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ABSTRACT 

 Seismic exploration is the primary tool for finding and mapping out hydrocarbon deposits. We 

consider here the 2-D forward modeling problem. The subsurface structures are assumed to be 

known, and the task is to simulate elastic wave propagation throughout the medium. RBF-FD (radial 

basis function-generated finite difference) spatial discretizations have previously been shown to 

offer high accuracy and algebraic simplicity also when using scattered layouts of computational 

nodes. We have now developed this method further, to provide third-order accuracy not only 

throughout smooth regions, but also for wave reflections and transmissions at arbitrarily curved 

material interfaces.  The key step is to supplement the RBFs which underlie the RBF-FD 

approximation with polynomials, and then customize the latter to incorporate the interface 

requirements.  The method is illustrated on a couple of test problems for the 2-D isotropic elastic 

wave equation. 

 

INTRODUCTION 

 The two dominant error sources in solving elastic wave equations in domains featuring 

discontinuous material parameters are 

• Dispersive errors in regions with constant or smoothly variable material properties 

• Reflection/transmission errors at interfaces 

 The former error type causes traveling wave fronts to develop spurious trailing wave trains, 

which are best overcome by using approximations of high orders of accuracy (Fornberg, 1987). 

 Many simulations have been carried out under the assumption that the use of a high-order FD 

scheme sufficiently reduces the latter error as well, and that point-to-point changes in material 

parameter values provide enough information to reach a satisfactory solution (Robertsson, et al., 

2012).  However, without more rigorous treatment near interfaces, the application of high-order 



3 
 
 

methods to such a domain yields a solution accurate to only first order (Symes, et al., 2009), 

(Vishnevsky, et al., 2014). 

 Some investigators have improved the second type of error (differentiation across interfaces) 

by employing curvilinear transformations such that grid lines follow interfaces (Fornberg, 1988).  

Moving from structured to unstructured meshes, as used for example with finite element methods 

(FEM), improves geometric flexibility further still. We focus here on an altogether mesh-free 

discretization, placing scattered nodes suitably with respect to interfaces, but without forming any 

triangles or tetrahedra, etc. A web search on ‘Meshfree methods’ will reveal a long list of attempted 

variations on this theme. However, the recent literature has increasingly focused on RBF based 

approximations (Fasshauer, 2007). Still more recently, RBF-FD has emerged as a particularly good 

way to obtain highly accurate ‘local’ derivative approximations using scattered node sets. The first 

RBF-FD application in the context of seismic modeling was given in (Martin, et al., 2013).   

 The present RBF-FD approach shares certain concepts with immersed interface methods, 

described for ex. in (Zhang, et al., 1997). In including appropriate basis functions directly into 

stencils that cross the interface, it also shares some features with the FEM approaches in (Li, 1998) 

and (Zhebel, et al., 2014).  As with the finite difference approach in (Lombard, et al., 2004), the 

present approach maintains flexibility in the choice of spatial discretization and time integration 

techniques, while presenting a framework that allows relatively simple preprocessing routines, and 

avoids the need to construct smooth (or modified) structures of data through interfaces. 
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RBF-FD METHODOLOGY 

 This section introduces the present method in a simple 2-D elastic wave equation case.  Figure 

1 shows the unit square divided into two regions by a mildly curved interface.  Across the interface, 

the density ρ and the Lamé parameters λ and μ of the medium can be discontinuous. The figure also 

illustrates a node distribution that follows the interface but transitions to a regular Cartesian lattice 

for standard FD usage a short distance away from it. The three cases we need to handle are: 

• Case 1: Stencils that are located sufficiently far away from the interface that they only contain 

Cartesian grid type nodes 

• Case 2: Stencils that are not intersected by the interface, but with some or all nodes deviating 

from perfect lattice arrangement 

• Case 3: Stencils that are intersected by the interface.  

In Case 1, we use standard FD weights and integration techniques to model wave propagation.  In 

Case 2, we instead obtain stencil weights by the RBF-FD formalism, permitting arbitrarily scattered 

nodes.  Finally, in Case 3, we additionally invoke continuity conditions (on velocity and traction) at 

the interface to create specially modified RBF-FD weights that preserve high-order accuracy for 

waves interacting with the interface.   

 Execution of a code based on these Cases 1-3 stencils becomes highly efficient (especially on 

GPU-type hardware) since all relevant information about the interfaces (their locations and 

transmission / reflection properties) become embedded into the node set and into the stencil weights 

already during the pre-processing stage. During the time stepping, all stencils are then applied in 

exactly the same way, whether interfaces are present or absent.  

 We discuss next the Cases 2 and 3 in more detail. 
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Figure 1. Schematic node layout in the vicinity of a curved interface. Colored regions show Case 1 

(solid green lines), Case 2 (dotted blue lines) and Case 3 stencils (dashed red lines).  The stencils 

approximate the PDE at the circled nodes.  

 
 
Case 2: RBF-FD stencils in regions with smoothly variable medium properties, but without 

completely Cartesian node structure 

 Standard FD approximations in 1-D use weights that are chosen such that the resulting 

approximation becomes exact for monomials (1, x, x2, etc.) of as high degree as possible. FD 

approximations for higher-D are then typically tensor-like composites of 1-D approximations.  Such 

approximations can become very accurate when they are applied to data that is locally very well-

represented by a Taylor expansion.  This approach fails however for scattered nodes in 2-D (and 

higher), since the linear systems that need to be solved to find the FD weights then frequently become 

very ill-conditioned, or outright singular. 

 In the case of RBF-based FD methods, polynomials are replaced by RBFs, and there is no 

longer any need  to consider tensor type extensions from 1-D. Data near a stencil center cx  is instead 
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directly represented by a superposition of radially symmetric functions (|| ||), 1,2, ,i i nφ − =x x    

that are centered at the stencil node locations ix , i.e.: 

 ( )
1

|| |( |)
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if a φ
=

−≈ x xx   (1) 
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 In the RBF-FD approach, the approximation of an operator ܮ (such as ߲  etc.) at the central ,ݔ߲/

node cx  is obtained as a weighted sum of function values at the n stencil nodes; 

1
( ) | ( )

c

n

i ii
L f w f= =

≈x xx x , but with the weights now required to give the exact result not for a 

polynomial interpolant, but when applied to RBF interpolant (1).  The system we solve for each 

RBF-FD stencil therefore becomes: 
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  (3) 

or, in abbreviated notation: 

 A L=w φ .   (4) 

Here ܣ is the same (݊,݊) symmetric matrix as in (2), w is the column vector of RBF-FD weights to 

be applied at the nodes of the stencil, L is the linear operator we are approximating, and φ  is the 

column vector of the operator L applied to the different RBFs and then evaluated at xc. 
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 Remarkably, many choices of radial functions ( )rφ  lead to guaranteed non-singularity of these 

A-matrices, no matter how any number of distinct nodes are scattered in any number of dimensions 

(Schoenberg, 1938).  In the present work, we have used the inverse multiquadric (IMQ) radial 

function ( ) ( )2
1 / 1r rφ ε= + . If the nodes were located on a lattice, letting 0ε →  will usually (but 

not always) recover the standard FD approximation for the same stencil size (Driscoll, et al., 2002), 

(Wright, et al., 2006). However, small ε  will cause the linear systems (3), (4) (as well as (5), (6), 

described below) to become highly ill-conditioned. A very simple, yet effective strategy in the 

present context, is to choose ε  so that the coefficient matrices have condition numbers in the 610  

to 810 -range.  This RBF-FD discretization approach has proven highly successful for PDEs in 

nontrivial geometric settings (Shan, et al., 2008). Following the recent introduction of 

'hyperviscosity' (Fornberg, et al., 2010), relatively large stencils (often in the n = 30-70 range in 2-

D, giving high accuracies) can be used together with explicit time stepping also for purely convective 

(wave-type) PDEs (Flyer, et al., 2011), (Flyer, et al., 2014).  

 As mentioned in the introduction, a key feature of RBF-FD is that one can include additional 

functions (typically polynomials) with the RBF basis underlying each stencil, and then add matching 

constraints, as surveyed for ex. in (Fasshauer, 2007).  This will be especially crucial in Case 3, where 

we add support of piecewise polynomials in order to represent the non-smooth solutions across 

material interfaces.  For example, when including up to linear 2-D terms (1, x, y) to the counterparts 

of (3) and (4), the corresponding system of equations becomes (Larsson, et al., 2013), (Fornberg, et 

al., 2015): 
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or, in abbreviated notation: 

 *0

T LA P

LPP

φ     =     
    

w

w
  (6) 

Here, P is a (3,n) matrix of the Taylor monomials (1, x, y)  at the stencil node points, and LP is the 

(3,1) vector of evaluations of the linear operator L applied to each of these three monomials and then 

evaluated at the location xc  (where we want our approximation to be accurate).  The column vector 

w contains the weights of the resulting stencil, while the vector w* should be discarded.  Practical 

experience suggests the use of polynomials of such degrees that the number of rows in P become 

around half the number of rows in A (or slightly less).  Case 2 stencils in the test problems below 

have used  n = 19  nodes with polynomial support up to and including third degree (cubic) terms. 

 

Case 3: RBF-FD stencils across interfaces 

 Although the RBF-FD approach easily allows nodes to be placed optimally around interfaces, 

it is still crucial to combine this with a further strategy that allows for accurate differentiation of the 

PDE’s dependent variables across that interface. Traditional FD weights are usually determined 

under the assumption that the data to be differentiated is smooth. As noted above, many current FD 

seismic simulation routines then apply these weights also to data that (physically correctly) lack 

smoothness across an interface (Robertsson, et al., 2012), (Vishnevsky, et al., 2014). 
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 When data is not smooth across an interface, we can use our knowledge of interface continuity 

conditions together with the governing PDE to create a customized set of piecewise polynomial basis 

functions to accurately represent also this data.  These piecewise polynomials (rather than regular 

ones) are then added to the set of RBF basis functions when determining weights within RBF-FD 

stencils that cross the interface. When using only linear polynomials, this concept was tested for the 

2-D Maxwell’s equations in (Yu, et al., 2011). 

 In the present 2-D isotropic elastic wave equation case, the governing equations are: 

 ( )
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t x y

t x y
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f u v
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  (7) 

Here, u, v are local medium velocities in the x and y directions, respectively, f, g, h are the elements 

of the 2-D (symmetric) stress tensor, ρ denotes density, and the Lamé parameters λ, μ describe the 

material properties with regard to pressure and shear. At the interface, velocity and traction (stress 

in the direction of the interface normal) must be continuous. 

 

Determining Case 3 polynomial basis functions: 1-D simplification 

 For the purpose of illustration, we consider first the 1-D case, for which these equations reduce 

to the well-known 2-way wave equation: 
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∂

       =             
   (8) 

In (8), 2
pc  is the speed of pressure (primary) waves within a medium.  Higher-order time derivatives 

and their equivalences in terms of spatial derivatives can be obtained by applying the differential 

operator D multiple times: 
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 Continuity of velocity and traction are simple in 1-D: both u and f must be continuous across 

an interface.  Therefore, ( ) ( ),k t k tu f  are also continuous there for 1,2,3,k =  .  Suppose for simplicity 

that the interface in the present 1-D example is located at x = 0. If we refer to the left and right sides 

of the interface as sides L and R, respectively, then for 0,1,2,k =   : 
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Here, the subscripted operators and data fields are those entities evaluated as we approach the 

interface from the left and from the right, respectively.  1-D FD stencils that uphold these truths can 

be constructed as described below. 

 Consider the polynomials in a fourth-order expansion of both data fields about the interface: 
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In (11) and (12), we have switched to vector notation to indicate that we are now considering vectors 

of polynomial coefficients in ℙ(ℝ).  For example, Lu  is composed of the scalar 2,1 , ,
, , ,L L x L x

u u u  etc.: 
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In 1-D, we are only considering Taylor monomials in our FD basis, so we can define the PDE 

differential operators  DL and DR entirely by their action on these monomial basis functions: 
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Here, the discrete differential block operator / x∂ ∂   is also defined by its action on the standard 

monomial basis set in ℙ(ℝ): 
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We can now return to (10) and use powers of the differential operator D to turn continuity of time 

derivatives at the interface into relationships between data expansion coefficients on either side of 

the interface: 
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  (17) 

 

In (17), the equivalences between expansion coefficients on the right side of each equation were 

obtained by examining the rows of each left-hand-side matrix that reference constant expansion 

terms.  Constants are the only monomials that evaluate to a nonzero value at the interface location 

(x = 0 in our chosen coordinate system).  Therefore, any combination of data expansion coefficients 

that end up in a row for constant monomials after a given power of D is applied in (17) must all add 

up to zero.  In 1-D, this process of generating non-smooth basis functions is simple and decoupled; 

we can determine the relationships between expansion coefficients one by one, just by looking at 

individual constant-term columns of the left-hand-sides above.  In 2-D or 3-D, we will need to collect 

“null rows” together into a big continuity matrix C.  After this is done, we can find a basis set of 

coupled monomial coefficients that satisfy all the truths at once: we just need to find a basis for 

( ( ))col C ⊥ , or null(CT).  When applied in a 1-D case, this more general procedure reduces to (17). 
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Figure 2. Illustration of the non-smooth basis underlying differential stencils for data field u used 

to solve the present 1-D test problem. For the f-variable, the couplings become slightly different:      

{x0 |x0, x1 |x1, 4x2 |x2, 4x3 |x3, 16x4 |x4}.       

 

 The approach described above was used on a particular test problem in [-1,1] to generate the 

basis for data field u shown in Figure 2.  This basis can be used for stencils that cross the interface 

and apply to data field u.  In this test problem, 1pc =  for x < 0  and 2pc =    for 0x ≥ , and ρ = 1 

throughout the domain. 

 

Determining Case 3 non-smooth polynomial basis functions: 2-D example 

 An appropriate set of non-smooth, piecewise polynomial basis functions can easily be 

incorporated into FD schemes in 1-D. The situation in 2-D is somewhat more involved.  For example, 

if we then want to enforce interface conditions to 2nd order accuracy, an analogous process to that 

above (examining how powers of the differential operator relate spatial derivatives of motion and 

traction) produces an explicit 12-dimensional space of 2-D coupled basis polynomials for u and v, 
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and a 24-dimensional space of basis polynomials for f, g and h.  Adding this type of support to a 2-

D Cartesian stencil would not only be difficult to achieve, but likely also be highly unstable. 

However, the method through which explicit polynomial support is added to RBF-FD stencils (as 

shown in equations (5) and (6)) can readily be generalized to handle it. 

 In 2-D, we begin by evaluating weights for a stencil that crosses the interface the same way as 

we did in 1-D.  For illustration, assume that we wish to add polynomial support up to and including 

second degree terms to an RBF-FD stencil crossing an interface.  We pick a point on the interface 

that lies near the point where the stencil approximates a linear operator.  As in the 1-D example, we 

designate the nearby point on the interface as the origin for purposes of evaluating support 

polynomials, and we initially assume that all expansion coefficients of all data fields may vary from 

one side of the interface to another.   

 We have the following data expansions for which we want to determine coefficients: 
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  (18) 

Although left (L) and right (R) don’t have absolute meaning in 2-D, we’ve kept the notation from 

our 1-D illustration for consistency: L and R subscripts indicate data values or expansion coefficients 

as we approach an interface from one side or the other. The differential operator D is a bit more 

complicated in 2-D: 



15 
 
 

 

( )

( )

( )

( )

( )

( )

( )

1 1

1 1

2   

  

 2  

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

k t

k t

k t

k t

k t

x y

x y

x y

y x

x y

k

u

v

f

g

h

u
v
f
g
h

ρ ρ

ρ ρ

λ μ λ

μ μ

λ λ μ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

∂ ∂

∂ ∂

∂ ∂

∂ ∂

∂ ∂

∂ ∂

∂ ∂

∂ ∂

∂ ∂

∂ ∂

+

+

   
   
   

                       =          

kD

u
v
f
g
h

 
 
 
 

  
  
   

   (19) 

Consider an RBF-FD stencil near a curved interface, as shown in Figure 3.  At this location, the 

following must be true for continuity of traction and motion to hold (note that there is no continuity 

relation for f): 
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In (20), the primed data values are the same physical quantities we have been discussing already 

(horizontal particle velocity, vertical particle velocity, etc.), but expressed in the rotated coordinate 

system shown in Figure 3. 
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Figure 3.  (ABOVE) RBF nodes surround curved interfaces, shown by dashed lines.  (BELOW) A 

very small stencil for evaluating the spatial derivatives at the RBF node indicated by the empty 

circle. Weights are applied to data at all RBF node (circle) locations.  The stencil is created using 

RBF-FD for a horizontal interface in the ', 'x y  coordinate system. 

 

We can express each of the 5 data fields in the rotated coordinate system:  
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We can also express time derivatives in the rotated coordinate system: 
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As in 1-D, we can uphold continuity of motion and traction by enforcing 

 

' 0

' 0

'

'

' ' ' 0

' ' ' 0
.

' ' '

' ' '

'

'

,
0

0

L

L

L R L

L R Lk k
L R L R

L R R

L R R

R

R

k k

y

y

u

v

u u g

D
v v h

D D
g g u

h h v

g

h

D

=

=

  
  
  
        
        
         − = =         
        

         
  
  
   

−   (24) 

 In 1-D, we determined each support monomial for an FD stencil that crosses an interface by 

enforcing that every row associated with constant expansion terms after k applications of the 

differential operator (equation (17)) sum to zero.  In 2-D, we similarly uphold continuity of motion 

and traction by enforcing that all expansion coefficients associated with the first (p-k) monomial 

terms of the rotated coordinate 'x   (that is, 1, 2', ( ')x x , etc.) after k applications of the operators in 

(24) sum to zero, where p is the maximum degree of polynomial support we wish to add across the 

interface.  This ensures that continuity of motion and traction are upheld to ( )pO h   accuracy at 

' 0y =  for a mildly-curved interface that is well-represented locally by a linear approximation.  The 

second of our two test cases uses this method. 

 If desired, one can also account more rigorously for curvature of a smooth interface.  The 

trigonometric functions involved in equations (21) and (22) may be replaced by local expansions of 

those functions in terms of the local horizontal coordinate 'x .  After application of a given power k 

of the differential operator in (24), a local expansion for the interface shape itself (again, in terms of 
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'x ) can be inserted into entries for 'y .  After gathering like powers of 'x , enforcing that expansion 

coefficients associated with the first (p-k) monomial terms of 'x  sum to zero then upholds continuity 

of motion and traction to O(h p)  accuracy not only for a locally flat interface, but also for any smooth 

interface.  This method is used in the first of our two test cases. 

 In the numerical solutions examined so far, we have not observed the latter, rigorous treatment 

of interface curvature to improve solution error much compared to using a locally linear 

approximation for the interface.  However, future study may show that more extreme interface 

shapes and higher-order RBF-FD stencils justify the more complex procedure. 

 

RBF-FD TEST CASES 

Example 1. Simple p-wave test problem; two interfaces 

 Our first test problem involves two mildly curved interfaces within a doubly periodic unit 

square (Figure 4).  In this domain, A horizontal p-wave front begins at y = 0.75 and travels in the 

negative y-direction for 0.3 time units, encountering the mild sinusoidal interfaces near y = 0.5 and 

y = 0.25.  Figure 5(a) shows the data field v at t = 0.3. Figures 5(b) and 5(c) show errors for N = 

160,000 node pseudospectral (PS, on a Cartesian grid) and RBF-FD computed data fields v at t = 

0.3, respectively, using an N = 640,000-node RBF-FD solution as a reference.  The chaotic error in 

the PS solution has resulted from its naïve differentiation across the interfaces.  Second degree 

polynomial support was here added to RBF-FD stencils that cross interfaces, and other RBF-FD 

stencils featured third degree polynomial support.  Both the PS and RBF-FD methods used 4th-order 

Runge-Kutta time integration with a time step of 2.5E-04. 
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Figure 4.  An example of a coarse (N = 1,600) node set for Example 1.  Note that nodes adjacent to 

the interface orthogonally straddle it.  Here, only Case 2 and Case 3 stencils are used; Cartesian 

structure could have been used for the parts of the domain away from interfaces (Case 1). 
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(a) 

 

(b) 

 

(c) 
 
 

Figure 5. (a) Data field v at 0.3 = ݐ for the p-wave test problem in Example 1,  (b) Error in an N = 

160,000-node PS solution at 0.3 = ݐ.  (c) Error in an N = 160,000-node RBF-FD solution at 0.3 = ݐ.  

The vertical scale is the same in plots (b) and (c). In the shown perspective, the initial wave front 

travels from left to right.  In (c), we note that the error is purely dispersive; a high-order FD 

method could have been used away from the interface (Case 1) to significantly reduce these errors.
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Tables 1 and 2 compare normalized 2  errors for the PS and RBF-FD methods in the variable v at t 

= 0.3.  Note how RBF-FD preserves global 3rd-order accuracy. 

 
 
Table 1.  PS solution errors: Example 1 

Number of nodes Normalized 2   error Error ratio (2h:h) 

10,000 3.5 E-03  
40,000 1.1 E-03 3.2 
160,000 3.6 E-04 3.1 

 
 
Table 2.  RBF-FD solution errors: Example 1 
 

Number of nodes Normalized 2  error Error ratio (2h:h) 
10,000 6.3 E-03  
40,000 8.8 E-04 7.2 
160,000 9.7 E-05 9.1 

 
 
Example 2. Point source in a “mini-Marmousi” domain 

 Figure 6 shows a “mini-Marmousi” model, and Figure 7 results from a point source in the 

region. 

 

 
Figure 6. Relative p-wave velocity structure used to test new numerical methods. The structure is 

inspired by the Marmousi model: http://www.caam.rice.edu/~benamou/testproblem.html 
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 A pressure source located at (0.5, 0.8) has created a radial disturbance traveling outward from 

that location. Figures 7(a) and 7(b) show the data field v at t = 0.15 and t = 0.3, respectively.  Figure 

8 shows errors of N = 38,400-node and 153,600-node pseudospectral (PS) and RBF-FD solutions 

for the variable v at t = 0.3, using an N = 614,400-node RBF-FD solution as a reference (using an 

extremely highly resolved PS calculation as reference give equivalent results).  For the PS solution, 

the naïve differentiation across the interfaces leads to highly oscillatory errors which only decrease 

relatively slowly under node refinement. In contrast, the RBF-FD solution improves by a factor of 

about 10 (both near to and away from interfaces) when the distances between the nodes is halved. 

For a third order accurate method, a factor of eight would have been expected.  Second degree 

polynomial support was here added to RBF-FD stencils that cross the interfaces (Case 3), and all 

other RBF-FD stencils (Case 2) featured third degree polynomial support.  Weights for Case 2 

stencils that cross an interface near an interface cusp or intersection between two interfaces were 

determined without the special interface treatment described here.  Both RBF-FD and PS methods 

used standard 4th-order Runge-Kutta time integration with a time step of 1.25E-04. 

 

(a) 

 

(b) 
 
 

Figure 7. Data field v at t = 0.15 (a) and t = 0.3 (b) from the point source test problem in the mini-

Marmousi domain from Figure 6.  
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(a) 

 

(b) 

(c) (d) 
 
 

Figure 8.  Errors in data field v at time 0.3t = for N =38,400-node (top row) and N = 153,600-node 

(bottom row) solutions to the mini-Marmousi test problem when using PS (first column) and RBF-

FD (second column) discretizations.  The color map that represents error value is scaled exactly 

the same for each of the four plots above. 

 

 

CONCLUSIONS 
 

 
 As implemented here, the present RBF-FD method achieves roughly third order convergence 

both with regard to dispersive errors and for reflection/transmission at interfaces. Because of its local 

nature, the method can be implemented successfully also for high-resolution 3-D simulations in a 
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cost competitive manner on large-scale distributed memory computer systems.  Future studies will 

address CPU and GPU performances and give more specific large-scale feasibility assessments. 

 In the mini-Marmousi test problem, RBF-FD stencils near interface cusps and intersections 

were determined without the interface treatment discussed in this paper.  Future work will also 

include an analysis of the error introduced by naïve treatment of these isolated point-like zones in 

the domain, and possibly provide suggestions for how also these errors can be minimized.  

 Although the present method has proved stable enough to produce the promising preliminary 

results shown here, future studies will address the stability of this approach more rigorously and 

discuss what (if any) additional measures should be taken. 
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