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One main evolution path in numerical methods for PDEs:
Finite Differences  (FD) First general numerical approach for solving PDEs 
(1910) FD weights obtained by using local polynomial approximations


Pseudospectral  (PS) Can be seen either as the limit of increasing order FD methods, 
(1970) or as approximations by basis functions, such as Fourier or

Chebyshev; often very accurate, but low geometric flexibility


Radial Basis Functions (RBF) Choose instead as basis functions translates of radially 
(1972) Symmetric functions:

PS becomes a special case, but now possible to scatter nodes in 
any number of dimensions, with no danger of singularities


RBF-FD Radial Basis Function-generated FD formulas. All approximations 
(2000) again local, but nodes can now be placed freely   

- Easy to achieve high orders of accuracy (4th to 8th order)
- Excellent for distributed memory computers / GPUs
- Local node refinement trivial in any number of 

dimensions (for ex. in 5+ dimensional mathematical
finance applications).
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Meshes vs. Mesh-free discretizations

Structured meshes:
Finite Differences (FD),  
Discontinuous Galerkin (DG)
Finite Volumes (FV)
Spectral Elements (SE)

Require domain decomposition / 
curvilinear mappings

Unstructured meshes:
Finite Elements (FE)

Improved geometric flexibility; requires 
triangles, tetrahedrons, etc.

Mesh-free:
Radial Basis Function generated FD  (RBF-FD )

Use RBF methods to generate weights in
scattered node FD formulas
Total geometric flexibility; 
needs just scattered nodes, but no
connectivites, e.g. no triangles or mappings
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Mesh-free:
In both 2-D and 3-D, it is very fast to ‘scatter’ nodes 
quasi-uniformly, with prescribed density variations and 
aligning with boundaries. 

In any-D, all that RBF-FD needs for each node only a list 
of its nearest neighbors – total cost O(N log N) using 
kd-tree.

Unstructured meshes:

In 2-D: Quick to go from quasi-uniform nodes to well-balanced Delaunay triangularization 
(no circumscribed circle will ever contain another node – guarantee against ‘sliver’ triangles).

In 3-D: Finding good tetrahedral sets can even become a dominant cost (especially in 
changing geometries) 
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Regular Finite Differences (FD) are fine if:
- of high order of accuracy, 
- the material interfaces are aligned with the grid. 

Mapping grids to realistic geometries is hopeless. So instead:
- align nodes locally to each interface
- can still use grid / regular FD away from interfaces (a)
- need to get high order accurate stencils for node sets

such as (b) and (c). 

Example of an RBF-FD application:   Seismic exploration
2-D slice off coast of Madagascar Classical 2-D simplified test problem

RBF-FD idea

Turns out: Cannot use polynomials to get scattered-node ‘FD’ weights beyond 1-D; 
Works excellently if we replace polynomials with     Radial Basis Functions (RBFs)
We will return to this example later 
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RBF idea,  In pictures   (for 2-D scattered data):

Scattered data within 
a 2-D region

Radial basis functions –
here ‘rotated’ Gaussians

Linear combination of 
the basis functions 
that fits all the data

Many types of RBFs are available; Three examples:

Infinitely smooth RBFs (such as these ones) give spectral accuracy for interpolation and 
derivative approximations.
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RBF idea,  In formulas:

Given scattered data  (xk, fk), k = 1,2, … , n in
d-D, the RBF interpolant is   
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What is so special about expanding in RBFs?

No set of pre-specified basis functions (say, based on multivariate polynomials, spherical harmonics, etc.) 
can guarantee a non-singular system in case of scattered nodes. 

Scattered nodes: Interpolant:

System that determines the expansion coefficients lk
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Move any two nodes so they exchange locations:
Two rows of the matrix become interchanged; the determinant changes sign,
implies determinant was zero somewhere along the way.

What is different when using RBFs?
Two rows – but also two columns –
become Interchanged; 
the determinant kept its sign.

Key theorem: For most standard RBF choices, the RBF system can never be singular, 
no matter how any number of nodes are scattered in any number of dimensions.
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Examples of two PDE applications using global RBFs

1.   Thermal Convection in a 3-D Spherical Shell
(Wright, Flyer and Yuen, 2009)

Example of computed solution for Ra = 500,000

Isosurfaces of perturbed temperature:
Single frame from a movie generated in MATLAB on a PC

At somewhat lower Ra number, a similar RBF calculation revealed a physical instability in an 
unexpected parameter regime, afterwards confirmed on the Japanese Earth Simulator. 
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Another global RBF example:  Reaction-diffusion equations over curved biological 
surfaces
(Piret, 2012) 

The Brusselator equation,  modeling pattern formation, is solved here by global RBFs over the 
surface of a frog

- The 560 scattered nodes serve both as collocation points and to define the body shape
- Spectral accuracy:  Only 2 points are needed per wave length to be resolved

Top row:
Snapshots from a computed time 
evolution for two different parameter 
values

Bottom row:
Left:   Tabasara rain frog
Right: Poison dart frog
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For very large-scale problems – want to use local RBF-FD approximations
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Solve system A x = f , of the form:

1.  Calculation of regular FD weights in 1-D

2.   Recall calculation of an RBF interpolant

xc

x1 x2 x3 .  .  .                                           xn

Several fast and stable algorithms
available      (Fornberg, SIAM Review, 1998)

Conceptually simplest – find weights
so that a differential operator  L
becomes  treated exactly in case of
the trial functions 1, x, x2, x3,…,xn-1
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Two  background  results :
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Calculation of weights in RBF-FD stencil for a differential operator  L
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System to solve for weights in case of 2-D, 
when also using up to linear polynomials 
with corresponding constraints 

Same A-matrix as above; the entries 
wn+1, …   should be ignored. 

Common RBF types: Infinitely smooth,  e.g.  GA:                          , MQ:           

or finitely smooth, e.g. PHS:  
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Some observations when using  PHS with supporting polynomials:

- Non-singularity of linear system again assured,
- When refining, the polynomial part gradually ‘takes over’ from RBF part,
- With PHS, can use one-sided approximations at boundaries – a spline-like absence of Runge

phenomenon.
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Convective flow around a sphere 
with the RBF-FD method
(Fornberg and Lehto, 2011)

Test problem: Solid body rotation around a sphere      
Initial condition: Cosine  bell: N = 25,600, n = 74, RK4 in time

RBF-FD stencil illustration: N = 800 ME nodes, n = 30. 
No surface bound coordinate system used
no counterpart to pole singularities

Numerical solution:
- No visible loss in peak height, or of trailing wave trains
- For given accuracy, the most cost effective method available
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Return to Seismic Application:   Forward vs. Inverse Modeling

Recall the 2-D vertical slice near Madagascar: 

Region inside dashed
rectangle simplified
to form standardized
Marmousi test problem

(shown on next slide)

Figure adapted from Martin, Wiley and Marfurt: 
Marmousi2: An elastic upgrade for Marmousi (2006)

Forward modeling
Assume subsurface structures 
known, then simulate the 
propagation of elastic waves

Inverse modeling
Adjust the subsurface assumptions to 
reconcile forward modeling with seismic 
data.

Requires fast and accurate solution of a vast 
number of forward modeling problems.
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Governing equations for elastic wave propagation in 2-D
2blem

Elastic wave equation in 2-D
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Dependent variables:
u, v horizontal and vertical velocities
f, g, h components of the symmetric

stress tensor

Material parameters:
r density
l, m Lamé parameters (compression and shear)

Wave types:
Pressure                               ,  Shear
Also: Rayleigh, Love, and Stonley waves

( 2 ) /pc     /sc  

Acoustic (pressure wave) velocities ↑
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Region Type Dominant Errors Computational Remedies

Smoothly 
variable 
medium

Dispersive errors High order approximations
1980’s     From 2nd order to 4th order FD (or FEM)
2010’s     20th order (or higher still) FD 

Interfaces Reflection and 
transmission of 
pressure and shear 
waves

Analysis based interface enhancements on grids:
Very limited successes reported in the literature
in cases of complex geometries

Industry standard: 
Refine and ‘hope for the best’ (typically 1st order)

Present novelties:

- Distribute RBF-FD nodes to align with all interfaces
(suffices for 2nd order)

- Modify basis functions to analytically correct for
interface conditions  (RBF-FD/AC) 
(high order possible also for curved interfaces)

(Martin, Fornberg, St-Cyr, 2015)
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‘Mini-Marmousi’ test case

Relative p-wave velocity in elastic medium

Initial condition for  v at time  t = 0

Accurate solution for  v at time  t = 0.3

N = 38,400 nodes

Errors with RBF-FD/AC discretization, 
at  t = 0.3, using  n = 19 node RBF-FD stencil

N = 153,600 nodes

Typical node separation reduced by factor of 
two; error reduced by factor of 10, indicating
better than 3rd order in all regions
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3-D acoustic wave equation, solved by the RBF-FD/AC procedure

Ricker wavelet initial condition at location (0.5, 0.5, 0.75)  
Material interface is here an inclined flat plane,  RBF-FD/AC  with  N = 106,  n = 61.

Views from two different angles of the RBF-FD/AC solution at a later time:
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Timing comparison against FD20 (FD of 20th order of accuracy) 
3-D acoustic test problem

CPU vs. GPU:

FD20: Very wide stencils;  large domain overlaps ; lots of communications
RBF-FD: The opposite in all regards; utilizes GPUs more effectively (in spite of scattered nodes)  
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Modeling 2D nonhydrostatic compressible Navier-Stokes
(Flyer, Barnett, Wicker, 2015)

Accurate time evolution 

With RBF-FD, it becomes easy to 
explore the intrinsic capabilities of 
different node layouts.

Hexagonal have along history, but 
have never become ‘mainstream’ 
due to implementation complexities 
(especially beyond 2-D). 
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Comparisons on different node layouts

RBFs : ࢘	ૠ with 4th degree polynomial support, n = 37,  ∆૜-type hyperviscosity

For comparable node numbers:
- Cartesian node layout gives rise to the most amount of unphysical artifacts
- Hexagonal nodes excellent (in the past, too complex to be used routinely –

now similar concept easily used also in 3-D)
- No detectable performance penalty when going to quasi-uniformly scattered 

(but have then gained great geometric flexibility).
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Comparisons to other numerical methods

At high resolutions, 100m and under, most methods perform well.
The key issue for large applications becomes their performance at coarse resolutions. 
Below: Comparisons from the literature, at 400m resolution?

At this coarse resolution, only the RBF-FD calculations shows the beginning of second 
rotor (does it on Cartesian, hexagonal, and scattered node sets). 
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Same test problem, but with physical viscosity removed altogether

Modeling 2D nonhydrostatic 
compressible Euler equations – 25m 
resolution (RBF-FD, hex nodes)

Details when using different resolutions
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Conclusions
Established:

- There is a natural method evolution:  FD  PS  RBF  RBF-FD

- RBF and RBF-FD methods combine high accuracy with great flexibility for handling 
intricate geometries and local refinement

- RBF and RBF-FD methods compete very favorably against previous methods on a large 
number of established benchmark problems

- RBF-FD particularly effective on GPUs and other massively parallel hardware

Some examples of recent RBF-FD applications not touched on in this talk:

- Quadrature over closed curved surfaces:
O(h7) accuracy in O(N log N) operations (Reeger and Fornberg, 2015).

- Global electric circuit:  
Nonlinear elliptic system of PDEs. A recent fully 3-D RBF-FD 
calculation is the first with any method to use the actual earth 
topography as its bottom  boundary   (Bayona, Flyer et.al. 2015).  

- Many further applications in elasticity, fluid mechanics, etc.

New Direction in Numerical Computing:
RBF–FD:  LEAVE THE MESH BEHIND  !


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SIAM book to appear September 2015

Summarizes  FD, PS

Surveys  global RBFs

First book format overview of RBF-FD

Geophysics applications include:
- Exploration for oil and gas,
- Weather and climate modeling,
- Electromagnetics, etc.


