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By Jonah A. Reeger 1 and Bengt Fornberg 2

Large-scale simulations in spherical geometries require associated quadrature formulas. Clas-

sical approaches based on tabulated weights are limited to specific quasi-uniform distribu-

tions of relatively low numbers of nodes. By using a radial basis function-generated finite

differences (RBF-FD) based approach, the proposed algorithm creates quadrature weights

for N arbitrarily scattered nodes in only O(N log N) operations.
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1 Introduction

An increasing number of applications, arising for example in geophysics, require PDEs to

be solved in spherical geometries. Such calculations often need to be supplemented by

numerical quadrature over spherical surfaces, in order to obtain integrated quantities, such

as total energy, average temperature, etc. The node sets are typically very large, and feature

spatially varying density for improved resolution in critical areas. This article presents a

novel approach for calculating quadrature weights for such node sets.

Much of the literature on spherical quadrature has been focused on specific node sets, to-

gether with tabulated weights for select values of N (the total number of nodes) [1, 2, 3, 4, 5].

Among node sets not especially designed for quadrature, Minimal Energy (ME) is a common

choice. These sets mimic the equilibrium positions of freely moving, repelling point charges.
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The calculation of quadrature weights based on spherical harmonics (SPH) interpolation

often led to numerical instabilities [4, 6], prompting the development of ‘Maximal Determi-

nant’ (MD) node sets. It was however noted in [7] that the issue with ME nodes could readily

be overcome. Except for test functions that are described by extremely rapidly convergent

SPH expansions, ME node sets then give comparable accuracy to Gaussian Quadrature

approaches.

Following the works just cited, two remaining limitations were (i) the weight sets typi-

cally require about O(N3) operations and O(N2) memory to calculate, limiting N to around

N = 104, and (ii) using SPH expansions, the node densities needed to be quasi-uniform.

Analogously to truncated Fourier expansions in 1-D, SPH expansions can not feature spa-

tially variable resolution abilities.

The RBF Lagrange function approach in [8] provides two major advances: the cost is

brought down to O(N2) operations (still O(N2) memory) and, with no SPH involved, the

resolution can be spatially variable. However, the order of accuracy is no longer spectral,

but algebraic, with quadrature errors for sufficiently smooth functions typically O(N−2);

i.e., fourth order O(h4) accuracy in cases of quasi-uniform node sets with h a ‘typical’ node

spacing.

The approach introduced here borrows its concept from RBF-generated finite differences

(RBF-FD) [9, 10, 11, 12]. It again applies to spatially variable node sets, but with the cost

further reduced to O(N logN) operations and O(N) memory. This lowered operation count

arises from having replaced the solution of a linear system of size N ×N by instead solving

O(N) separate systems of size n × n, where n is fixed (typically around 80). By changing

some parameters, the quadrature accuracy for smooth functions can be adjusted. With our

default setting, it becomes O(N−3.5), corresponding to O(h7).

Section 2 starts with an outline of the four key steps in the proposed algorithm and

then describes in subsections 2.1-2.4 each of these in more detail. Section 3 illustrates

the performance of the proposed method in terms of accuracy and computational cost,

and in comparison to the SPH and RBF Lagrange function approaches described in this

introduction. To simplify comparisons, two of the three tests cases in Section 3 have been

used in previous literature. Section 4 contains some concluding remarks.
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2 A Description of the Method

We wish to approximate the surface integral of the scalar function f(x, y, z) over the sphere

surface S2 via

IS2(f) :=

¨

S2

f(x, y, z)dS ≈
N∑
i=1

Wif(xi, yi, zi)

where the node set SN = {(xi, yi, zi)}Ni=1 ⊂ S2 is a set of (scattered) data sites located on

the surface of the sphere. The proposed quadrature method can be summarized in four

steps:

1. Given nodes (SN ) on the sphere, create a spherical Delaunay triangulation.
2. For each of the triangles, project it, together with some nearby nodes, to a tangent

plane.
3. Find quadrature weights over the local tangent plane node set for the projected planar

triangle.
4. Combine the weights for the individual triangles to obtain the full weight set for the

sphere.

2.1 Step 1: Partition the Sphere Surface With a Spherical Delaunay Triangu-

lation

A Delaunay triangulation T = {τk}Kk=1 of S2 on the set SN is a set of spherical triangles

such that

• the triangle vertices are the elements of SN ,
• the triangle edges are geodesics between the vertices of the triangles,
• no triangle contains an element of SN other than its vertices,
• the interiors of the triangles are pairwise disjoint,
• the union of the set T covers S2, and
• no circumcircle of a triangle τk contains an element of SN on its interior, guarding

against triangles featuring poor aspect ratio

The number of triangles in a spherical Delaunay triangulation over SN is 2N − 4. This

number follows immediately from Euler’s polyhedron formula V − E + F = 2 (relating the

number of vertices, edges, and faces, respectively). A more comprehensive definition of the

spherical Delaunay triangulation and an O(N log N) algorithm for its construction can be

found in [13].

The integral over the sphere is the sum of the integrals over the triangles: IS2(f) =∑K
k=1

˜
τk

f(x, y, z)dS. The proposed method will compute the surface integrals over each of
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Minimum

Energy Halton Clustered

Figure 1: Left: An illustration of the change of variables (1), which projects points on S2
radially into a plane tangent to the sphere. Right: Various node distributions over S2. The
distributions are shown for N = 1, 444 in the case of the minimum energy and Halton node
sets and N = 1, 458 in the case of the clustered node set.

the spherical triangles τk, k = 1, 2, . . . ,K, with a local approximation.

2.2 Step 2: Project Locally to a Tangent Plane

The left frame of Figure 1 illustrates the gnomonic projection. This is a well known map

projection technique, used already by the Greek Thales of Miletus in the seventh and sixth

centuries B.C. [14]. It projects any geodesic (great-circle arc) as a straight line into a plane

tangent to the sphere at (x̂k, ŷk, ẑk).

For each triangle τk (with midpoint (x̂k, ŷk, ẑk)) the projection can be realized by a

change of variables. Suppose that the sphere has radius ρ and that it has been rotated so

that the midpoint (x̂k, ŷk, ẑk) is at its top. Then the coordinates (x
′

k, y
′

k) in the tangent

plane are given by

(x
′

k, y
′

k) =


(
ρx
z ,

ρy
z

)
x̂2k + ŷ2k = 0(

ρ[ẑk(x̂kx+ŷky)−z(x̂2
k+ŷ

2
k)]√

x̂2
k+ŷ

2
k(x̂kx+ŷky+ẑkz)

, ρ2(x̂ky−ŷkx)√
x̂2
k+ŷ

2
k(x̂kx+ŷky+ẑkz)

)
otherwise

(1)

The changes of variables (1) transform the integral

IS2(f) =

K∑
k=1

¨

τk

f(x, y, z)dS =

K∑
k=1

¨

tk

f(x
′

k, y
′

k)
ρ3

(ρ2 + (x
′
k)2 + (y

′
k)2)

3
2

dx
′

kdy
′

k

where tk is the triangular region resulting from the projection of the edges (geodesics) of τk

using (1). Note that a separate projection is performed for each of the spherical triangles

τk.
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2.3 Step 3: Local Weight Calculations

Considering a spherical triangle τk ∈ T , define Nn
k ⊂ SN to be the set of n points nearest

its midpoint, (x̂k, ŷk, ẑk) (in Euclidean distance). The midpoint is taken to be the average

of the vertices of τk projected radially to the sphere surface; however, any point contained in

the spherical triangle would be suitable. For each k, let
(

(x
′

k)j , (y
′

k)j

)
be the transformation

of each (xj , yj , zj), j = 1, 2, . . . , n, in Nn
k via (1). The projection of each spherical triangle

τk ∈ T is a triangle tk in the two dimensional space of x
′

k and y
′

k. The proposed method

approximates

¨

tk

f(x
′

k, y
′

k)
ρ3

(ρ2 + (x
′
k)2 + (y

′
k)2)

3
2

dx
′

kdy
′

k (2)

for each projected triangle tk by interpolating the integrand over the points in Nn
k and then

integrating the interpolant.

2.3.1 Creation of RBF-FD type weight set for a planar triangle

For the simplicity of discussion consider approximately evaluating the double integral of a

function g(x
′
, y

′
) over a planar triangle tABC with vertices A : (x

′

A, y
′

A), B : (x
′

B , y
′

B), and

C : (x
′

C , y
′

C). We denote this integral by

ItABC (g) :=

¨

tk

g(x
′

k, y
′

k)dx
′

kdy
′

k (3)

and evaluate it approximately by integrating the RBF interpolant of g(x
′
, y

′
) with basis

functions φ
(√

(x′ − x′
j)

2 + (y′ − y′
j)

2
)

centered at the points (x
′

i, y
′

i), i = 1, 2, . . . , n, in a

neighborhood of tABC . RBF interpolation has been used successfully in the approximation

of differential operators over subsets of scattered data through the concept of RBF-FD

[9, 10, 11, 12].

Following common RBF/RBF-FD procedures, we let {πl(x
′
, y

′
)}Ml=1, withM = (m+1)(m+2)

2

be the set of all of the bivariate polynomial terms up to degree m. We construct the inter-
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polant

s(x
′
, y

′
) :=

n∑
j=1

cRBF
j φ

(√
(x′ − x′

j)
2 + (y′ − y′

j)
2
)

+

M∑
l=1

cpl πl(x
′
, y

′
)

where cRBF1 , . . . , cRBFn , cp1, . . . , c
p
M ∈ R are chosen to satisfy the interpolation conditions

s(x
′

j , y
′

j) = g(x
′

j , y
′

j), j = 1, 2, . . . , n, along with constraints
∑n
i=1 c

RBF
i πl(x

′

i, y
′

i) = 0, for

l = 1, 2, . . . ,M . By integrating the interpolant we wish to reduce the approximation of the

integral of g to ItABC (g) ≈
∑N
i=1 w

RBF
i g(x

′

i, y
′

i). A simple derivation can be carried out to

show that the weights can be found by solving the linear system ÃW = Ĩ with

Ã =

 AT P

PT 0

 , Ĩ =

 IRBF

Ip

 , and W =

[
wRBF1 · · · wRBFn wp1 · · · wpM

]T
,

where Aij = φ
(√

(x
′
i − x

′
j)

2 + (y
′
i − y

′
j)

2
)

, IRBFj = ItABC

(
φ
(√

(x′ − x′
j)

2 + (y′ − y′
j)

2
))

,

Pil = πl(x
′

i, y
′

i), and Ipl = ItABC (πl(x
′
, y

′
)), for i, j = 1, 2, . . . , n and l = 1, 2, . . . ,M [11,

Section 5.1.4]. The system of linear equations is uniquely solvable in our present context

[15, Theorem 8.21].

The integrals Ipl = ItABC (πl(x
′
, y

′
)), l = 1, 2, . . . ,M , can be evaluated exactly via, for

instance, Green’s theorem or through the conversion of the integral to barycentric coordi-

nates. Exact evalutations of IRBFj = ItABC

(
φ
(√

(x′ − x′
j)

2 + (y′ − y′
j)

2
))

, j = 1, 2, . . . , n,

are described next. In the context of global RBF approximations based on thin-plate splines

(TPS) this was studied in [16] for planar polygonal domains and in [17] for a sphere (with

implementations requiring O(N3) operations).

2.3.2 Integrals of RBFs Over Arbitrary Planar Triangles

Based on numerical accuracy/stability comparisons, we use for this sub-task a different

approach than the one described in [16]. Suppose that tABC is any planar triangle and that

O is an arbitrary point. We wish to compute IABC(φ), where φ is an RBF centered at O.

For instance, in the case shown in Figure 2(a), it is clear that IABC(φ) could be computed

by adding the integrals of φ over each of the six right triangles shown. That is, we can
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(a)

A

B

C

O

D

E

F

(b)

A
B

C
O

D
E

F

(c)

(0; 0) (,; 0)

(,; -)

Figure 2: (a) The integral IABC(φ) can be computed by adding IOAD(φ) , IODB(φ),
IOBE(φ), IOEC(φ), IOCF (φ) and IOFA(φ). (b) The integral IABC(φ) can be computed by
adding the integrals IOAD(φ), IOFA(φ) and IOCF (φ) and by subtracting IODB(φ), IOBE(φ),
and IOEC(φ). (c) The integrals over each of the right triangles in frames (a) and (b) can be
computed by integrating over a triangle like the one in this frame where α is the distance
from O to the perpendicular vertex D, E or F and β is the distance from the perpendicular
vertex to the appropriate triangle vertex A, B or C.

evaluate

IABC(φ) =sABC (sOADIOAD(φ) + sODBIODB(φ) + sOBEIOBE(φ)+

sOECIOEC(φ) + sOCF IOCF (φ) + sOFAIOFA(φ)) . (4)

with sABC = sOAD = sODB = sOBE = sOEC = sOCF = sOFA = +1, where D, E, and F

are the orthogonal projections of O onto the lines connecting the vertices of tABC . Similarly,

in frame (b) we can choose sABC = sOAD = sOCF = sOFA = +1 and sODB = sOBE =

sOEC = −1. In either case the choice of signs corresponds to the orientations of the vertices

of each of the triangles. A similar result can be shown if the vertices of tABC are oriented

clockwise and sABC = −1 correspondingly. The sign sABC , for example, can be defined

concisely by (minding the order of ABC)

sABC := sign


 y

′

A − y
′

B

x
′

B − x
′

A

 ·
 x

′

C − x
′

A

y
′

C − y
′

A


 .

2.3.3 Integrals of RBF’s Over Planar Right Triangles

Evaluation of (4) requires the double integrals over each of the right triangles tOAD, tODB ,

tOBE , tOEC , tOCF and tOFA. Consider the right triangle tOAD, since the rest are completely
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analogous. After a translation and a rotation, the integral takes the form

ItOAD (φ) =

ˆ α

0

ˆ β
αx

′

0

φ

(√
(x′)2 + (y′)2

)
dy

′
dx

′
,

with α the length of the side OD and β the length of the side AD (an example of this result

is shown in Figure 2(c)).

Many commonly used RBFs can be integrated exactly over right triangles in the plane.

For instance, when using φ(r) = r3, r5, r7:

ˆ α

0

ˆ β
αx

′

0

(
(x

′
)2 + (y

′
)2
) 3

2

dy
′
dx

′
=

1

40
α

(
3α4 sinh−1

(
β

α

)
+ β

√
α2 + β2

(
5α2 + 2β2

))
,

ˆ α

0

ˆ β
αx

′

0

(
(x

′
)2 + (y

′
)2
) 5

2

dy
′
dx

′
=

1

336
α

(
15α6 sinh−1

(
β

α

)
+ β

√
α2 + β2

(
33α4 + 26α2β2 + 8β4

))
, and

ˆ α

0

ˆ β
αx

′

0

(
(x

′
)2 + (y

′
)2
) 7

2

dy
′
dx

′
=

α
(

105α8 sinh−1
(
β
α

)
+ β

√
α2 + β2

(
279α6 + 326α4β2 + 200α2β4 + 48β6

))
3456

.

We choose these types of RBFs (and in particular φ(r) = r7) here since these are free

from a ‘shape parameter’ ε and also provide both good accuracy and well conditioned linear

systems used to compute the quadrature weights [18].

2.4 Step 4: Combine the Weights Over the Entire Sphere

Applying step 3 to the double integral (2) over each of the triangles tk gives

¨

tk

f(x
′

k, y
′

k)
ρ3

(ρ2 + (x
′
k)2 + (y

′
k)2)

3
2

dx
′

kdy
′

k ≈
n∑
j=1

(wk)jf((x
′

k)j , (y
′

k)j)
ρ3

(ρ2 + (x
′
k)2j + (y

′
k)2j )

3
2

.

Hence,

IS2(f) ≈
K∑
k=1

n∑
j=1

(wk)jf((x
′

k)j , (y
′

k)j)
ρ3

(ρ2 + (x
′
k)2j + (y

′
k)2j )

3
2

, (5)
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i.e. weights in the plane and on the sphere differ only by the last factor in (5). Let Ki,

i = 1, 2, . . . , N be the set of all pairs (k, j) such that ((x
′

k)j , (y
′

k)j) 7→ (xi, yi, zi). Then the

surface integral over S2 can be written as

IS2(f) ≈
N∑
i=1

 ∑
(k,j)∈Ki

(wk)j
ρ3

(ρ2 + (x
′
k)2j + (y

′
k)2j )

3
2

 f(xi, yi, zi) =

N∑
i=1

Wif(xi, yi, zi). (6)

3 Test cases

Numerical tests of the proposed quadrature method are performed on a variety of integrands

that appear elsewhere in the literature. In particular, test integrands from [7] and [8] are

considered. In all cases, the method utilizes its current default settings for the number of

nearest neighbors (n = 80) and maximum order of the bivariate polynomial terms used

(m = 7 for a total of 36 bivariate terms). Figure 3 shows computation time and the

error in the case of a very smooth test function. For more realistic ones, the accuracy

increase becomes negligible past our default choices for n and m. Such accuracy tests will

also show that the RBF component is essential in the local interpolant, both for providing

good accuracy and to guarantee non-singularity of all the linear systems used to compute

the quadrature weights. The default setting uses the RBF φ(r) = r7, since the cost of

computing weights is similar to that of r3, but features improved accuracy.

Comparisons were performed over a variety of node sets featuring varying degrees of

regularity. The right frame of Figure 1 illustrates these node sets. There are two types of

sets of nodes denoted ME in this paper. The node distribution of the first type, ME (F), are

the quasi-minimum energy nodes discussed in [8], which are obtained by treating the nodes

as point charges and nearly minimizing the Riesz energy over the possible configurations

of the nodes [19, 20]. These are available for a power of 3 in the Riesz energy only for

N = 2, 500, 10, 000, 22, 500, 40, 000, 62, 500, 90, 000, 160, 000, and 250, 000 as in [8]. The

node distributions of the second type called ME (W) are those made available in [4]. These

nodes locally minimize potential energy on the sphere and are available for N = (M + 1)2,

M = 1, 2, . . . , 100 [4] (the present work considers M = 20, 21, . . . , 100). The second plot

illustrates the Halton node set with N = 1, 444, which exhibits far less uniformity. These

points are generated by mapping the first N points from the 2 dimensional pseudorandom
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N = 22500 (RBF r7)
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(

π
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with N = 22500 (RBF r7)
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Figure 3: Left: Contour plot of log base 10 of the error when computing the surface in-
tegral of f(x, y, z) = cos

(
π
2 z
)

(IS2(f) = 8) for various m and n. Right: Contour plots of
computation time in seconds when computing the quadrature weights for various m and n.
The dashed parabola in both plots represent the boundary n = M below which the linear
system ÃW = Ĩ becomes singular. The vertical axes are the same in the two plots.

Halton sequence [21] of points contained in [0, 1] × [0, 1] onto S2. The last node set (with

N = 1, 458) is a clustered node set generated as described in [22] with a node separation

function r(x, y, z) = σ(1.2−z), (σ = 0.0555 in the figure). Changing the parameter σ varies

the density of the nodes. In this study σ ranges from 0.005 to 0.1 in increments of 0.001.

The ME (both types) node sets considered in this paper have corresponding quadrature

weights available at [5] (discussed in [8]) and [4]. These weights are used for comparison

with those generated by the proposed method.

Comparisons were also made against two alternative methods for finding quadrature

weights on the sphere. The first of these types of methods is SPH based quadrature, where

the quadrature weights are obtained directly by SPH based interpolation [4]. Such methods

can achieve spectral accuracy at the cost of O(N3) operations and O(N2) memory. The

interpolation matrix in these methods can become extremely ill conditioned for certain sets

of scattered data. To remedy this situation, node sets must be chosen carefully to minimize

ill conditioning (as in [23], with the introduction of MD node sets) or alternative methods

for solving the linear system in the interpolation problem must be employed (as in [7], where

the inversion of the interpolation matrix is replaced by the Moore-Penrose pseudoinverse).
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The second method we compare against is a kernel based quadrature method [8]. This

method creates local Lagrangian basis functions for an RBF interpolant, then utilizes these

functions as a preconditioner [24] to GMRES [25] when solving the linear system required

to find the quadrature nodes. As it is implemented, this achieves orders of accuracy around

O(h4) (O(N−2) when the node spacing h ∼ O(N−
1
2 ), which is typical for quasiuniform

node sets). The cost of the method (as implemented in [8]) is O(N2) operations and O(N2)

memory.

The computational costs of the proposed method and the two alternative methods (in

terms of time) are illustrated in Figure 4. The main components of the computational cost

of the proposed method are

(i) for each of the 2N − 4 triangles, O(n3) operations to obtain the quadrature weights,

(ii) Delaunay triangulation on the sphere, O(N log N) operations,

(iii) nearest neighbor search using the kd-tree algorithm, O(N n log N) operations [26].

With n fixed (typically set to n = 80), the overall cost will for N extremely large scale as

O(N log N) due to the items (ii) and (iii). However, before this occurs (including all of the

present test cases), item (i) will dominate, leading to purely the purely linear trend with N

seen in the top-left subplot of Figure 4 and also to the near-perfect linear scaling with the

number of cores seen in the top-right subplot.

3.1 Test Integrands and Results

Comparisons are made on three test integrands:

f1(x, y, z) =
1 + tanh(−9x− 9y + 9z)

9

f2(x, y, z) =− (2− 2(xxc + yyc + zzc))
1
4F (θ, φ)

f3(x, y, z) =
π
2 + atan

(
300

(
z − 9999

10000

))
π

,
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N . Timing results are shown when using 8 cores. Center: log10 of the memory in Bytes
versus log10 of the number of nodes N . Memory required for the kernel based quadrature
scales like that of SPH based methods and is not shown. Right: Parallel computation scaling
results showing the ratio of computation time on a single core to the computation time on #
cores versus the number (#) of cores. All computations shown in this figure were performed
in Matlab on machines with dual Intel Xeon E5-2687W 3.1 GHz, 8-core processors.
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Figure 5: Ten equally spaced contours over S2 for each of the test functions f1(x, y, z),
f2(x, y, z) and f3(x, y, z)

where (xc, yc, zc) = (cos(−2.0281) cos(0.76102), sin(−2.0281) cos(0.76102), sin(0.76102)) and

θ = cos−1(z) and φ = tan−1
(
y
x

)
so that θ ∈ [0, π] and φ ∈ [0, 2π]. Further, define

F (θ, φ) =

−1∑
k=−20

√
41

2π

√
(20 + k)!

(20− k)!
P−k20 (cos(θ)) sin(kφ)sign(P−k20 (cos(θc)) sin(kφc))+

20∑
k=0

√
41

2π

√
(20− k)!

(20 + k)!
P k20(cos(θ)) cos(kφ)sign(P k20(cos(θc)) cos(kφc))

(a linear combination of the real parts of a set of spherical harmonics). Illustrations of these

test integrands are given in Figure 5. The test integrands here feature varying degrees of
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Error in Quadrature Over the Sphere Surface
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Figure 6: Relative errors when computing the surface integrals of f1(x, y, z), f2(x, y, z) and
f3(x, y, z) over S2. Except for the clustered node set, these are the maximum relative errors
over 1,000 random rotations of each test integrand. The relative errors displayed in the
top row are for the cases where the quadrature weights Wi in 6 are those available at [4]
(generated by an SPH-based method) in the case of ME (W) and those available at [5]
(generated by the kernel-based quadrature method) in the case of ME (F). The bottom row
then displays the relative errors when the quadrature weights are generated by the proposed
method.

smoothness. For instance, the function f1(x, y, z) has slowly converging spherical harmonic

coefficients as indicated in [7], but it is still in C∞(S2). It has a sharp gradient along a

narrow band around the sphere. The second test function is highly oscillatory over whole

sphere, with a singularity at the tip of a sharp spike (lowering the convergence rate for

all methods). The third test integrand is also C∞(S2), but with an extreme spike at one

location. When integrating over S2 the values of the surface integrals are IS2(f1) = 4π
9 ,

IS2(f2) ≈ 0.014830900415995262852 [8], and IS2(f3) ≈ 0.049629692928687.

Figure 6 displays the relative errors when computing the surface integrals of f1(x, y, z),

f2(x, y, z) and f3(x, y, z) over S2, respectively.

3.2 Discussion

The frames of Figure 6 indicate that the proposed method (at its default settings) can achieve

a convergence rate around O(N−3.5) even for test functions featuring rapidly changing
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features like those in f1(x, y, z) and f3(x, y, z). The computational efficiency of the method

allows for the computation of quadrature weights for nodes sets tailored to the integrand

(rather than being separately tabulated). The bottom right frame of Figure 6 illustrates an

improvement of nearly 3 orders of magnitude by employing a simple node clustering strategy

around the spike located at the ‘north pole’. When the test integrand is no longer smooth

(as for f2(x, y, z)) all of the methods discussed here perform comparably well.

To estimate the accuracy of the proposed method in an application with a given function

and a fixed node set, we recommend that the obtained values for the integral are compared

when the parameters n, m, and RBF type are varied somewhat from their default settings

of n = 80, m = 7 (maximum order of bivariate polynomial terms), and φ(r) = r7. The code

that is available at Matlab Central [27] is designed to trivially allow for such changes.

4 Conclusions

The proposed algorithm for calculating quadrature weights features operation and memory

counts for N scattered nodes of only O(N log N) and O(N), respectively. The present

implementation uses φ(r) = r7 and consequently exhibits O(N−3.5) convergence for smooth

test functions (when the node spacing is O(N−0.5)). Increasing the power “7” in the RBF

can lead to higher still formal orders of accuracy at the expense of numerical stability when

solving the linear system for the quadrature weights.
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