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Spherical Harmonics (SPH)-based algorithms for quasi-uniform node sets:

Weights are readily obtained via SPH interpolation:
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l1 = surface integral   =>   top row of  A-1 contains the quadrature weights

Key issue: The A-matrix often becomes extremely ill conditioned.  Two remedies:

1. Interpolation and cubature on the sphere 
(R.S. Womersley and I.H. Sloan),  http://web.maths.unsw.edu.au/~rsw/Sphere/ (2003,2007)

Introduces MD nodes: These are designed to optimize the A-matrix condition number

2. On spherical harmonics based numerical quadrature over the surface of a sphere
(B. Fornberg and J. Martel), Adv. Comp. Math. 40 (2014), 1169-1184.
Notes that the ill-conditioning is caused by very few singular values – issue avoided by (in Matlab) repla-
cing ‘inv’ by ‘pinv’. Then ME becomes excellent (even better than MD) and Random & Halton useable 

In both cases:    - Spectral accuracy 
- Cost:   O(N 3) operations and O(N 2) memory for N nodes,
- No opportunity for local node refinement.

http://web.maths.unsw.edu.au/~rsw/Sphere/
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Main algorithmic steps:

1. Kernel based quadrature on spheres and other homogeneous spaces
(E. Fuselier, T. Hangelbroek, F.J. Narcowich, J.D. Ward and G.B. Wright), Numer. Math. 127 (2014), 57-92.

2. Numerical quadrature over the surface of a  sphere
(J.A. Reeger and B. Fornberg), in preparation.

Topic of this presentation

Features:
- Also RBF based, but non-iterative algorithm,
- As implemented, order of accuracy O(h7),
- Cost O(N log N) operations and O(N ) memory for N nodes,
- Algorithm ‘embarrassingly parallel’

- Fit the data  fi at  xi by a linear combination of radial basis functions (RBFs)

- Create  local Lagrangian basis functions for the RBF interpolant
- Use these as preconditioners in GMRES iterations for obtaining quadrature weights 

2 1( ) (|| ||); ( ) k
i is x x x r r    

Features:
- As implemented, order of accuracy O(h4),
- Cost O(N 2) operations and O(N 2) memory for N nodes,  
- Results published only for quasi-uniform node sets

Radial Basis Function (RBF)-based algorithms for variable density node sets:
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Algorithm steps: Concept illustration:  
1. Given nodes on the sphere, create

a spherical Delaunay triangularization

2. For each surface triangle, project it
together with some nearby nodes to a
tangent plane

3. Find quadrature weights over the local 
tangent plane node set for the central
planar triangle 

4. Convert weights from the tangent plane
case to corresponding weights on
sphere surface

5. Add together the weights for the 
individual triangles to obtain the 
full weight set for the sphere

Next 4 slides explain these 5 steps in more detail 
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Step 1: Given nodes on the sphere, create a Delaunay triangularization

Step 2: For each surface triangle, project it with 
some nearby nodes to a tangent plane

Delaunay triangularization in a 2-D planar case:
- Forms triangles so that no point ever falls inside the 

circumcircle to any triangle
- Provides guarantee against inside ‘skinny’ triangles
- Cost:  O(N log N)  operations for  N nodes. 

Generalization to surface of a sphere maintains all key features

Further generalizations to 3-D (and beyond) fail to assure well-
balanced tetrahedral elements based on 3-D scattered nodes.

Note: The projection is from the sphere center, so it is not a 
stereographic (conformal) mapping. However, all spherical
triangles map to straight-line triangles in tangent plane.
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Step 3: Find quadrature weights over the tangent plane node set for
the target triangle 

Over each 2-D node set surrounding the central triangle 
D, find an RBF interpolant

with matching constraints   
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Then                       will evaluate to the form                   ,

Where  wi are quadrature weights.     
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In order to determine the weights wi , one needs to evaluate  

{bivariate polynomial terms} d x
D

(|| ||) , 1,2, ,ix x d x i n
D

  

Elementary

Less elementary, but closed forms available (next slide)
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Step 3: Find quadrature weights over the tangent plane node set for
the target triangle   …   (continued) 

Case when an RBF is centered at an acute corner (here at the origin) of a right-angle triangle:

Case when an RBF is centered at location “O” outside an arbitrarily shaped triangle “DABC”:

Task reduces to a combination of six cases as described above.

For example, with the nodes placed as shown to the left: 

ABC OAD OBD OAF

OCF OBE OCE
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A few lines of code suffice to find C, D, E, and the signs
(+ or -) for the six integrals.
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etc. 

Explicit formulas available for                                               etc.
For example:    

2 1 2( ) , ( ) log ,k kr r r r r  
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Step 4: Convert weights from the tangent plane case to the
corresponding weights on the surface of the sphere

Step 5: Add together the weights for the individual triangles to obtain
the full weight set for the sphere

Elementary trigonometry gives for infinitesimal
area elements:

 3/2element in plane 2

element on sphere

Area
1

Area
r 

In order to convert weights from a quadrature
formula in the tangent plane to one on the
surface of the sphere, one simply needs to 
multiply weights a distance  r from the tangent 
point by the factor  3/ 221 / 1 .r
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Test problems and results
Present method uses default settings when compu-
ting quadrature weights for each spherical triangle:
• 80 nearest neighbors 
• Bivariate polynomial terms up to degree 7
All results show worst error case when the test 
function has been randomly rotated 1,000 times
In left  error subplot,  curves (Womersley & 
Sloan and  Fuselier et.al., resp.) terminated 
by their O(N 3) cost and O(N 2) memory use,
respectively.

Test function: Infinitely smooth,  but
sharp gradient only along narrow 
band around sphere
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Test problems and results

Test function: Highly oscillatory 
over whole sphere, with singularity 
at tip of sharp spike (lowering the 
convergence rate for all methods)
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Test problems and results

Test function: Infinitely smooth, 
but extremely spiked at one location
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Timing results
- Computations for ‘Present’ and ‘SPH based’ methods performed on a Pentium i7-2600, 

3.40 GHz, 16.0 GB RAM in MATLAB  R2013a
- Timing for ‘Kernel Based Quadrature’ converted from a different system

- Both the SPH and the Kernel Based Quadrature size limited by their O(N 2) memory 
requirements

- Using parfor in Matlab, the times for the present method can be reduced in proportion to
the number of available cores  
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Conclusions 

- A high order accurate algorithm has been developed for quadrature over the surface of a 
sphere

- The node sets can feature any types of density variations (e.g. local refinement in certain 
areas, etc.)

- The total cost is O(N log N) operations and O(N) memory for finding weights for N nodes.  
The algorithm is ‘embarrassingly parallel’ , making it trivial to use any number of available 
processors.

- Even on a standard PC, it can be run for N-values in the millions. This eliminates the need for 
tabulating weights for specific node distributions.

Manuscript in preparation:

Numerical quadrature over the surface of a sphere (J.A. Reeger and B. Fornberg).


