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Painlevé Transcendents

Consider ODEs of the form  
2

2 ( , , )d u duF z u
dzdz

 where F is a rational function of its arguments

Painlevé Property: The solution u(z) has no movable branch points in the complex 
plane. Out of 50 such equations, the solutions to 44 can be 
expressed as elementary or standard special functions.

The remaining six equations are
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Paul Painlevé 1863 - 1933 

French mathematician and politician

1917 and 1925 – 1929 Minister of war
1917 and 1925 Prime Minister of France
1932 – 1933 Minister of Air
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Significance of the Painlevé equations
- The Painlevé equations arise as reductions of equations that are solvable by inverse scattering
- Intriguing link with the Riemann Hypothesis
- Statistical mechanics (Ising models)
- Random matrices; combinatorics
- Plasma physics
- Nonlinear waves (resonances in shallow water)
- Quantum gravity; quantum field theory
- General relativity; string theory
- Bose-Einstein condensates
- Raman scattering
- Nonlinear optics / Fiber optics

Abramowitz and
Stegun (1964)

No mention of
Painlevé equations

NIST Handbook of
Mathematical
Functions (2010)

One full chapter
devoted to
Painleve equations
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Consider first the PI equation 
Some analytic observations:  

- All poles are double, strength one and residue zero

- Asymptotically far out: Order 5 symmetry, since                                 with             leaves the ODE invariant

- In smooth sectors: 

- No closed form solutions known

( ) / 6 (1)u z z o   

3 ,u u z z   5 1 

PI :
2

2
2 6d u u z

dz
 

Schematic pole field structures: 

Two parameter solution space since second order ODE
No additional parameters in the equation
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Some general numerical observations on solving the P-equations

Common (mis)perceptions:

- Pole fields:             Numerical ‘mine fields’
- Smooth sectors:    Numerically easy 

In reality:

- Pole fields well conditioned as initial value problems (IVPs) 
However, one needs a numerical scheme that does not degrade if a few poles are present locally

- In smooth sectors:   Calculations ill conditioned as IVPs, but well conditioned as BVPs
The ill conditioning apparent from dominant balance:   



2
2

2
dominant balance

very small

6d u u z
dz
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The two main components in the present numerical technique

(i) Utilize a ‘pole-friendly’ ODE initial value solver  

General form of an ODE IVP: y’(t) = f(t, y(t)),     Initial Condition (IC):   y(t0) = y0.

Most basic numerical technique for ODE IVPs:

Forward Euler: y(t+h) = y(t) + h f(t, y(t))    (+O(h2))
Can view as first two terms of a Taylor expansion: first order accurate method

Three main ways to improve the order / numerical efficiency of Forward Euler:

- Runge-Kutta methods
- Linear multistep methods
- Taylor expansion methods

- A very bad implementation Taylor expansion strategy is commonly described in numerical text
books; highly effective versions are available

- By an extra Padé (or continued fraction) step, one can obtain a numerical method that is 
perfectly suited for dense pole fields    (Willers, 1974)
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ODE: y’(z) = f(z, y(z)) ;   

Taylor’s method:  
1 2 3

0 1 2 3
( ) '( )
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y z y z

y z h c c h c h c h     

Taylor method in slightly more detail:

Steps: - Obtain  c0 from current solution at zn ,   
- Then recursively substitute the truncated expansion into the ODEs RHS and

integrate; gain one coefficient each ‘time around’

Cost-effective to run out at each step to accuracy orders in range  m = 30 – 60.

Padé conversion:

Convert to rational form, using the same degree  m/2  in numerator and denominator

Still the same formal order, but a pole becomes now just a zero in the denominator; the 
functional form does not any longer limit where expression can be evaluated.
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Stage 1:

Choose start point with given IC.
Select in random order lattice-
based ‘target points’
Run path to selected point from 
closest location so far; choose 
step in generally right direction, 
but keeping solution low.
In figure: 1,600 target points, 
4,300 steps, 0.3 sec on typical 
notebook (in Matlab) 

Stage 2:

Superpose much finer grid; fill in 
points with single Padé expansion 
from each end point of previous 
paths. Typically 0.4 sec.; total 
time around 0.7 sec.

(ii)    Path selection strategy across the complex plane
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Example of solution fields:  u(0) = -0.1875, u’(0) = 0.3049

IC  near the tritronquée case:  
u (0) = -0.1875543083404949  
u’(0) =  0.3049055602612289

Magnitude of u(z) displayed.

Within pole fields, accuracy 
typically better than 10-10 even at 
distances around 104.
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NIST Handbook example:  
u(0) = 0,  u’(0) = 1.85185403375822 

Illustration above:

Transition through a tronquée case
as seen along the real axis using
a standard ODE solver

Illustrations to the right:

The same transition computed by the  
pole field solver . 

u’(0) = 1.8518

u’(0) = 1.8519
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PI:  Initial conditions for u(0), u’(0) that give rise to tronquée solutions

Cases illustrated above:

Tritronquée: u(0) ≈ -0.188, u’(0) ≈ 0.305
NIST example:     u(0) ≈ 0        , u’(0) ≈ 1.852

White regions: Oscillations when 
Shaded regions: Poles when 

Black curves: Tronquée cases 
(pole free sector in left half-plane)

x  
x  

Another pole field illustration:

Example of ‘fracture line’ within a pole field

IC:   u(0) = -5, u’(0) = 0  (in white region above);
Pole field displayed over [-90,30]x[-30,30]
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Brief survey of the solution space to the PII equation
݀ଶݑ
ଶݖ݀ = ଷݑ2 + ݑݖ + PIIߙ :

Three-parameter solution space:  (a, u(0), u’(0));  suffices to consider
Two types of closed form solutions known; represent discrete points or curves in the 3-D space

(i) Rational solutions
when a integer:

Pole, residue  +1   Blue
Pole, residue  - 1   Yellow
Zero Red

0. 
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(ii)  Airy-type closed form solutions

Exist only for  a ‘half-integer’ 
Examples for a = 1/2, 3/2, 5/2        

Each a-case extends to one parameter
family of closed form solutions – shown
here in the case of a = 5/2              
(zeros not displayed here)

Three symmetry directions for q = p/3 and for q = 5p/3

The process picks up a 5-group of poles from the right
region and brings it out to minus infinity

Closed form solutions provide merely ‘glimpses’
(non-typical cases) of the full 3-D solution space 
(e.g. in no case a pole field throughout a full 
sector)
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Solution space in the case of  a = 0

White: Infinity of poles on both R + and R –
Grey: Infinity of poles on R + , oscillatory solution on R –

# + Number of poles on positive real axis R + (curves)
# - Number of poles on negative real axis R - (regions)

Hastings-McLeod: Intersection  of 0 + with edges of 0 –

Ablowitz-Segur: Intersection  of 0 + with interior of 0 –

Example near
‘upper’ solution:
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Solution spaces for different a values

A wide range of solution ‘dynamics’ occur
when a is increased. In particular:

Only one H-ML and no AS solution for a ½

Beyond this, there appear ‘generalized’ H-ML
and AS solutions, with finite number of poles 
on the real axis.

Edges of regions may have different character
than regions on either side of it

Certain solution regimes vanish when a half-
Integer

More details for the a = 1.5 case on next slide
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Another illustration of PII ‘solution dynamics’

Detail near H-ML point:

Pole fields at the six locations marked (a) – (f):
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The imaginary PII equation

Regular PII:     y’’ = 2y3 + zy +  ; We have previously assumed  y(z)  real for  z real;
Modify this assumption to  y(z)  imaginary for  z real

Changing variables   y(z) = i u(z),  b = i a gives the   Imaginary PII equation:    u’’ = - 2u3 + zu + 

- No known closed form solutions (apart from the trivial u(z) ≡ 0 for a = 0)
- All poles are first order and have residue  ±i (as opposed to ±1 for the regular PII)
- There are never any poles on the real axis.

Below: Possible asymptotes for solutions along the real axis

To the right: Asymptotic character for different ICs at  z = 0.
(a,b,c):              unique points: non-oscillatory conv. to (A,B,C) resp. 
grey:                 Oscillatory convergence according to (C)
white:               Oscillatory convergence according to (B)
black curves:   Non-oscillatory convergence to (D)
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Transition between the (a) and (b) cases when  a = ½. 
A lot of ‘pole dynamics’ occurs which is not apparent from what is seen along the real axis  
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PIV:    The fourth Painlevé equation
22

3 2 2
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PIV:

- PIV has two free parameters  a and  b (as well as the two ICs; four free parameters in all)
- Like for PII , all poles are first order, with residues  ±1 
- A variety of closed form solutions are known – but these are all ‘atypical’ cases in a much 

larger solution space. No closed form solutions are known for  b > 0.

For general a, b, there is a vast complexity of 
solution types / phenomena 
Curves and markers to the right indicate 
where closed form solutions exist in the a,b-
plane for some choice of ICs

Grey: Weil Chambers’
Generalized Hermite type
Generalized Okamoto type

Curves: Parabolic cylinder and confluent
hypergeometric types

Already in the case of  a =  b = 0   (right), 
computations reveal several families of 
tronquée-type solutions, including different 
cases that are smooth and non-oscillatory 
long the entire real axis. 
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Current project status 

Completed work:

- Numerical pole field solver developed, and the solution space of PI ‘surveyed’.
A numerical methodology for the Painlevé equations (B.F. and J.A.C. Weideman), J. Comp. Phys. 230 (2011), 5957-5973.

- Solution space of PII ‘surveyed’
A computational exploration of the second Painlevé equation (B.F. and J.A.C. Weideman), Found. Comp. Math. 14 (2014), 985-1016.

- Solution space of the imaginary PII equation ‘surveyed’
The solution space if the imaginary Painlevé II equation (B.F. and J.A.C. Weideman), submitted.

- Solution space of PIV ‘surveyed’
Painlevé IV with both parameters zero: A numerical study (J.A. Reeger and B.F.), Stud. Appl. Math. 130 (2013), 108-133.
Painlevé IV: A numerical study of the fundamental domain and beyond (J.A. Reeger and B.F.), Physica D. 280-281 (2014), 1-13.

- Numerical scheme tested successfully also on PIII , PV and PVI (J.A. Reeger, Ph.D. thesis, unpublished)

In Progress:

- Survey of the solution space to the PIII equation  (M. Fasondini, J.A.C. Weideman and B.F.) 


