
Accepted Manuscript

Fast calculation of Laurent expansions for matrix inverses

Bengt Fornberg

PII: S0021-9991(16)30442-9
DOI: http://dx.doi.org/10.1016/j.jcp.2016.09.028
Reference: YJCPH 6839

To appear in: Journal of Computational Physics

Received date: 27 February 2016
Revised date: 8 September 2016
Accepted date: 11 September 2016

Please cite this article in press as: B. Fornberg, Fast calculation of Laurent expansions for matrix inverses, J. Comput. Phys. (2016),
http://dx.doi.org/10.1016/j.jcp.2016.09.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jcp.2016.09.028

Fast calculation of Laurent expansions for matrix inverses

Bengt Fornberg ∗

Department of Applied Mathematics
University of Colorado

Boulder, CO 80309, USA

September 14, 2016

Abstract

Previously described algorithms for calculating the Laurent expansion of the inverse of a
matrix-valued analytic function become impractical already for singularity orders as low as
around p = 6, since they require over O(28p) matrix multiplications and correspondingly large
amounts of memory. In place of using mathematically exact recursions, we show that, for floating
point calculations, a rational approximation approach can avoid this cost barrier without any
significant loss in accuracy.

Keywords: Matrix inverse, Laurent expansion, radial basis functions, RBF.
AMS classification codes: 15A09, 30E10, 65E05, 65F20.

1 Introduction

We consider in this study matrices whose elements are analytic functions of a complex variable z:

A(z) = A0 + z A1 + z2A2 + . . . (1)

If A0 is non-singular, equating coefficients in the identity A(z)A−1(z) = I trivially gives a match-
ing Taylor expansion for A−1(z). The case with A0 singular arises in numerous applications, as
summarized in the introductions of [1, 18]. These include Markov chains and singular perturbation
problems for ODEs and PDEs. Connections with radial basis functions (RBF) will be discussed
below in Section 4.

If A−1(z) exists in some punctured neighborhood of z = 0, it will there possess a Laurent expansion:

A−1(z) = z−pX−p + z−p+1X−p+1 + z−p+2X−p+2 + (2)

Given the leading matrices {A0, A1, . . . , Ak} in (1), with k ≥ p, the order p of the singularity as well
as the matrices {X−p, X−p+1, . . . , Xk−2p} in (2) will become uniquely determined. Several different
techniques have been presented for calculating these matrices [1, 2, 18, 19, 21, 25]. They all in some

∗Email : fornberg@colorado.edu

1

RBF n -values
p g(p) 1-D 2-D 3-D

1 14 2 2-3 2-4
2 598 3 4-6 5-10
3 18694 4 7-10 11-20
4 544254 5 11-15 21-35
5 15287758 6 16-21 36-56
6 420038854 7 22-28 57-84
7 11368586038 8 29-36 85-120
8 304362660958 9 37-45 121-165

Table 1: The number g(p) of n×n matrix multiplications required in the exact Laurent expansion
method [17, 18]. The three right columns shows how p is related to the matrix size n in the contexts
of scattered node RBF approximations in 1-D to 3-D.

sense generalize the approach from the non-singular case. The operation count was shown in [18]
to grow exponentially with the value of p, taking the form O(2n3g(p)) where n is the size of A. The
function g(p) was given in closed form, together with its approximation g(p) ≈ 0.6759 · (28.8636) p.
The data in the second column of Table 1 is taken from this reference. A computer time in excess
of an hour is reported for a case with n = 17 and p = 6. It is not known whether this growth rate
with p is optimal for an algorithm that is mathematically exact. For later reference (cf. Section 4),
the last three columns of Table 1 show how, in the case of RBF approximations, the value of p is
related to n (with the matrix size n then also denoting the number of node points) [15].

We note in Section 2 that an immediate generalization of the scalar contour integration approach for
Laurent coefficients may work well also in some matrix cases, and is computationally fast (with an
operation count that is independent of p). However, this approach becomes problematic especially
when A(z) is singular not just at z = 0, but also at some more z-locations close to the origin.
We introduce therefore a rational approximation method, which much improves the performance
also in these cases. Section 3 starts by extending a previously considered test example, and then
describes the present algorithm in more technical detail. Following some general remarks about
RBFs in Section 4, a larger RBF-based test case is described, together with some comments on
computational costs and on stable RBF algorithms. Section 5, contains some conclusions, and is
followed by an Appendix containing a MATLAB code for the algorithm.

2 Introductory discussion of two approximation methods

2.1 The scalar case - contour integration and rational approximation

If an analytic function f(z) has a pole of order p at the origin, it can near to it be represented by
a Laurent expansion

f(z) =

∞∑
k=−p

akz
k, (3)

where the coefficients are given by

ak =
1

2πi

˛
C

f(z)

zk+1
dz, k = −p,−p+ 1, . . . (4)

2

and the contour C encircles the origin in the positive direction, close enough not to include any
further singularity of f(z). The standard numerical discretization of integrals of the form (4) is to
sample the integrand at nz equidistant z-locations around a small circle of some radius r, providing
the approximations

ak ≈ 1

nz · rk
nz−1∑
j=0

f(r ω j)

ωk j
, (5)

where ω = e2π i/nz is the n th
z root of unity. Since the integrand is periodic and analytic, this

trapezoidal rule approximation converges exponentially fast with increasing nz [24]. Considerations
for choosing values for nz and r include:

nz

{
too large : increasing cost
too small : low accuracy in the trapezoidal rule

r

{
too large : wrong result if the path includes additional singularities of f(z)
too small : excessive numerical cancellations in evaluating (5)

If f(z) has singularities close to the pole at the origin z = 0, the two restrictions on r will overlap,
leaving little or no suitable range for actual computations. An example of this will be shown in
Section 2.3 (Example 1).

The alternate approach that we will generalize to the matrix case does not immediately aim for
obtaining the coefficients in (3), but uses as an intermediate step a rational approximation of the
form

f(z) ≈ c0 + z c1 + z2c2 + . . .+ znc−1cnc−1
b0 + z b1 + z2b2 + . . .+ znb−1bnb−1

, (6)

which then in turn can be converted over to the desired power series form (3). If determination
of the b′s reveal that b0 = b1 = . . . = bp−1 = 0 but bp �= 0, the order of the singularity has been
found to be p. By including a number of b-coefficients past bp, the denominator becomes capable of
correctly incorporating several additional poles of the function f(z), in case any such would happen
to be located inside or on/close to the computational circle (at a priori unknown locations).

2.2 Generalization of the rational approximation method to the matrix case

Starting from a truncated expansion (1) for A(z), which we denote Ã(z), we evaluate its inverse
Ã−1(z) numerically for nz different complex z-values, which for example can be chosen as in the
scalar contour integration case, equispaced around a circle of radius r. We next seek matrices
C0, C1, . . . , Cnc−1 and scalar coefficients b0, b1, . . . , bnb−1 to obtain good agreement for all these
z-values in a rational approximation of the form

Ã−1(z) ≈ C0 + zC1 + z2C2 + . . .+ znc−1Cnc−1
b0 + zb1 + z2b2 + . . .+ znb−1bnb−1

(7)

(using throughout this paper the convention that matrices are denoted by upper case letters, and
scalars with lower case). A key feature here is that all the n2 entries of the matrix Ã−1(z) have
their poles at exactly the same complex z-values, given by the zeros of det(Ã(z)), implying that
the denominator in (7) can be scalar valued. Multiplying up the denominator produces a linear
system for the n2 · nc + nb unknown coefficients in (7). This system becomes overdetermined when

3

the number n2 · nz of equations exceeds this number of unknowns. This large linear system will
turn out to have a special structure that allows for a highly effective numerical solution procedure.
Once this solution has been obtained, (7) is rearranged into the form (2). The MATLAB code
shown in the Appendix carries out these steps.

The idea behind the present approach has some similarities to the implementation of the unified
transform approach for Laplace’s equation that is described in [6]. In that case, one also creates an
approximate formula that ideally should hold for all values of a complex parameter (there denoted
by k, here by z). With use of a sufficient number of different k-values, that led similarly to an
overdetermined linear system for the unknown coefficients of the problem.

2.3 Example 1: Introductory test case, with an additional singularity near the origin

The linear matrix function

Ã(z) =

⎡
⎣ −2.639295 −2.159624 −1.439718

2.089475 1.709720 1.139790
−1.869505 −1.529736 −1.019802

⎤
⎦+ z

⎡
⎣ 0.01 0 −0.02

−0.08 0.03 0.02
0 −0.01 −0.02

⎤
⎦ (8)

(with all entries to be considered as exact numbers and not rounded approximations) has a corre-
sponding Laurent expansion for which any number of coefficient matrices can be found in closed
form. The expansion starts

Ã−1(z) =
1

z

⎡
⎣ −960 210 1590

−3840 840 6360
7520 −1645 −12455

⎤
⎦+

⎡
⎣ 20998880 −2999920 −32998320

76996220 −10999730 −120994330
−153992160 21999440 241988240

⎤
⎦+O(z).

(9)

Apart from at z = 0, Ã(z) is singular also at z = −0.0001 and at z = −1.

Mathematica’s exact recursions, when applied to (8) and set to use standard double precision,
return a completely flawed expansion starting with Ã−1(z) = X0+zX1 where the matrices X0 and
X1 have entries of sizes O(10+11) and O(10+18), respectively. Direct contour integration will require
r < 10−4 in order to not to have any additional singularity inside the computational circle. For
such a small r-value, ill-conditioning when evaluating Ã(z)−1 prevents (5) from returning accurate
results, especially for higher expansion coefficients, cf. Figure 1 (c). In (5), errors in f(r ω j) will be
severely scaled up when the sum is divided by rk. Subplots (d) and (e) of Figure 1 show much more
‘robust’ results for the present rational approximation approach, especially with regard to higher
Laurent (matrix) coefficients (larger k-values), as well as a vastly increased flexibility in terms of
placing the nodes zi where Ã(z)−1 is sampled. There is no longer any need to keep the nodes
inside the nearest singularity, nor to place them in any special pattern (such as equispaced around
a circle).

3 Implementation of the rational approximation method

We start this section by giving a somewhat larger example around which we then describe the
rational approximation algorithm in more detail.

4

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) Nodes on circle

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) Halton nodes

10-10

10-7

10-8

10-6

10-6

810-5

R
el

at
iv

e
er

ro
r

10-4

7610-4

(c) Contour integration, nodes on circle

r - comput. radius

10-2

510-3

k - power of z for Laurent coeff.

4

100

310-2 2110-1 0100 -1

10-10

10-7

10-8

10-6

10-6

810-5

R
el

at
iv

e
er

ro
r

10-4

7610-4

(d) Rational approx., nodes on circle

r - comput. radius

10-2

510-3

k - power of z for Laurent coeff.

4

100

310-2 2110-1 0100 -1

10-10

10-7

10-8

10-6

10-6

810-5

R
el

at
iv

e
er

ro
r

10-4

7610-4

(e) Rational approx., Halton nodes

r - comput. radius

10-2

510-3

k - power of z for Laurent coeff.

4

100

310-2 2110-1 0100 -1

Figure 1: (a) nz = 32 nodes equispaced around the unit circle; (b) nz = 32 nodes quasi-randomly
(Halton) scattered within the unit circle; (c) The largest relative errors in the entries of the com-
puted matrices Xk for k = −1, 0, 1, . . . , 8 as functions of the radial scaling r of the node locations
shown in (a), when using the contour integration approach; (d) Same as for (c), but instead using
the present rational function approach; (e) Results for the rational approximation approach when
scaling with different radii r the node set (b) instead of the node set (a). The error surfaces
in (c), (d) and (e) are truncated upwards at the level of Relative error = 1.

5

3.1 Example 2

A smaller n = 3 sized counterpart to the present n = 5 example below was previously considered
in [17, 18]. Let A(z)i,j =

√
1 + z(i− j)2 for 1 ≤ i, j ≤ 5, i.e.

A(z) =

⎡
⎢⎢⎢⎢⎣

1
√
1 + z

√
1 + 4z

√
1 + 9z

√
1 + 16z√

1 + z 1
√
1 + z

√
1 + 4z

√
1 + 9z√

1 + 4z
√
1 + z 1

√
1 + z

√
1 + 4z√

1 + 9z
√
1 + 4z

√
1 + z 1

√
1 + z√

1 + 16z
√
1 + 9z

√
1 + 4z

√
1 + z 1

⎤
⎥⎥⎥⎥⎦ . (10)

The Taylor expansion for A(z) up through degree 5 becomes

Ã(z) =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦+z

⎡
⎢⎢⎢⎢⎣

0 1
2 2 9

2 8
1
2 0 1

2 2 9
2

2 1
2 0 1

2 2
9
2 2 1

2 0 1
2

8 9
2 2 1

2 0

⎤
⎥⎥⎥⎥⎦+. . .+z5

⎡
⎢⎢⎢⎢⎣

0 7
256 28 413343

256 28672
7

256 0 7
256 28 413343

256
28 7

256 0 7
256 28

413343
256 28 7

256 0 7
256

28672 413343
256 28 7

256 0

⎤
⎥⎥⎥⎥⎦ .

(11)
This truncated expansion contains all the information that is needed to determine that the order
of the singularity is p = 4, and then to obtain the first two terms in the corresponding Laurent
expansion:

A(z)−1 ≈ 1

z4

⎡
⎢⎢⎢⎢⎣

− 1
1008

1
252 − 1

168
1

252 − 1
1008

1
252 − 1

63
1
42 − 1

63
1

252
− 1

168
1
42 − 1

28
1
42 − 1

168
1

252 − 1
63

1
42 − 1

63
1

252
− 1

1008
1

252 − 1
168

1
252 − 1

1008

⎤
⎥⎥⎥⎥⎦+

1

z3

⎡
⎢⎢⎢⎢⎣

− 55
1764

349
3528 − 143

1176
251
3528 − 61

3528
349
3528 − 565

1764
61
147 − 467

1764
251
3528

− 143
1176

61
147 −115

196
61
147 − 143

1176
251
3528 − 467

1764
61
147 − 565

1764
349
3528

− 61
3528

251
3528 − 143

1176
349
3528 − 55

1764

⎤
⎥⎥⎥⎥⎦ .

(12)
For each further term that is provided in (11), another term becomes available in (12). While
symbolic algebra packages can find expansions for orders up to around p = 5, rapidly increasing
computer times for larger p-values is not the only problem. For example, Mathematica (versions 9
and 10) generate the two-term expansion (12) by the statements

A=Table[
√

1 + z(i-j)2, {i, 1, 5}, {j, 1, 5}]; Inverse[Series[A, {z, 0, 11}]]

but gives less or no terms if the statement Series[A, {z, 0, 11}] is set to produce a shorter expansion
for A(z) than all the way up through O(z11). As noted above, O(z5) should have sufficed.

3.2 More detailed description of the rational approximation algorithm

3.2.1 Main steps in the algorithm / code

In order to describe the steps in the algorithm as distinctly as possible and to simplify further
explorations with it, MATLAB codes for this Example 2 are included in the Appendix. The code
is split in three parts:

(i) Main script - only sets parameter values, and then calls the main Laurent expansion
function L exp.

6

(ii) Function A z that evaluates the truncated Taylor expansion Ã(z) of the A(z) matrix.

(iii) Function L exp that evaluates the matrix Laurent expansion.

While codes for (i) and (ii) are straightforward, the code (iii) is next described in some detail. In
this description, lists of the form 〈. . .〉 identify the corresponding line numbers in code. Following
some guidelines that will be discussed in Section 3.2.3, the values for the five parameters r, nb, nc,
nz and bc (with nb < nc < nz) are entered in the main script (code lines 〈5− 9〉).
After multiplying up the denominator in (7) and moving all terms to the left hand side, the equation
takes the form

{C0 + zC1 + . . .+ znc−1Cnc−1} − Ã(z)−1{b0 + zb1 + . . .+ znb−1bnb−1} = 0. (13)

We place nz complex points zi, i = 1, 2, . . . , nz equispaced around a circle of radius r surrounding
the origin in the z-plane 〈32, 33〉. Each instance of zi, when substituted into (13), produces n2

relations (one relation for each matrix element in the equation). These altogether nz · n2 relations
are then organized as follows: First we write down all nz relations associated with the (1,1) entries,
then all with the (2,1) entries, etc. We order the unknowns as follows: First the (1,1)-entries of
all the nc different C-matrices, followed by the (2,1)-entries of these, etc. and conclude with the
nb different b-entries. If, by chance, Ã(z) would be singular (or nearly so) at some zi location(s),
possible ill effects are circumvented by a scaling of the equations 〈39〉. The resulting overdetermined
linear system will then take the form shown in Figure 2 (a). The right hand side is the zero vector.
All the blocks marked E are identical 〈34, 39〉, whereas the F -blocks become different from each
other 〈43− 48〉.
The solution to an overdetermined linear system remains unaffected if we multiply from the left
with a unitary matrix. Hence, we split E = Q · R 〈42〉, and multiply from the left each block row
with Q∗〈46〉, leading to the matrix structure in Figure 2 (b). The order of the equations (matrix
rows) can now be changed to instead give the matrix structure shown in part (c) 〈49, 50〉. At this
point, we apply a svd factorization to the bottom rectangular block, obtaining matrices [U,Σ, V ∗]
〈51〉. The last column of V will contain the entries of the desired b-vector (as explained further in
Section 3.2.2). The number of leading zeros of this vector gives the value of p, i.e. the order of the
singularity. In the present example, the nb = 10 entries of the b-vector become

0.000000000000000 +0.000000000000000i
−0.000000000000000 −0.000000000000000i
−0.000000000000000 −0.000000000000000i
0.000000000000000 −0.000000000000000i

−0.000000165840613 +0.000000010652139i
0.000003540753129 −0.000000160016167i

−0.000062884217882 +0.000000198148194i
0.003599142817789 −0.000143329089913i

−0.067868253092651 +0.003257462751109i
0.995956955021008 −0.058651978351578i

(14)

clearly showing that p = 4 〈53〉 . A slight accuracy gain is achieved by setting these p = 4 leading
entries to exactly zero and then re-calculate the b-vector 〈55〉. The remaining part of the least
squares system is then solved by back substitution (using the same R-matrix for all block rows)
〈56〉. With this, numerical values have been obtained for all the C-matrices. Since the denominator

7

Figure 2: a-c. Structure of the overdetermined linear system during the three stages of the solution
process.

of (7) is a scalar polynomial, conversion to the form (2) amounts only to another back substitution
〈57, 58〉. As a last step, X-matrices beyond the ones that are determined by the initial truncated
Taylor expansion for A(δ) are eliminated 〈60〉. It can be noted that the common denominator for
all the matrix elements make the emergence of Froissart doublets [16, 20] very unlikely.

3.2.2 Determination of the b-vector

The steps from the matrix structure in Figure 2 (a) to that in parts (b) and (c) are all based on
the fact that least squares solutions are unaffected when a system is multiplied from the left by
unitary matrices, and also when equations are re-ordered. The motivation for how b is obtained
in the code (on line 〈52〉) needs some additional motivation. It is determined from the last set of
equations in Figure 2 (c), illustrated again in the left part of equation (15):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

� − −
− � −
− − �

− B −
− − −
− − −
− − −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ b

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡
⎢⎣

σ1 0 0

0
. . . 0

0 0 σnb

⎤
⎥⎦

︸ ︷︷ ︸
Σ

⎡
⎣ V ∗

⎤
⎦
⎡
⎣ b

⎤
⎦ =

⎡
⎣ 0

⎤
⎦ . (15)

We split next the rectangular matrix B by a svd decomposition into UΣV ∗, after which the task
becomes to solve the right equation in (15). Up through this point, the least squares systems
have been unusual (but convenient for computing) in having a zero RHS. We now note that the
b-vector is undetermined with respect to a scalar multiplier (since multiplying all the C’s and b’s
by the same constant cancels out in the ratio in (7)). One way to ensure a non-zero b-vector
would be to set b0 = 1. That would here be unsuitable, since a number of leading b-coefficients
are expected to be zero. We therefore instead normalize so that ||b ||2 = 1. Then V ∗b is also a
unit length vector. Given that the singular values σi are decreasing, we get the best solution when
V ∗b = [0, 0, . . . , 0, 1]T , which tells that b should be chosen as the last column of V .

8

3.2.3 Strategies for choosing the five parameters

While the choices for the five parameters r, nb, nc, nz, and bc could be automated, we have not
done so here, in order to improve the simplicity, clarity, and compactness of the code. Regarding
the first four parameters, simply varying their values and monitoring the effect this has on the
resulting X-matrices provide excellent insight in the achieved accuracy.

In this particular case of Example 2, we can compare with the exact result (12). Figure 3 shows
how the largest error in any entry of X−4 and X−3 varies when one parameter at a time is altered
from the setting r = 0.03, nb = 10, nc = 32, nz = 36. No delicate ’optimal choice’ is needed for any
of the four parameters - they all have wide ranges throughout which the performance is roughly
equally good. With the double precision machine rounding level at about 10−16, around five places
are seen to be lost, giving X−4 and X−3 with errors around 10−11.

In typical cases, no exact results are available to compare against. However, multiplying (1) with
the computed version of (2) gives almost equally good accuracy information, since the product
ideally should be the identity matrix, with all other coefficients vanishing. In the case of Example
2 (as specified by (11)), the given information suffices only for the two terms in (12). Numerically,
we obtain 1

z4
[O(10−16)] + 1

z3
[O(10−14)], where [O(10−d)] denotes a matrix with all elements less

than 10−d in magnitude. The accuracy loss using this measure is about 2 digits relative to machine
rounding level of around O(10−16).

Extending this Example 2 test problem to include four more terms in (11) produces four more
terms in (12). Leaving the parameters r, nb, nc, nz unchanged produces now a product with the
resulting matrices of the sizes

1

z4
[O(10−15)] +

1

z3
[O(10−14) +

1

z2
[O(10−12)] +

1

z
[O(10−11)] + [I +O(10−10)] + z [O(10−8)]] (16)

Given the problem’s genuine ill-conditioning (cf. Section 3.3 below), the loss of 8 digits is a re-
markably good result. When full 16 digit machine accuracy is required, and especially for still more
challenging test examples (with higher p-values), such losses of significant digits are most easily
compensated for by using extended precision arithmetic; cf. Section 4.1 below.

The fifth parameter bc is used to separate leading zero entries in the b-vector from non-zero ones.
In the case of (14), any value in the range of 10−7 to 10−15 would have worked. The function L exp
returns the full b-vector (in the variable bv), in order to make it easy to spot if, for some reason,
an adjustment of the default value of 10−12 would be needed.

3.3 Mathematical conditioning of the Laurent expansion problem

In order to interpret the error results above, for ex. as given by (16), we need to note that the
Laurent expansion task itself is a mathematically severely ill-conditioned problem. For ex. if the
entries of A0 are perturbed by random infinitesimal amounts, the matrix is likely to become non-
singular, and the inverse will feature a p = 0 Taylor expansion instead of a p = 4 Laurent expansion.
Likewise, infinitesimal perturbations of A1 etc. will significantly affect the end result. Given this,
it is somewhat surprising that (14) so clearly here identified p = 4.

Mathematica’s Series expansion algorithm is based on (computationally costly) exact mathematical
recursions. When these are applied to the present test case using double precision arithmetic

9

0.02 0.04 0.06 0.08 0.1 0.12
r

10-15

10-10

10-5

100

E
rr

or

4 6 8 10 12 14 16
nb

10-15

10-10

10-5

100

E
rr

or

20 25 30 35
nc

10-15

10-10

10-5

100

E
rr

or

30 40 50 60 70 80
nz

10-15

10-10

10-5

100

E
rr

or

Figure 3: Largest error in any entry of X−4 or X−3 in Example 2 when one parameter at a time is
varied away from the choice {r = 0.03, nb = 10, nc = 32, nz = 36}.

(instead of employing its option for exact rational arithmetic), we obtain in place of (16)

1

z4
[O(10−15)] +

1

z3
[O(10−15) +

1

z2
[O(10−14)] +

1

z
[O(10−13)] + [I +O(10−11)] + z [O(10−9)]] (17)

The improvement over (16) is very minor, indicating that the accuracy of the present algorithm
comes close to what the problem’s intrinsic ill-conditioning permits.

4 Matrices arising in the context of RBF approximations

The idea of approximating scattered data by a linear combination of radially symmetric functions
(RBFs) goes back at least to around 1970 (for recent surveys, see for example [4, 7, 8]). Table 2
lists four common choices of radial functions φ(r). An RBF centered at a location xk (in a space
of any dimensionality) will take the form φ(||x − xk||), where the norm is the standard Euclidean
distance function. With the data value fk at node xk, k = 1, 2, . . . , n, a ’basic’ RBF interpolant to
f(x) then becomes

s(x) =

n∑
k=1

λkφ(||x− xk||) (18)

(with different enhancements available, as discussed in the references above). The expansion coef-
ficients λk in (18) can be obtained by collocation - enforcing the exact result at the node points:⎡

⎢⎢⎢⎣
φ(||x1 − x1||) φ(||x1 − x2||) · · · φ(||x1 − xn||)
φ(||x2 − x1||) φ(||x2 − x2||) · · · φ(||x2 − xn||)
...

...
...

φ(||xn − x1||) φ(||xn − x2||) · · · φ(||xn − xn||)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

λ1

λ2
...
λn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f1
f2
...
fn

⎤
⎥⎥⎥⎦ , (19)

or briefer, Aλ = f . It has been shown repeatedly that particularly high accuracy usually is obtained
when ε (the shape parameter appearing in φ(r), cf. Table 2) is small, making that parameter regime
of near-flat RBFs particularly interesting. After the variable change ε2 = z, we recognize the
matrix (10) in Example 2 as corresponding to 1-D MQ RBF interpolation at the five node points

10

Type of basis function Radial function φ(r)

Gaussian (GA) e−(ε r)2

Multiquadric (MQ)
√

1 + (ε r)2

Inverse Quadratic (IQ) 1/(1 + (ε r)2)

Inverse Multiquadric (IMQ) 1/
√

1 + (ε r)2

Table 2: For common choices for infinitely differentiable radial functions.

xk = {−2,−1, 0, 1, 2}. Using n nodes in 1-D, the order of the singularity of A(z)−1 becomes
p = n − 1, agreeing with p = 4 observed in Example 2. In higher-D, the corresponding relations
between n and p become more complicated, and will depend on the character of the node layouts,
with grid-based nodes often giving higher orders (p-values) that scattered node cases [15, 26]. For
scattered nodes in 2-D and 3-D, see the last two columns in Table 1. RBF applications more often
than not lead to matrices with singularity orders well beyond the previous upper limit for practical
Laurent expansions.

Situations with high p-values in conjunction with additional matrix singularities very near to z = 0
(as in Example 1) occur frequently. For example, when solving PDEs over surfaces, RBF-generated
finite differences (RBF-FD) approximate derivatives using local ‘patches’ of nodes [5, 10, 23]. If
such a ‘patch’ is near-flat (a 3-D case) vs. completely flat (a 2-D case), Table 1 shows that the
p-values will differ by some integer. Just as for complex roots of polynomials with continuously
changing coefficients, the present singularities need to move continuously between these two cases,
i.e. there must in the transition be singularities arbitrarily close to but not quite at a high-order
one at z = 0. Near-flat cases arise not only when a curved surface has a near-flat region, but also
when solving PDEs over, say, a spherical surface, and node densities are increased while keeping
the number of nodes in each RBF-FD stencil fixed.

4.1 Example 3: A larger RBF-based test example

As a concluding test case, we consider the 2-D node distribution illustrated in Figure 4, again using
MQ RBFs. The singularity of the n = 37 size A(z)−1 matrix is in this case of order p = 8, placing
this test case outside the reach of previous algorithms. We start this time with an expansion for
A(z) up through O(z12) and will thus be able to compute X−8, X−7, . . . , X−4 (recalling that for the
RBF error analysis described in [17, 21], the two leading X-matrices X−8, X−7 suffice). The error
test indicated in Section 3.2.3 (cf. equation (16)) will in this case show that virtually all significant
digits have been lost, if using double precision. Therefore, we run this test case in quad precision
(128 bit floating point; about 34 significant decimal digits), using version 3.8.9 of the MATLAB
extended precision toolbox developed by Advanpix.

Straightforward tests (as described in Section 3.2.3) will reveal that r = 0.005, nb = 16, nc =
40, nz = 70 represent good parameter choices. Similarly to how Figure 3 suggested error levels
better than 10−11 for all entries in that case (observing by how much the results varied when
parameters were changed), we find in the present case (without known exact solution) variations
less than 10−16 in all entries of X−8, X−7, . . . , X−4 telling that, when converted to double precision,
all entries will be accurate to the machine rounding level.

11

Figure 4: The grid-based n = 37 node 2-D stencil used in Example 2.

4.2 Some remarks on computer times

The arithmetic operation count for the algorithm is dominated by the O(nb · nz
2 · n2) operations

needed for changing the system structure from that shown in Figure 2 part (a) to that in part (b).
The value of p enters only indirectly in that nb may need to be increased in proportion to p (with the
need for adjustments in nz less likely). In regular (hardware supported) double precision, computer
times for Examples 2 and 3 become about 0.07 and 0.56 seconds, respectively, on a notebook with a
2 core 2.8 GHz Intel i5 processor. The latter case requires however extended precision for acceptable
accuracy, which increases the cost by a factor around 200, to about 2 minutes. However, once the
cost penalty of invoking software implemented extended precision is accounted for, it turns out to
make only relatively little further difference if one uses quad precision (as for Example 3) or even
several hundred digits of precision. Some larger computer systems in the past (such as IBM System
370) had quad precision implemented in hardware, but that is unfortunately rare nowadays.

4.3 Some remarks on stable RBF algorithms

Although both Examples 2 and 3 were motivated by RBF interpolation, it should be noted that
Laurent expansion algorithms are quite different from ’stable algorithms’ in the sense this phrase
has been used to previously describe the Contour-Padé [13] and RBF-QR [9, 12] algorithms for
interpolation / derivative approximations and the RBF-QR [22] and RBF-GA [11] algorithms for
calculating weights in RBF-FD approximations. Focusing on the former application (interpolation),
the key point is that (19) (inverting the A-matrix) by itself is an ill-conditioned problem, whereas
calculating the interpolant s(x), mathematically defined by (18) and (19), can be shown to (usually)
depend in a well conditioned way on the data fk, k = 1, 2, . . . , n even in the flat basis function limit
of ε2 = z → 0 [3, 13, 14]. Designed to bypass a direct use of (19), these stable RBF algorithms
arrive at s(x) using intermediate steps that are all well conditioned. They are also computationally
much faster than any present Laurent expansion algorithm; see for ex. Figure 8 in [11] for timing
information.

12

5 Conclusions

Previous algorithms for calculating Laurent expansions of matrix valued analytic functions have
used exact recursions, and have consequently been severely limited in terms of the orders of the
singularities that could be handled - roughly up to p = 5 or p = 6, due to their need for over
O(28p) matrix multiplications. The present rational approximation-based approach overcomes this
growth in cost with p. It has however not yet been developed to the point of offering a completely
robust ’black box’ code that can be used blindly. The goal of the present study has been limited
to demonstrating that this approximate algorithm can overcome this cost barrier and still be close
to optimally accurate for a given floating point precision level. However, no code based on floating
point calculations can overcome the fact that numerical inversion of near-singular matrices is a
genuinely ill-conditioned problem. For increasing problem sizes, it seems therefore very likely that
extended precision arithmetic is unavoidable.

In a forthcoming joint study with Grady Wright [27], we apply the present rational approximation
approach directly to RBF interpolants s(x) (as defined in (18)) and to RBF-FD weight calculations
rather than, as here, to A(z)−1, obtaining a new stable RBF algorithm.

6 Appendix

The following is a listing of the MATLAB code for Example 2:

1 warning (’ o f f ’ , ’ a l l ’) ; c l e a r ;
2 % Parameters f o r t e s t Example 2 , used when c a l l i n g the L exp rou t in e
3 % @A z % External f unc t i on eva lua t ing a truncated matrix expansion
4 m = 5 ; % Use Taylor c o e f f i c i e n t s up through power m
5 r = 0 . 0 3 ; % Radius in complex z−plane
6 nb = 10 ; % b−c o e f f i c i e n t s i n d i c e s 0 , 1 , 2 , . . . , nb−1
7 nc = 32 ; % C−matr i ce s i n d i c e s 0 , 1 , 2 , . . . , nc−1
8 nz = 36 ; % Number o f z i−va lue s around c i r c l e rad iu s r ; use nb < nc < nd
9 bc = 1e−12; % Cutof f va lue in the b−vector , f o r dec id ing the order p

10 [X, b] = L exp (@A z ,m, r , nb , nc , nz , bc) % Cal l Laurent expansion rou t in e and
11 % d i sp l ay i t s r e s u l t s , and the b−vec to r

12 func t i on A = A z (z ,m)
13 % Function which r e tu rn s a matrix A, obta ined when the Taylor expansion o f
14 % the A(z) matrix has been eva luated at z , us ing powers up through zˆm.
15 % Implementation here f o r the Example 2 t e s t case
16 p e r s i s t e n t c f D
17 i f isempty (c f) % Execute three l i n e s below once only
18 c f = [1 , cumprod (cumsum([1/2 ,− ones (1 ,m−1)])) . / cumprod (1 :m)] ;
19 x = −2:2; n = length (x) ; % The 1−D nodes used f o r Example 2
20 D = bsxfun (@minus , x , x ’) . ˆ 2 ; % ’Node d i s t anc e tab le ’ (squared e n t r i e s)
21 end
22 A = ones (s i z e (D)) ; DD = z∗D;
23 f o r k = 1 :m % Add up the Taylor expansion that
24 A = A+c f (k+1)∗DD; % prov ides the A(z) matrix
25 DD = z∗D.∗DD;
26 end

27 func t i on [X, bv] = L exp (A z ,m, r , nb , nc , nz , bc)

13

28 % Input parameters de s c r ib ed in main s c r i p t
29 % Outpt parameters
30 % X Computed Laurent expansion matr i ce s
31 % bv b−vec to r

32 ang = l i n s p a c e (0 ,2∗ pi , nz+1); % Create z i−va lue s equispaced around a
33 z i = r ∗exp (1 i ∗ang (1 : nz)) ; % c i r c l e o f r ad iu s r cente red at the o r i g i n
34 E = bsxfun (@power , z i . ’ , 0 : nc−1);% Create the E−matrix

35 f o r i = 1 : nz % Loop over z i−va lue s
36 A i = inv (A z (z i (i) ,m)) ; % Ca lcu la te i n v e r s e s o f the A(z i) matr i ce s
37 i f i ==1; [n , ˜] = s i z e (A i) ; AI = ze ro s (n , n , nz) ; end
38 AI (: , : , i) = A i ;
39 E(i , :) = E(i , :) /max(max(abs (AI (: , : , i)))) ; % Sca l e the equat ions
40 end
41 AI = permute (AI , [3 , 1 , 2]) ; % Re−arrange so f i r s t index runs over the z i ’ s
42 [Q,R] = qr (E) ; % qr f a c t o r i z e E
43 F = ze ro s (nz , nb , n , n) ;
44 f o r j = 1 : n % Loop over a l l the block rows in Fig . 2 (a , b) ;
45 f o r i = 1 : n % then bu i ld up FU and FL (c f . Fig . 2 (c))
46 F (: , : , i , j) = Q’∗ bsxfun (@times , AI (: , i , j) ,E (: , 1 : nb)) ;
47 end
48 end
49 FU = reshape (permute (F(1 : nc , : , : , :) , [1 , 3 , 4 , 2]) , nˆ2∗nc , nb) ;
50 FL = reshape (permute (F(nc+1:nz , : , : , :) , [1 , 3 , 4 , 2]) , nˆ2∗(nz−nc) , nb) ;

51 [˜ , ˜ ,V] = svd (FL, ’ econ ’) ; % Apply svd to FL ; The l a s t column o f V w i l l
52 bv = V(: , nb) ; % conta in the b−vec to r . Then f i nd value o f p
53 p = f i nd (abs (bv)>bc , 1 , ’ f i r s t ’)−1;
54 FU = FU(: , p+1:nb) ; FL = FL(: , p+1:nb) ;
55 [˜ , ˜ ,V] = svd (FL, ’ econ ’) ; b = V(: , nb−p);% Ca lcu la t e an updated b−vec to r

56 C = R(1 : nc , :) \ reshape (FU∗b , nc , n ˆ2) ; % Create the C−matr i ce s (eq . (7))
57 b2 = [b ; z e r o s (nc−nb+p , 1)] ; % Convert to X−matr i ce s (eq . (2))
58 X = t o e p l i t z (b2 , [b2 (1) , z e r o s (1 , nc−1)])\C;
59 X = reshape (X, nc , n , n) ; X = permute (X, [2 , 3 , 1]) ;
60 X(: , : ,m−p+2:nc) = [] ; % Display the computed X−matr i ce s

References

[1] K. E. Avrachenkov, M. Haviv, and P. G. Howlett, Inversion of analytic matrix functions that
are singular at the origin, SIAM J. Matrix Anal. 22(4) (2001), 1175–1189.

[2] K. E. Avrachenkov and J. B. Lasserre, Analytic perturbation of generalized inverses, Linear
Alg. Applic. 438 (2013), 1793–1813.

[3] T. A. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis
functions, Comput. Math. Appl. 43 (2002), 413–422.

[4] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathe-
matical Sciences - Vol. 6, World Scientific Publishers, Singapore, 2007.

[5] N. Flyer, E. Lehto, S. Blaise, G. B. Wright, and A. St-Cyr, A guide to RBF-generated finite
differences for nonlinear transport: Shallow water simulations on a sphere, J. Comput. Phys
231 (2012), 4078–4095.

14

[6] B. Fornberg and N. Flyer, A numerical implementation of Fokas boundary integral approach:
Laplace’s equation on a polygonal domain, Proc. R. Soc. A. 467 (2011), 2983–3003.

[7] , A Primer on Radial Basis Functions with Applications to the Geosciences, SIAM,
Philadelphia, 2015.

[8] , Solving PDEs with radial basis functions, Acta Numerica 24 (2015), 215–258.

[9] B. Fornberg, E. Larsson, and N. Flyer, Stable computations with Gaussian radial basis func-
tions, SIAM J. Sci. Comput. 33(2) (2011), 869–892.

[10] B. Fornberg and E. Lehto, Stabilization of RBF-generated finite difference methods for con-
vective PDEs, J. Comput. Phys. 230 (2011), 2270–2285.

[11] B. Fornberg, E. Lehto, and C. Powell, Stable calculation of Gaussian-based RBF-FD stencils,
Comp. Math. Applic. 65 (2013), 627–637.

[12] B. Fornberg and C. Piret, A stable algorithm for flat radial basis functions on a sphere, SIAM
J. Sci. Comput. 30 (2007), 60–80.

[13] B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values of
the shape parameter, Comput. Math. Appl. 48 (2004), 853–867.

[14] B. Fornberg, G. Wright, and E. Larsson, Some observations regarding interpolants in the limit
of flat radial basis functions, Comput. Math. Appl. 47 (2004), 37–55.

[15] B. Fornberg and J. Zuev, The Runge phenomenon and spatially variable shape parameters in
RBF interpolation, Comput. Math. Appl. 54 (2007), 379–398.

[16] J. Gilewicz and Y. Kryakin, Froissart doublets in Padé approximation in the case of polynomial
noise, J. Comput. Appl. Math. 153 (2003), 235–242.

[17] P. Gonzalez-Rodriguez, V. Bayona, M. Moscoso, and M. Kindelan, Laurent series based RBF-
FD method to avoid ill-conditioning, Eng. Anal. Bound. Elem. 52 (2015), 24–31.

[18] P. Gonzalez-Rodriguez, M. Moscoso, and M. Kindelan, Laurent expansion of the inverse of
perturbed, singular matrices, J. Comput. Phys. 299 (2015), 307–319.

[19] P. G. Howlett, Input retrieval in finite dimensional linear systems, J. Austral. Math. Soc. 23
(1982), 357–382.

[20] O. L. Ibryaeva and V. M. Adukov, An algorithm for computing a Padé approximant with
minimal degree denominator, J. Comput. Appl. Math. 237 (2013), 529–541.

[21] M. Kindelan, M. Moscoso, and P. Gonzalez-Rodriguez, Radial basis function interpolation in
the limit of increasingly flat basis functions, J. Comput. Phys. 307 (2016), 225–242.

[22] E. Larsson, E. Lehto, A. Heryudono, and B. Fornberg, Stable computation of differentiation
matrices and scattered node stencils based on Gaussian radial basis functions, SIAM J. Sci.
Comput. 35 (2013), A2096–A2119.

[23] V. Shankar, G. B. Wright, R. M. Kirby, and A. L. Fogelson, A radial basis function (RBF)-
finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces, J. Sci.
Comput. 63 (2015), 745–768.

15

[24] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM
Rev. 56(3) (2014), 385–458.

[25] M. I. Vishik and L. A. Lyusternik, The solution of some perturbation problems in the case of
matrices and self-adjoint differential equations, Uspechi Mat. Nauk 15 (1960), 3–80.

[26] A. J. Wathen and S. Zhu, On spectral distribution of kernel matrices related to radial basis
functions, Numer. Alg. 70 (2015), 709–726.

[27] G. B. Wright and B. Fornberg, Stable computations with flat radial basis functions using vector-
valued rational approximations, submitted (2016).

16

