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Abstract. We extend the numerical pole field solver (B. Fornberg and J.A.C. Weideman, J.
Comput. Phys. 230:5957–5973, 2011) to enable the computation of the multivalued Painlevé
transcendents, which are the solutions to the third, fifth and sixth Painlevé equations, on mul-
tiple sheets of their Riemann surfaces. We display, for the first time we believe, solutions to
these equations on multiple Riemann sheets. We also provide numerical evidence for the exis-
tence of solutions to the sixth Painlevé equation that have pole-free sectors, known as tronquée
solutions.
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1 Introduction

The Painlevé equations are six second order nonlinear ODEs, denoted by PI–PVI, that were
singled out in the early 1900s because their solutions, known as the Painlevé transcendents,
have a special singularity structure. A singularity of an ODE solution is movable if its location
depends on the initial conditions (ICs). The Painlevé equations possess the Painlevé property,
which means that their solutions are free from movable branch point singularities. However,
some Painlevé transcendents may have essential singularities or branch points at certain fixed
locations as well as movable poles, the latter by far the most common type of singularity.
Furthermore, the Painlevé transcendents, as their name implies, generally cannot be expressed
in terms of other known functions such as the elementary functions or the classical special
functions. The Painlevé equations have not only attracted attention because of their analytical
properties but also for their appearance in many applications, particularly in mathematical
physics. For example, PIII, PV and PVI feature in, respectively, the quantum sine-Gordon
model [22], interaction models of fermions [7], and the Ising model [13]. The history, properties
and applications of the Painlevé transcendents are discussed in more detail in [3, 6, 12].

The pole field solver (PFS) presented in [9] was the first numerical method that enabled the
efficient and accurate computation of the pole fields of the Painlevé transcendents on extended
regions in the complex plane. The PFS was used to survey the solution space of the Painlevé
equations with single-valued solutions, viz. PI [9], PII [10,11] and PIV [24–26]. In these surveys
new solution features and pole field patterns were discovered in solutions that had not been
studied before. Our aims are to extend the PFS to the computation of the generally multivalued
solutions of PIII, PV and PVI and to eventually survey, if not the entire solution spaces, then
at least certain classes of PIII, PV and PVI solutions.

For a discussion of computational methods for the Painlevé equations that preceded the
PFS, we refer to [9]. After the introduction of the PFS, another method for computing Painlevé
transcendents was presented by Abramov and Yukhno [1]. Their method avoids singularities
by making certain changes of variables in the neighborhoods of poles. While [1] and the earlier
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methods, viz. the pole vaulting method [4] and the method in [30], should in theory be capable
of computing Painlevé solutions over extended regions of the complex plane, no such results
have been presented for either the multivalued or single-valued Painlevé transcendents, most
likely due to a combination of cost and complexity.

The following is an outline of the paper. First we show how the PFS can be extended to
accommodate the singularity structure of PIII and PV solutions. The efficiency and accuracy
of our numerical methods are then tested experimentally. This is followed by illustrations
of different approaches to the computation of PVI solutions. We then use these methods to
illustrate more examples of PIII, PV and PVI solutions on multiple Riemann sheets after which
we make some concluding remarks.

2 Computing the multivalued Painlevé transcendents

The PIII, PV and PVI equations are as follows:
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where α, β, γ and δ are arbitrary constants. Our computational approaches to these equations
are determined by the possible locations of the branch points of their solutions. We know from
the Painlevé property that the solutions to these equations are free from movable branch points.
This implies that branch points can only occur at the fixed singularities of the equations. We
see that in the finite plane PIII and PV both have a fixed singularity at z = 0 and PVI has fixed
singularities at z = 0 and z = 1. Hence, our computational methods for PIII and PV are the
same while PVI requires a different approach.

2.1 Computing PIII and PV solutions

For PIII and PV one can use an exponential transformation to map the fixed singularity at z = 0
out of the finite complex plane and then obtain equations whose solutions are meromorphic
and thus single-valued. Specifically, setting z = eζ/2 and u(z) = e−ζ/2w(ζ) in PIII results in a
modified third Painlevé equation,
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d2w

dζ2
=

1

w

(
dw

dζ

)2

+
1

4

(
αw2 + γw3 + βeζ +

δe2ζ

w

)
,

whose solutions are meromorphic [15]. Likewise, setting z = eζ and u(z) = w(ζ) in PV yields
a modified fifth Painlevé equation,
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whose solutions are meromorphic [14]. One may thus obtain multivalued PIII and PV solutions

u in the z-plane by computing the single-valued solutions w of P̃III and P̃V in the ζ-plane. We
now give a brief overview of the PFS, see [9] for details, before describing how we extend it to

allow for the computation of P̃III and P̃V solutions in the ζ-plane.

2.1.1 The PFS

The PFS computes pole fields using a two-stage approach:

Stage 1: A node set is generated on the region where the solution is to be computed; for
the single-valued Painlevé transcendents, a uniform two-dimensional coarse grid on a
rectangle in the complex plane was used. Starting from the point where the ICs w and
w′ are supplied, the Taylor coefficients of the solution are generated recursively. Then
the coefficients of the type (ν, ν) Padé approximant are computed, where ν = n/2 and n
is even, i.e., the coefficients a0, . . . , aν and b1, . . . , bν are calculated such that

w(ζ + h) =
a0 + a1h+ · · ·+ aνh

ν

1 + b1h+ · · ·+ bνhν
+O

(
hn+1

)
. (1)

A target node is randomly chosen and the Padé approximant is evaluated in five directions
at a constant distance |h| from the current point: one pointing straight at the target
node as well as 15◦ and 30◦ on either side of this direction. The Padé step is taken in
the direction in which the modulus of the solution is smallest among the five directions;
this is to prevent the loss of numerical stability that may occur close to a pole. Padé
steps are taken in this fashion until the target node is within a distance of |h|; all the
while w, w′ and the Padé coefficients are stored along the path. A different target
node is chosen randomly and, starting from the closest point where the Padé coefficients
are available, Padé steps are taken along the minimum modulus directions until the
|h|-neighborhood of that target node is reached. This is repeated until paths have been
run to the neighborhoods of all the nodes of the Stage 1 node set.

Stage 2: The solution is computed at all points on a fine grid. This is accomplished as follows.
Let ζi, 1 ≤ i ≤ N denote the points where Padé coefficients are available from Stage 1.
Padé steps are taken from each ζi to the points on the fine grid to which it is the closest
point among the ζi. As mentioned in [9], these Padé steps can be taken very rapidly by
vectorizing the evaluation of the Padé approximants with software such as MATLAB.

It should be noted that the conversion at each step from a recursively generated Taylor expan-
sion to Padé rational form (1), proposed in [30], is crucial for both stages. Without it, step sizes
would be limited to a small fraction of each local Taylor expansion’s radius of convergence,
vastly adding to the computational cost.

2.1.2 PFS enhancements

As mentioned above, a uniform Stage 1 node set and constant Padé step lengths sufficed for the
computation of the single-valued solutions of PI, PII and PIV. However, as we shall illustrate
below, the solutions of P̃III and P̃V (as well as solutions of PIII and PV) generally have highly
non-uniform pole densities. Therefore two enhancements of the PFS are required: a variable
density Stage 1 node set and a variable step size Padé method.

The non-uniform Stage 1 node set should reflect at least the general trend in the pole
densities of P̃III and P̃V solutions. We have not found any results concerning the pole densities
of PIII and PV solutions (which could be translated to those of P̃III and P̃V solutions) but
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our experiments indicate that they are not only highly non-uniform functions of ζ but also of
the parameters and ICs. This makes it difficult to choose a Stage 1 node set that conforms
to the pole densities of all P̃III and P̃V solutions. Nevertheless, it is to be expected from the
exponential transformations used to arrive at P̃III and P̃V that the pole density will increase
rapidly on the region Re ζ � 0. For simplicity we have therefore chosen Stage 1 node sets
with a node separation function R(ζ) that decreases linearly with Re ζ. The node separation
function specifies the distance from a node at ζ to its neighboring nodes. For example, the
first column of Figure 1 shows a Stage 1 node set in a rectangular domain on the ζ-plane with
a node separation function given by R(ζ) = (8−Re ζ)/20. Our node sets are generated using
the node placement algorithm introduced in [8].

We consider two variable step size methods, both of which are applicable only to the first
stage of the PFS: one in which the step sizes vary in proportion to the node separation func-
tion of the Stage 1 grid, which we refer to as the prescribed step size method, and an adaptive
step size method. For the latter method we need an estimate of the error incurred by a
Padé step. Denote the numerator polynomial in (1) by p(h), thus p(h) = a0 + a1h+ · · · aνhν ,
and the denominator polynomial by q(h) and assume u has the formal power series expan-
sion w(ζ + h) =

∑∞
k=0 ckh

k (it is explained in [9] how the ODE can be used to generate the
coefficients ck). Then it follows from (1) that

q(h)w(ζ + h)− p(h) =
∞∑

k=n+1

εkh
k, εk = ck +

ν∑
r=1

brck−r.

We estimate the relative error of the Padé step by∣∣∣∣w(ζ + h)− p(h)/q(h)

p(h)/q(h)

∣∣∣∣ =

∣∣∣∣∣ 1

p(h)

∞∑
n+1

εrh
r

∣∣∣∣∣ ≈
∣∣∣∣εn+1h

n+1

p(h)

∣∣∣∣ := T (h).

Suppose T (h) is greater than some specified tolerance Tol, then we must rescale the step size,
h := qh, and find the scaling factor q such that T (qh) ≤ Tol. We have that

Tol ≥ T (qh) = qn+1 p(h)

p(qh)
T (h) ≈ qn+1T (h),

and since we have made two crude approximations we choose q conservatively, i.e.,

q =

(
k · Tol
T (h)

)1/(n+1)

, (2)

where k is a small positive constant.
We use the variable step size method only in Stage 1 of the PFS, as follows. After a Padé

step is taken in the minimum modulus direction in the manner described above, the error is
estimated using T (h). If T (h) > Tol, then h is replaced by qh, the solution is again computed
in the five directions, the minimum modulus direction is found again and T (h) is computed.
This is repeated until T (h) ≤ Tol. If T (h) ≤ Tol, then w, w′, the Padé coefficients and the
scaled step length |qh| are stored at the point. The initial step length is always the scaled step
length stored at the current point; if the current point is the initial point, a user-specified step
length is used. Variable step size Padé steps are taken in this manner until the target node is
within a distance of |qh|. Paths are run in this fashion to reach close to all the Stage 1 nodes
after which Stage 2 is implemented as described above. As an example, the second column
of Figure 1 shows the Padé steps taken by the adaptive step size method in the first stage of
the PFS. At each of the 2701 points in the second column, w, w′ and the Padé coefficients
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are available and each of the 3041 nodes in the first column is within a distance of |qh| to
a point in the second column. To compute the solution shown in the third column, we used
a 571×140 uniform grid with spacing 1/15 on the ζ-plane domain as our Stage 2 fine grid.
Thus, the Padé coefficients at the 2701 points in the second column were used to compute
Padé approximations to the solution w at the 571× 140 = 79940 points of the fine grid.

If we use the prescribed step size method, the length of each Padé step in Stage 1 is
|h(ζ)| = cR(ζ), where c is a positive constant and R(ζ) is the node separation function. Paths
are run to within a distance |h(ζ)| of each Stage 1 node. Otherwise, the implementation of the
prescribed step size and adaptive step size methods are the same.
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Figure 1: A PIII solution on three sheets of its Riemann surface, as computed by our en-
hanced PFS method. Left to right: The Stage 1 node set with node separation function
R(ζ) = (8−Re ζ)/20; the Padé steps taken by the adaptive step size method in Stage 1; a
PIII solution in the ζ-plane and on the corresponding sheets of its Riemann surface in the
z-plane (z = eζ/2). This solution has parameter values α = −1/2 = β, γ = 1 = −δ and ICs
(u(1), u′(1)) = (1/4, 1) in the z-plane.

The third column of Figure 1 is a plot of the modulus of a PIII solution, i.e., a plot of
|e−ζ/2w(ζ)| = |u|, where w is the solution computed on the Stage 2 grid mentioned above. We

map the P̃III solution w on the strip −2π + 4πs < Im ζ ≤ 2π + 4πs, s ∈ Z to the PIII solution u
on the s-th sheet of the Riemann surface in the z-plane according to u(z) = u(eζ/2) = e−ζ/2w(ζ).
The strips with s = −1, 0, 1 are indicated by dashed horizontal lines in Figure 1. The fourth
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column is another plot of |u|, but mapped to the s = −1, 0, 1 sheets of the Riemann surface.
According to Table 1 all the poles of the solution in the figure are first order with residue
+
√
γ = +1 or −√γ = −1 in the z-plane, indicated by red and yellow circles, respectively.

Similarly, all the zeros are simple and u′ either has the value
√
−δ = +1 (purple squares) or

−
√
−δ = −1 (light blue squares) at each zero in the z-plane. Note how the lengths of the

Padé steps taken in the second column by the adaptive step size method conform to the pole
density of the solution in the third column. The modulus of the solution in the figure has an
up-down symmetry in the ζ-plane since the solution in the upper and lower half planes are
conjugate; this is a consequence of the real valued parameters and real ICs on the real ζ-axis.
The distinctive spirals of poles whirling around the branch point z = 0 in the fourth column
is a pole field pattern that has not been observed before: the pole fields of the single-valued
Painlevé transcendents shown in [9–11,25,26] have very different characteristics.

Table 1: The labels indicating the poles and zeros of the PIII solution in Figure 1. For every
solution displayed in this paper we give a table similar to this one to describe the types of
poles and zeros of the solution. The coefficients ck in this table and the similar Tables 3–6 are
derived as follows. In a neighborhood of a pole or zero at z0 we have u ≈ ck(z−z0)k with k < 0
or k > 0, respectively. Making this substitution in the relevant equation and taking the limit
z → z0 readily yields the order k of the pole or zero as well as the leading order coefficient
ck. We assume that z0 is not a fixed singularity of the equation. The coefficients ck in the
transformed plane, e.g., the ζ-plane in Figure 1, can be derived similarly or by applying the
appropriate transformation to the poles and zeros in the z-plane.

Poles Zeros

PIII, γδ 6= 0

z-plane
c−1 = +1/

√
γ c1 = +

√
−δ

c−1 = −1/
√
γ c1 = −

√
−δ

ζ-plane
c−1 = +2e−ζ0/2/

√
γ c1 = +eζ0/2

√
−δ/2

c−1 = −2e−ζ0/2/
√
γ c1 = −eζ0/2

√
−δ/2

One could compute PIII and PV solutions in the z-plane instead of the ζ-plane by making
the Padé steps run around the possible branch point at z = 0 in clockwise and counterclockwise
directions (and thus onto the s ≤ 0 and s ≥ 0 sheets, respectively). We shall illustrate this
approach for the computation of PVI solutions in section 2.2. We have found that the pole
densities of PIII and PV solutions can also be highly non-uniform in the z-plane, as Figure 1
illustrates for PIII (solutions of PV in the z-plane will be shown in section 3). Thus, variable
density Stage 1 node sets and a variable step size Padé method are also required in the z-plane.
We have not found that there is any advantage, in terms of accuracy or speed, to computing PIII

and PV solutions in the z-plane as opposed to the ζ-plane. If anything, the implementation of
our method in the z-plane is more complicated because of the need to impose certain directions
on the integration paths.

2.1.3 Experiments

In practice we choose specific parameters in our numerical method (e.g., R(ζ), the value of
c for the prescribed step sizes |h(ζ)| = cR(ζ), the value of k in (2), the order n of the Padé
approximations, see (1)) based on experimentation for which error estimates are essential.
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Solutions of P̃III and P̃V with real parameter values and real ICs on the real axis satisfy
w(ζ) = w(ζ). If we do not make use of this symmetry in our numerical method but, instead,
compute the Padé steps in the upper and lower halves of the ζ-plane independently, as is the
case in the second column of Figure 1, then we can estimate the relative numerical error by
calculating E(ζ) = |w(ζ)− w(ζ)|/|w(ζ)|. By plotting E(ζ) and recording the execution time
for different choices of the parameters we can experimentally determine parameter choices that
give satisfactory results.

In Table 2 we compare the performance of the adaptive and prescribed step size methods
for two different situations: when high accuracy is required (Experiment 1), e.g., for the
verification of theoretical asymptotic formulae and known closed-form solutions, and when
efficiency is essential (Experiment 2), e.g., in a survey of a large number of solutions. As
expected, the adaptive step size method is more accurate but slower than the prescribed step
size method since it incorporates error control. The estimated error is orders of magnitude
greater than Tol for the adaptive step size method since error control is only applied in Stage 1
but not in Stage 2. In addition, Tol is only a bound on the local error which accumulates with
the number of Padé steps on the domain, which also accounts for the fact that the error on
sheets +1 and −1 is larger than on the 0th sheet. The efficiency of both methods can be
increased by using the up-down symmetry in the ζ-plane (for real-valued ICs and parameter
values) and by parallelizing the implementation of Stage 1 and Stage 2. Stage 1 can be
parallelized by partitioning the domain and the parallelization of Stage 2 is trivial since the
evaluations of the Padé approximations from the available Padé coefficients are independent.

Table 2: Statistics for the computation of the solution shown in Figure 1. In Experiment 1
and Experiment 2 both methods used a Stage 1 node set with a node separation function
given by R1(ζ) = (8− Re ζ)/40 and R2(ζ) = (8− Re ζ)/10, respectively, and both used 30th
order Padé steps. The adaptive step size method used k = 10−3 (see (2)) in both experiments
and Tol = 10−14 in Experiment 1 and Tol = 10−11 in Experiment 2. The step sizes of the
prescribed step size method were |h(ζ)| = 1.85R1(ζ) in Experiment 1 and |h(ζ)| = 0.6R2(ζ)
in Experiment 2. The third column refers to the number of Padé steps taken in Stage 1; the
fine grid used for Stage 2, a 571×140 uniform grid with spacing 1/15 on the ζ-plane domain,
were the same in both experiments. The execution times include Stage 1 and Stage 2 and were
recorded on a machine with a clock speed of 3.6 GHz using only one core. The first and second
relative errors in each row are for the solution on the regions −2π < Im ζ ≤ 2π (corresponding
to the 0th sheet) and |Im ζ − 4π| ≤ 2π (−1th and +1th sheets), respectively. These errors
were estimated using the symmetry-based method discussed above.

Number of steps Time (seconds) Relative error

Experiment 1 Adaptive step sizes 4259 5.43 4e-10, 4e-8

Prescribed step sizes 4270 4.52 8e-6, 4e-3

Experiment 2 Adaptive step sizes 1324 2.27 1e-6, 8e-2

Prescribed step sizes 1314 1.48 2e-6, 4e-2

2.2 Computing PVI solutions

An exponential transformation mapped the fixed singular point of PIII and PV at z = 0 out of
the finite plane since the exponential function is entire and never assumes the value zero. This
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allowed us to avoid the possible branch point of PIII and PV solutions at z = 0. In general we
cannot avoid the branch points of PVI solutions because the PVI equation has fixed singular
points at z = 0 and z = 1 and, by Picard’s theorem, no non-constant entire function can avoid
two different values, as would be required to map these points out of the finite plane. Thus it
is generally necessary to steer the integration paths of the PFS around branch points of PVI

solutions. However, it is possible to use transformations to avoid branch points on restricted
parts of the Riemann surfaces of PVI solutions. We illustrate both of these approaches, starting
with the latter.

2.2.1 Avoiding branch points

The transformation z = eζ maps the fixed singularity of PVI at z = 0 out of the finite ζ-plane
and it maps the fixed singularity at z = 1 to ζ = 2iπk, k ∈ Z. These points are the fixed
singularities of the equation

d2w
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=
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1
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+

1
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)(
dw
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(
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, (3)

obtained by setting u(z) = w(ζ), z = eζ in PVI. Another exponential transformation, ζ = eη,
maps the fixed singularity at ζ = 0 out of the finite η-plane and it maps the remaining fixed
singularities to

η = log |2πk|+ i arg(2πik), |k| ≥ 1, (4)

which are the fixed singularities of the equation obtained by setting w(ζ) = v(η), ζ = eη in
(3), i.e.,
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(
eηee

η

eeη − 1
+

eηee
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+
v(v − 1)(v − eeη)e2η

(eeη − 1)2

(
α +

βee
η
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+
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+
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)
. (5)

We conclude from (4) that the region Re η < log 2π is branch point-free. The first column of
Figure 2 shows a PVI solution computed within this region. This solution was computed by
applying the method discussed above, i.e., the PFS method with a non-uniform node set and
variable step sizes in Stage 1, to (5). The solution within the region −3π ≤ Im η ≤ −π, not
shown in the figure, is the conjugate of the displayed solution contained in π ≤ Im η ≤ 3π;
as before, this follows from the real-valued parameters and real ICs on the real η-axis. The
η-plane region in the figure corresponds to the following two rectangular sheets of the Riemann
surface that winds around the branch point at ζ = 0 in the second column of the figure:

{ζ ∈ C : log(1/100) ≤ Re ζ ≤ log(10),−π ≤ Im ζ ≤ π, −π ≤ arg ζ ≤ 3π}.

The asymptotic behaviors of the solution close to its poles and zeros are given in Table 3.

2.2.2 Circumambulating branch points

Unlike the branch point at ζ = 0, the branch point at ζ = 2πi in the second column is not
mapped out of the finite η-plane. Hence, this branch point cannot be avoided by computing in
the η-plane. The approach we follow to compute the solution in the neighborhood of ζ = 2πi
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Table 3: The poles and zeros of the PVI solutions in Figures 2, 3 and 5.

Poles Zeros

PVI, αβ 6= 0

η-plane
c−1 = +e−η0(ee

η0 − 1)/
√

2α c1 = +eη0ee
η0
√
−2β/(ee

η0 − 1)

c−1 = −e−η0(eeη0 − 1)/
√

2α c1 = −eη0eeη0
√
−2β/(ee

η0 − 1)

ζ-plane
c−1 = +(eζ0 − 1)/

√
2α c1 = +eζ0

√
−2β/(eζ0 − 1)

c−1 = −(eζ0 − 1)/
√

2α c1 = −eζ0
√
−2β/(eζ0 − 1)

z-plane
c−1 = +z0(z0 − 1)/

√
2α c1 = +

√
−2β/(z0 − 1)

c−1 = −z0(z0 − 1)/
√

2α c1 = −
√
−2β/(z0 − 1)

is to apply our enhanced PFS method to (3). The only modification of our method that is
required is to steer the Padé paths in the appropriate directions around the branch points in
the ζ-plane, as shown in the third column of the figure. In the bottom-right frame the Stage 1
Padé paths run in clockwise and counterclockwise directions around the branch point at ζ = 0.
Note that, as required, none of the paths overstep the branch cuts, indicated by solid lines,
on a given sheet. To move onto the sheet in the top-right frame the paths move through the
branch cut by running only in a counterclockwise direction around ζ = 0, as indicated by the
arrows. The paths then run in both directions around the branch point at ζ = 2πi. The dots
on which the paths are superimposed are the points of the Stage 1 node set. We chose a node
set that becomes increasingly dense close to the branch points since our numerical experiments
have shown that there can be high pole densities in the neighborhoods of the branch points,
which is evidently the case for the solution in the top-center frame of the figure. Note from
the bottom-right frame that the adaptive step size method chose a few, relatively large steps
on the pole-free sheet while the step sizes in the top-right frame reflect the increasing pole
densities close to the branch points.

Figure 3 again depicts the PVI solution in the ζ-plane but also on the corresponding sheets in
the z-plane. The second and third columns show phase portraits [28] of the solution, i.e., plots
of w(ζ)/|w(ζ)| ∈ [−π, π] and u(z)/|u(z)| ∈ [−π, π], respectively. The phase of the solution is
indicated according to the color wheel at the top of the figure and so, for example, positive real
solution values are indicated by red. The branch cuts in the second column are unmistakable
and clearly indicate the manner in which the two sheets in the ζ-plane are connected through
the branch cut or, equivalently, the directions in which the PFS integration paths must have
run. The traversal of the paths through the branch cut in the bottom-center frame corresponds
to a traversal through the branch cut z ∈ (0, 1) on the 0th sheet in the z-plane. The movement
of the paths across the dotted line in the top-center frame corresponds to a movement across
the branch cut on the negative real axis on the 1st sheet in the z-plane. Hence, the paths in
the ζ-plane correspond to counterclockwise revolutions around the branch points at z = 0 and
z = 1 and thus the sheets in the z-plane are parametrized by

sheet k = {z ∈ C : 1/100 ≤ |z| ≤ 10, z = reiθk , z = 1 + ρeiφk , ρ ≥ 1/100},

where

−π < θ0 ≤ π, −π < φ0 ≤ π,

−π < θ1 ≤ π, π < φ1 ≤ 3π,

π < θ2 ≤ 3π, π < φ2 ≤ 3π.
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The most striking feature of the solution in Figures 2 and 3 is its large pole-free sec-
tor. Tronquée solutions are characterized by a pole-free sector on which it satisfies a di-
vergent asymptotic expansion near infinity. Tronquée solutions of PI–PV have been studied,
see [2, 5, 17–21], but we are not aware of any results concerning tronquée solutions of PVI.
Figures 2 and 3 provide numerical evidence for the existence of tronquée PVI solutions. The
ICs of the solution, given in the caption to Figure 2, were obtained by substituting the formal
expansion u =

∑∞
n=0 anz

−n into PVI, generating the coefficients an recursively and evaluating
the expansion by optimal truncation far out on the positive real axis.

−4 −2 0 2

−2

0

2

Re ζ

Im
ζ

−4 −2 0 2

−2

0

2

4

6

8

Re ζ

Im
ζ

Figure 2: Two approaches to the computation of a PVI solution: computing on a region in
the η-plane that is branch point-free (first column) and computing in the ζ-plane by mak-
ing the PFS paths run around the branch points (second and third columns). This PVI so-
lution has parameters (α, β, γ, δ) = (4,−4, 8,−8) and ICs u(10) = 0.429534600325223 and
u′(10) = −1.61713114374804e-3 in the z-plane. The symmetry-based error estimates for the
η-plane method are 4e-7 and 3e-6 for the solution contained in the regions −π < Im η ≤ π and
π < Im η ≤ 3π, respectively; those for the ζ-plane method are 6e-7, for the solution shown in
the bottom-centre frame, and 6e-4 and 5e-4 for the solution within the strips −π < Im ζ ≤ π
and π < Im ζ ≤ 3π, respectively, in the top-center frame.
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Figure 3: The phase of the PVI solution shows the structure of the Riemann surfaces in the ζ
and z planes (recall that z = eζ). The phase of the solution is depicted according to the color
wheel, taken from http://dlmf.nist.gov/help/vrml/aboutcolor. The pole-free 0th sheet
in the z-plane only has a branch cut on z ∈ (0, 1) whereas the other sheets have branch cuts
on z ∈ (0, 1) and the negative real z-axis.
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3 More examples of PIII, PV and PVI solutions

In this section we use the methods discussed above to compute more examples of the mul-
tivalued Painlevé transcendents on multiple sheets of their Riemann surfaces. In addition,
we derive a condition number which shows that in pole-free regions the solution can be sen-
sitive to perturbations. In these regions we enhance the method by solving the equation by
boundary-value techniques, a remedy originally suggested in [9].

3.1 A tronquée PV solution

Figure 4 shows a PV solution computed in the same manner as the PIII solution in Figure 1.
The solution on sheets −1 and −2 (not shown) are the conjugates of the solution on sheets
+1 and +2, respectively. According to Table 4, all the zeros of the solution have double
multiplicity. They can be identified on the phase portraits in the third column as points
around which each color is assumed twice in the order indicated by the color wheel above
Figure 3 (red→yellow→green etc. for a counterclockwise traversal around the point).

It is shown in [2] that for a given set of parameters α, β, γ, δ with δ 6= 0, there is a unique
tronquée PV solution with u(z) ∼ −1, z → ∞ for −π < arg z < π. The solution in Figure 4
is such a solution and its ICs were obtained by substituting u =

∑∞
n=0 anz

−n into PV and
evaluating the truncated expansion far out on the positive real axis.

Table 4: The poles and zeros of the PV solution in Figure 4.

Poles Zeros

PV, α 6= 0, β = 0

z-plane
c−1 = +z0/

√
2α

c2 = k ∈ C
c−1 = −z0/

√
2α

ζ-plane
c−1 = +1/

√
2α

c2 = e2ζ0k
c−1 = −1/

√
2α

3.2 A tronquée PIII solution

The first and second columns of Figure 5 show a tronquée PIII solution that is pole-free on
the region −3π/4 < arg z < 9π/4 (column 1), which in the ζ-plane corresponds to the re-
gion −3π/2 < Im ζ < 9π/2 (column 2). In the z-plane the asymptotic behavior of the so-
lution on the pole-free region is u ∼ 3

√
z, z → ∞, which in the ζ-plane is equivalent to

u ∼ (eζ/2)1/3 = eζ/6, Re ζ → +∞. This solution is an example of the following set of tronquée
PIII solutions, the existence of which is proved in [21]: for γ = 0, α = 1 = −δ, β arbitrary and
any of the branches of z1/3, there is a unique tronquée PIII solution with the behavior u ∼ z1/3,
z →∞ on a certain region with angular width 3π.

As discussed in [9], the accurate computation of the solution of a Painlevé equation on a
pole-free region requires that it be solved as a boundary value problem (BVP) on that region.
For the tronquée solutions in Figures 2 and 4, we achieved satisfactory accuracy without the
use of a BVP solver. However, the tronquée solution in Figure 5 has a much larger pole-free
sector and thus a BVP solver greatly improves the accuracy of the solution. Indeed, if our
enhanced PFS method is used without a BVP solver to compute the tronquée PIII solution,
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then the error is on the order of 10−1. If we use a BVP solver, then we achieve the much
smaller errors reported in the caption of Figure 5. We now describe how we used a BVP solver
to compute the tronquée PIII solution, how the error of the computed solution was estimated
and why the PFS method is unstable on the smooth region.

According to a result in [21], in the z-plane the tronquée solution in Figure 5 satisfies

u ∼ 3
√
z

[
1 +

∞∑
n=1

an( 3
√
z)−2n

]
, z →∞, −3π

4
< arg z <

9π

4
.

Substituting this expansion into the PIII equation, generating the coefficients an recursively
and evaluating the optimally truncated expansion (and its derivative) at two points close to
the boundary of the pole-free sector at arg z = −3π/4 and arg z = 9π/4, we find that

Figure 4: A tronquée PV solution in the ζ and z planes with param-
eters (α, β, γ, δ) = (1, 0, 1/4,−1/2) and ICs u(30) = −1.05294551349665 and
u′(30) = 2.47019460566845e-3 in the z-plane. The third column is a phase portrait of
the solution shown in the second column. The symmetry-based error estimates for the solution
on sheets 0–2 are 3e-10, 7e-7 and 1e-6, respectively.
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Figure 5: A tronquée PIII solution (left) and a plot of log10 (min{κr, κa}), where κr is defined
in (7) and κa = κr|w̃′′|; κr and κa are interpreted as relative and absolute condition numbers of

the P̃III equation, indicating its sensitivity to numerical errors. This solution has parameters
(α, β, γ, δ) = (1,−1/20, 0,−1) and its ICs in the z-plane are given in (6). The error estimates
for the solution on each of the strips, indicated by the dashed horizontal lines, are, from bottom
to top: 4e-6, 3e-7, 2e-8, 3e-9, 4e-8.
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z1 = 30e9πi/4−iπ/12, z2 = 30e−3πi/4+iπ/12,
u(z1) = −2.000735432319 + 2.376177147900i, u(z2) = 2.384379236170− 1.993845650158i,
u′(z1) = −5.939523100e-3 + 3.402038641e-2i, u′(z2) = 6.050817704e-3 + 3.398020750e-2i,

(6)
for the parameter values given in the caption of Figure 5. We translate these ICs at z1 and
z2 to ICs for the P̃III equation at the corresponding points in the ζ-plane: the two points
indicated by crosses in the second column of Figure 5. Our enhanced PFS method is launched
from these points to compute the solution everywhere on the rectangular domain except on the
region inscribed on the pole-free sector in the second column. The solution values computed
on the two curved boundaries of the inscribed region are used as boundary conditions for the
BVP solver that is used to compute the solution on the pole-free sector. As in [9], we use the
DMSUITE package [29] to implement a Chebyshev spectral collocation method as BVP solver.

We estimate the error on the pole-free region (computed with the BVP solver) and on the
rest of the domain (computed with the enhanced PFS method) using different methods. The
error of the PFS-computed solution in Figure 5 cannot be estimated using the symmetry-based
method discussed in section 2.1.3 since the solution does not have the up-down symmetry in
the ζ-plane. Instead, we use the following method. Recall from section 2.1.1 that the PFS
method selects the target nodes in Stage 1 in a random order. Hence, if we compute the same
solution twice, different paths will be run in Stage 1, resulting in solutions that should differ
by approximately the numerical error. We therefore use the relative difference between two
independently calculated solutions as an error estimate. The error of the solution computed
by the BVP solver can be estimated using the method discussed in [9]: by measuring the
difference between the derivative values of the PFS-computed solution and the BVP solver-
computed solution at the boundaries. We increase the number of collocation points of the BVP
solver until the derivative values match to the desired accuracy. We also use the difference
between BVP solver-computed solutions with different numbers of collocation points as an
error estimate. For the solution in Figure 5, we increased the number of collocation points
until error estimates for the BVP solver-computed solution were smaller than the error estimate
for the PFS-computed solution.

The instability of the computation of P̃III solutions as initial-value problems on pole-free
regions can be demonstrated as follows4. Let the exact solution to the P̃III equation be w and
let w̃ be the approximate (numerical) solution. Let w(ζ) ≈ w̃(ζ) + ε, where ε is constant.

Making these substitutions in the P̃III equation, we find that∣∣∣∣w′′ − w̃′′w̃′′

∣∣∣∣ ≈ ∣∣∣∣ 1

w̃′′

[
−(w̃′)2

w̃
+

1

4

(
2αw̃2 + 3γw̃3 − δe2ζ

w̃

)]∣∣∣∣ ∣∣∣ εw̃ ∣∣∣+O
(
ε2
)

:= κr

∣∣∣ ε
w̃

∣∣∣+O
(
ε2
)
, κr =

∣∣∣∣ 1

w̃′′

[
−(w̃′)2

w̃
+

1

4

(
2αw̃2 + 3γw̃3 − δe2ζ

w̃

)]∣∣∣∣ .(7)

Thus, we interpret κr as a ‘relative condition number’ of the P̃III equation. It gives the
approximate factor with which the relative error of the solution (|ε/w̃|) is amplified to give

the relative error in the evaluation of the right-hand side of the P̃III equation (|w′′ − w̃′′|/|w̃|).
Since the P̃III equation is used to generate the Taylor coefficients that are converted to Padé
coefficients in the PFS method, we expect the error of the PFS-computed solution to grow
rapidly on regions where κr is large. That is, we expect the PFS method to be unstable

4Although we only consider this instability for the P̃III equation, it is also present in the computation of PIII

solutions in the z-plane. Recall that we obtain PIII solutions u by computing P̃III solutions w (with w = eζ/2u).
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where κr is large. On the pole-free sector of the solution in the second column of Figure 5,
w̃ ≈ w = eζ/2u ∼ eζ/2eζ/6 = e2ζ/3, Re ζ → +∞, in which case κr simplifies to

κr ∼
27

16
e2Re ζ/3, Re ζ → +∞,

for the parameter values of the solution in Figure 5. This shows that computation on the
smooth region is exponentially unstable. For the PIII solution in Figure 5, Re ζ ≤ 2 log 30 and
thus the maximum value of κ is approximately 27/16(30)4/3 ≈ 157. By contrast, the equation
is well-conditioned in the neighborhood of a pole or zero. For the solution in the figure, the be-
havior in the neighborhood of a pole at ζ0 is (see Table 5) w̃ ≈ w = eζ/2u ∼ eζ0/2c−2(ζ − ζ0)−2.
Similarly, in the neighborhood of a zero, w̃ ≈ w = eζ/2u ∼ eζ0/2c1(ζ − ζ0). For the parameter
values of the solution in the figure, κr and the absolute condition number, κa = κr|w̃′′|, simplify
to

κr ∼
e2Re ζ0

1536
|ζ − ζ0|6 and κa ∼

e2Re ζ0

32
|ζ − ζ0|2, ζ → ζ0,

in the neighborhood of a pole and

κr ∼ 10e2Re ζ0 |ζ − ζ0|2 and κa ∼
e2Re ζ0

8
|ζ − ζ0|2, ζ → ζ0,

in the neighborhood of a zero. The third column of Figure 5 shows a plot of the condition
number for the tronquée PIII solution. The plot clearly shows the exponential increase of
the condition number on the pole-free region with Re ζ as well as the comparatively well-
conditioned nature of the pole fields. However, we also observe isolated points inside and
between the pole fields with large condition numbers. These are the points at which the
second derivative is small.

Table 5: The poles and zeros of the solution in Figure 5.

Poles Zeros

PIII, γ = 0, δ 6= 0

z-plane c−2 = 2/α
c1 = +

√
−δ/2

c1 = −
√
−δ/2

ζ-plane c−2 = 8e−ζ0/2/α
c1 = +eζ0/2

√
−δ/2

c1 = −eζ0/2
√
−δ/2

3.3 Generic PV and PVI solutions

We close with PV and PVI solutions in Figures 6 and 7, respectively. These solutions were
computed by applying the enhanced PFS method to the P̃V equation and the transformed PVI

equation (5). It follows from Table 3 that for a PVI solution with a pole at z0, where |z0| > 1,
the residue of the pole in the z-plane is larger than the corresponding residues in the η and
ζ planes by a factor of at least |z0|. We therefore found it necessary to plot log10 |u| in the
z-plane in Figure 7 (column 3), instead of |u|, which is what we plot in the η and ζ planes
(columns 1 and 2, respectively).

The generic solutions in Figures 6 and 7 and the generic PIII solution in the third column
of Figure 1 share a common feature: they have poles and zeros along oblique lines in the
transformed planes. These sloping lines of poles and zeros are mapped to spirals in z-plane
(for the PIII and PV solutions) or ζ-plane (for the PVI solution). As we remarked above, spirals
of poles and zeros were not observed in the single-valued Painlevé transcendents in [9–11,25,26].
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Table 6: The poles and zeros of the solutions in Figures 6 and 7.

Poles Zeros

Figure 6 PV, αβ 6= 0

z-plane
c−1 = +z0/

√
2α c1 = +

√
−2β/z0

c−1 = −z0/
√

2α c1 = −
√
−2β/z0

ζ-plane
c−1 = +1/

√
2α c1 = +

√
−2β

c−1 = −1/
√

2α c1 = −
√
−2β

Figure 7 PVI, αβ 6= 0 η, ζ and z planes See Table 3

Figure 6: A generic PV solution in the ζ and z planes (z = eζ). The solution has parameter
values (α, β, γ, δ) = (1,−1, 1,−1/2) and ICs z0 = 1, u(z0) = 2 and u′(z0) = −1. The error
estimates for the solution on sheets 0–2 are 3e-9, 7e-6 and 2e-5, respectively.
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Figure 7: A generic PVI solution in the η, ζ and z planes (ζ = eη, z = eζ). The solution has
parameters (α, β, γ, δ) = (1,−1, 3/4,−3/2) and ICs z0 = 2, u(z0) = 3/2 and u′(2) = −1. The
error estimates for the solution on the strips indicated in the η-plane are, from bottom to top:
5e-8, 4e-4 and 8e-4.
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4 Conclusions

To our knowledge we have presented the first numerical method for computing multivalued
PIII, PV and PVI solutions on multiple sheets of their Riemann surfaces. In the process we
have displayed, for the first time as far as we are aware, pole field patterns of generic and
tronquée PIII and PV solutions. For both these equations tronquée solutions had been studied
only theoretically before. We also displayed a generic PVI solution as well as what appears to
be a tronquée PVI solution, which to the best of our knowledge has not been proposed in the
literature as yet.

We extended the capabilities of the PFS method for the single-valued Painlevé transcen-
dents. In particular, our enhanced PFS method can compute highly non-uniform pole fields
accurately and efficiently and it can move onto the desired sheets of the Riemann surfaces
of the multivalued Painlevé transcendents by following appropriate paths around the branch
points. In forthcoming studies we intend to use our methods to systematically explore multi-
valued Painlevé transcendents. Our enhanced PFS method has already proven to be a valuable
tool for the exploration of a family of tronquée PIII solutions. We shall present these results
elsewhere.

The methods we have presented in this paper are applicable to any ODE that possesses
the Painlevé property. Our methods could be used to explore ODEs that do not possess
the Painlevé property if they are used in conjunction with methods for singularity detection,
see [4, 16, 27], so that movable branch points can be identified. However, our method of Padé
approximation at each step would need to be modified if the solution has essential singularities.
Furthermore, our methods are not applicable beyond natural boundaries, which are closed
curves in the complex plane beyond which the solution cannot be analytically continued. The
Chazy equation is a well-known example of an ODE whose solutions have a movable natural
boundary.
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equation. Stud. Appl. Math., 107(3):253–291, 2001.

[19] N. Joshi and M. Mazzocco. Existence and uniqueness of tri-tronquée solutions of the
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Birkhäuser/Springer Basel AG, Basel, 2012.

[29] J. A. C. Weideman and S. C. Reddy. A MATLAB differentiation matrix suite. ACM
TOMS, 26(4):465–519, 2000.

[30] I. M. Willers. A new integration algorithm for ordinary differential equations based on
continued fraction approximations. Comm. ACM, 17:504–508, 1974.

21


	Introduction
	Computing the multivalued Painlevé transcendents
	Computing PIII and PV solutions
	The PFS
	PFS enhancements
	Experiments

	Computing PVI solutions
	Avoiding branch points
	Circumambulating branch points 


	More examples of PIII, PV and PVI solutions
	A tronquée PV solution
	A tronquée PIII solution
	Generic PV and PVI solutions

	Conclusions

