and τj(t) along Γj−1 and Γj respectively (recall the
parametrisation t ∈ [−1, 1]). This adds the column[

RD
(j)
sing

SD
(j)
sing

]
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to our matrix, where in analogy to (2.15), we have the summed contribution

{RD(j)
sing}a = exp(−imj−1λa)λahj−1

∫ 1

−1

exp(−iλahj−1t)τj−1(t)dt

+ exp(−imjλa)λahj

∫ 1

−1

exp(−iλahjt)τj(t)dt,
(4.11)

and SD(j)
sing its Schwartz conjugate. The extra computed coefficient then corresponds to the singular function.

Analogous formulae hold for other types of boundary conditions.

4.3 Numerical Examples
4.3.1 Laplace

Here we revisit the example considered in Section 3.4. By symmetry the problem can be considered in the
trapezoid shown in Figure 1 (a) with the given boundary conditions are uN1 = uN3 = 0, u2 = 1 and u4 = 0.
This is then reflected across Γ3 to obtain the full solution in the L-shaped domain. As mentioned, this
problem features one singular point at the corner z4 with internal angle 3π/4. Choosing polar coordinates
around z4 such that θ = 0 corresponds to Γ4 and defining the functions

hµ(r, θ) = r2/3(2µ−1) sin
(2

3
(2µ− 1)θ

)
, µ ∈ N, (4.12)

it turns out that the solution can be written as

u(r, θ) =

∞∑
µ=1

αµhµ.

The coefficients αµ are known as (generalised) stress intensity factors which have importance in applications
such as elasticity problems with cracks. In many methods such as FEM, these can be computed from the
numerical solution [72, 73]. We will use the functions hµ as a basis in the entire domain using the integral
expressions in Section 4.2 along Γ3 and Γ4. Along the sides Γ1 and Γ2, the hµ contribute smooth parts of
the boundary values wj . To compute the integral transforms along these sides, we first compute a high order
Chebyshev interpolation, convert to Legendre expansions and then use the expression (2.11) in terms of
Bessel functions. Figure 10 shows the exponential convergence of the first 5 coefficients αµ where the error
was computed by comparing to converged values computed for larger N . Similar exponential convergence
occurs for the other expansion coefficients and we have shown the l∞ error of the whole computed vector
of coefficients. We found it was useful to use a mixture of the ‘ray’ choice of collocation points (M = 2N ,
R1 = 1/10 and R2 = 2N ) together with a few Halton nodes (4N of these in a circle of radius 10). The
maximum absolute error of the computed solution over 100 randomly selected points in the interior is also
shown in Figure 10 and agrees well with the l∞ error of the whole computed vector of coefficients.

This problem is special in that a global basis can be written down via separation of variables around a
singular point. Another method proposed in the literature for such problems is the so called singular function
boundary integral method (SFBIM) [74]. This method uses the same expansion but enforces the boundary
conditions weakly via Lagrange multipliers. Comparisons of the Fokas method (N = 35 basis functions),
SFBIM (values from [75, 76] using N = 60 basis functions and 41 Lagrange multipliers), hp-FEM (values
from [75, 76] using the commercial FEM package STRESSCHECK with 691 degrees of freedom, refined
mesh near singularity and up to degree eight polynomial elements) and a boundary element formulation
treating the corner singularities (values from [77] using 256 linear elements per side with first five singular
functions) are shown in Table 1. The Fokas method is able to obtain the most accurate values of the coeffi-
cients (and this extends to more coefficients when comparing Figure 10 to the results of [76]). It also requires
fewer basis functions than SFBIM and is much simpler to implement than the other methods. Next we shall
see that the Fokas method can also cope with solutions with multiple singular points.

4.3.2 Modified Helmholtz and Helmholtz

In this example we will study the modified Helmholtz equation and Helmholtz equation for k = 1/2 on the
same trapezoid shown in Figure 1 (a). The boundary conditions chosen are uN1 = 0, u2 = 1, uN3 = 0 and
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Figure 10: Left: Exponential convergence of the stress intensity factors using the Fokas method and singular
functions as a basis. The error over 100 random points in the interior is also shown. Right: Random points
at which the error is measured.

µ Fokas method SFBIM [75, 76] hp-FEM [75, 76] BI [77]
1 1.127 980 401 059 39 ±0.5× 10−15 1.127 980 401 059 39 1.127 980 10 1.1280
2 0.169 933 866 502 253 ±0.5× 10−16 0.169 933 866 502 25 0.169 933 87 0.1699
3 −0.023 040 973 993 480 ±0.5× 10−16 −0.023 040 973 993 48 −0.023 041 9 −0.0230
4 0.003 471 196 658 22 ±0.5× 10−15 0.003 471 196 658 2 0.003 475 5 0.0035
5 0.000 915 157 099 09 ±0.5× 10−15 0.000 915 157 099 1 0.000 912 6 0.0009

Table 1: Comparisons of computed αµ with other methods in the literature.

4 6 8 10 15 20 25 30 40 50 60
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

4 6 8 10 15 20 25 30 40 50 60
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10 -4

10 -2

10 0

Figure 11: Results for the modified Helmholtz equation. Left: L2(∂Ω) error in the estimate of the boundary
values (non singular function part) as we include successive groups of singular functions in our basis. The
reference slopes are −1/3, −1, −3 and −5 as predicted by Theorem 4.1. Right: The absolute error in the
computed singular function coefficients as we increase N (when including groups 1, 2 and 3).
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Figure 12: Same as Figure 11 but for the Helmholtz equation.

u4(t) = t. These induce singular functions at multiple corners of the form studied in Section 4.1. To compare
with the convergence rates predicted in Theorem 4.1, we can group the singularities at each corner so that
successively including each group increases the convergence rate (up to logarithmic factors) of the Legendre
expansion of the remaining ‘smooth’ part. For this example, the expected rates (up to logarithmic factors) are
1/3, 1, 3, 5 and so on. Figure 11 and 12 show the results for the modified Helmholtz ad Helmholtz equations
respectively. We used the ‘ray’ choice of collocation points with M = 5N , R1 = 1/10 and R2 = 5N . We
did not have a reference solution to compare against so compared to a ‘converged’ solution computed with
larger N .

The agreement between the rate of convergence of the Legendre expansions from Theorem 4.1 and the
computed rates shows strong numerical evidence that the Fokas method converges at the same rate as the
expansion basis. We have also shown the convergence of the coefficients of the five singular functions
when we include groups 1 to 3. However, as the included singular functions become smoother and better
approximated by their Legendre expansion, the condition number of the system increases. For example
with N = 60 it increases from ≈ 104 when no singular functions are included to ≈ 1010 when the first
five singular functions are included. We found this to be a problem for smoother singular functions than
those shown in Figures 11 and 12 - we did not see a noticeable improvement in the rate of convergence.
Similar qualitative results where found when considering this problem for the Helmholtz equation and also
for various choices of k.

5 Conclusion
The requirement for domain convexity does not seem to have been seriously questioned so far in the Fokas
method literature on elliptic PDEs. We have here provided evidence through heuristic arguments as well as
test problems that accuracy losses in non-convex cases are not inevitable consequences of the Fokas method
concept, but are entirely avoidable. The problem arises when a key elimination step for the linear system is
carried out analytically, without regard to conditioning issues, instead of numerically, in which case standard
pivoting strategies within linear solvers will successfully deal with the issue.

As well as this, we have extended the earlier example in the literature and have shown that the inclusion
of corner singularities can greatly enhance the solution’s accuracy if it is not smooth. This is important
when using the Fokas method for real-life problems. Our results show that the method typically converges
at the same rate of the Legendre expansion of the most singular function not included in the basis. An
example with corner singularities was given where the Fokas method produced exponential convergence
and compared well against other methods in the literature. One remaining challenge in this area is to find
ways to reduce the condition number of the system as more singular functions are included in the basis.
This, and consideration of other basis choices (which may lower the condition number), is currently under
investigation.

No proofs of convergence of the method have been given, and proving the method converges is likely to
be subtle. This is essentially due to the fact that the analysis depends on the values of an analytic function on
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a compact subset of C and it is easy to construct functions fm on [−1, 1] with L2 norm 1 that have f̂m → 0
locally uniformly in C. A proof of convergence is work in progress. Current work is also investigating the
exterior problem [78,79] and more general curvilinear polygons with curved edges. For the exterior problem,
by evaluating an additional equation obtained as a limit in the interior of the polygon, it should be possible
to determine the expansion coefficients of the unknown boundary values. Then, the appropriately modified
global relations yield the scattering amplitudes [80].

Finally, we believe that this paper sets the stage for further comparisons between the Fokas method and
other more standard methods. Further comparisons are beyond the scope of this paper but we note that for
such comparisons it is crucial to consider non convex domains and non smooth solutions to assess the Fokas
method. The methods provided in this paper are a first step in this direction.

Appendix A Example of Easy-to-Use Code
The following is a listing of a MATLAB function AB that calculates the blocks of the linear system matrix
corresponding to a side extending from a start point zs to an end point ze:

function [RD,RN,SD,SN] = AB(zs,ze,lambda,N)

% Calculate the matrix blocks that correspond to a line segment that
% goes from point zs to point ze

% Input parameters
% zs,ze Start and end points of line segment (complex)
% lambda Column vector (complex), all K different lambda-values
% N Number of Legendre coefficients, i.e. degrees 0, 1, ... , N-1
% Output parameters
% RD Array (K,N); part ’Regular Dirichlet’ of system matrix
% RN Array (K,N); part ’Regular Neumann’ of system matrix
% SD Array (K,N); part ’Schwartz Dirichlet’ of system matrix
% SN Array (K,N); part ’Schwartz Neumann’ of system matrix

% Exact integral of exp(alpha*t)*P_m(t), {t,-1,1}
LI = @(m,alpha) sqrt(2*pi*alpha)./alpha.*besseli(m+0.5,alpha);

K = length(lambda);
RD = zeros(K,N); RN = zeros(K,N);SD = zeros(K,N);SN = zeros(K,N);

for m = 0:N-1 % Loop over the degrees of Legendre polynomials
RI = 0.5*exp(-0.5i*lambda* (zs+ze)) .* LI(m,-0.5i*lambda* (ze-zs));
RS = 0.5*exp( 0.5i*lambda*(conj(zs+ze))) .* LI(m, 0.5i*lambda*conj(ze-zs));
RD(:,m+1) = lambda * (ze-zs) .*RI;
RN(:,m+1) = abs(ze-zs) .*RI;
SD(:,m+1) = lambda *conj(ze-zs) .*RS;
SN(:,m+1) = abs(ze-zs) .*RS;

end

For test problems with an analytic solution of the form u(z) = ea+bz (or its real part), the following
routine provides values for u and uN along a line segment from zs to ze:

function [LD,LN] = BV(zs,ze,a,b,N)

% Create Legendre coefficients for the Dirichlet and Neumann data for the
% test function f(z) = exp(a+b*z) along the line segment from zs to ze.

% Input parameters
% zs,ze Start and end points of line segment (complex)
% a,b Parameters defining the test function f(z) = exp(a+b*z)
% N Number of Legendre coefficients; use degrees up through N-1
% Output parameters
% LD,LN Column vectors with the first N Legendre coefficients for the
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% test function’s Dirichlet and Neumann data, respectively

% Exact integral of exp(alpha*t)*P_m(t), {t,-1,1}
LI = @(m,alpha) sqrt(2*pi*alpha)./alpha.*besseli(m+0.5,alpha);

m = (0:N-1)’; % Column vector with the Legendre degrees to be used
LD = (m+0.5)*exp(a+b*zs+0.5*(ze-zs)*b).*LI(m,0.5*(ze-zs)*b);
LN = -1i*(ze-zs)*b*LD/abs(zs-ze);

For more complicated boundary data, the Legendre expansion coefficients can be computed accurately
using quadrature.
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[51] I Babuška and V Nistor. Boundary value problems in spaces of distributions on smooth and polygonal domains.
Journal of Computational and Applied Mathematics, 218(1):137–148, 2008.

[52] AK Aziz, RB Kellogg, et al. On homeomorphisms for an elliptic equation in domains with corners. Differential
and Integral Equations, 8(2):333–352, 1995.

[53] ACL Ashton and KM Crooks. Numerical analysis of Fokas’ unified method for linear elliptic PDEs. Applied
Numerical Mathematics, 104:120–132, 2016.

[54] RE Kleinman, GF Roach, and SEG Ström. The null field method and modified Green functions. Proc. R. Soc.
Lond. A, 394(1806):121–136, 1984.

[55] PA Martin. Multiple scattering: interaction of time-harmonic waves with N obstacles. Number 107. Cambridge
University Press, 2006.

[56] T Mathew. Domain decomposition methods for the numerical solution of partial differential equations, volume 61.
Springer Science & Business Media, 2008.

[57] H Wang and S Xiang. On the convergence rates of Legendre approximation. Mathematics of Computation,
81(278):861–877, 2012.

[58] M Costabel and M Dauge. Construction of Corner Singularities for Agmon-Douglis-Nirenberg Elliptic Systems.
Mathematische Nachrichten, 162(1):209–237, 1993.

[59] VA Kozlov, VG Mazia, and J Rossmann. Spectral problems associated with corner singularities of solutions to
elliptic equations. Number 85. American Mathematical Soc., 2001.
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