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The manuscript presents a technique for efficiently solving the classical wave equation, the shallow water
equations, and, more generally, equations of the form ∂u/∂t =Lu, where L is a skew-Hermitian differen-
tial operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)
for a relatively large time-step τ . Recently developed techniques for approximating oscillatory scalar
functions by rational functions, and accelerated algorithms for computing functions of discretized dif-
ferential operators are exploited. Principal advantages of the proposed method include: stability even
for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large
speed-ups over existing methods in situations where simulation over long times are required. Numerical
examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomoge-
nous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and
to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals,
and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.
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1. Introduction

1.1 Problem formulation

We present a technique for solving a class of linear hyperbolic problems⎧⎪⎨
⎪⎩
∂u
∂t
(x, t)=Lu(x, t), x ∈Ω , t> 0,

u(x, 0)= u0(x) x ∈Ω .
(1.1)

Here u ∈: L2(Ω) is a possibly vector-valued function, L : L2(Ω)→ L2(Ω) is a skew-Hermitian differen-
tial operator (see the end of this section for the method’s scope), and exp(τL) : L2(Ω)→ L2(Ω) denotes
the propagator associated with (1.1). The technique is demonstrated on the 2D rotating shallow water
equations, as well as the variable coefficient wave equation.
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The basic approach is classical, and involves the construction of a rational approximation to the time
evolution operator exp(τL) in the form

exp(τL)≈
M∑

m=−M

bm(τL − αm)
−1,

where the time-step τ is fixed in advance and M scales linearly in τ . Once the time-step τ has been
fixed, an approximate solution at times τ , 2τ , 3τ , . . . can be obtained via repeated application of the
approximate time-stepping operator, since exp(nτL)= (exp(τL))n. The computational profile of the
method is that it takes a moderate amount of work to construct the initial approximation to exp(τL), but
once it has been built, it can be applied very rapidly, even for large τ .

The efficiency of the proposed scheme is enabled by (i) a modified version of Damle et al. (2013)
for constructing near optimal rational approximations to oscillatory functions such as eix over arbitrar-
ily long intervals, and by (ii) the development (Martinsson, 2013) of a high-order accurate and stable
method for pre-computing approximations to operators of the form (τL − αm)

−1. The near optimality
of the rational approximations ensures that the number 2M + 1 of terms needed for a given accuracy is
typically much smaller than standard methods that rely on polynomial or rational approximations of L.

Although our main contribution is in combining the techniques in Damle et al. (2013) and Martins-
son (2013) in order to yield an efficient and time-parallel means of applying the operator exponential,
we also develop in this paper several key technical advances in each of the component algorithms. First,
the sub-optimal rational approximations developed here require substantially fewer poles than in Damle
et al. (2013) (and, in fact, are very close to optimal in the L∞ norm). Secondly, the direct solver in
Martinsson (2013) is modified in order to allow body loads.

The proposed scheme has several advantages over typical methods, including the apparent absence
of stability constraints on the time step τ in relation to the spatial discretization, the ability to parallelize
in the time variable over many characteristic wavelengths (in addition to any spatial parallelization), and
great acceleration when integrating equation (1.1) for long times or for multiple initial conditions (e.g.,
when employing an exponential integrator on a nonlinear evolution equation, cf. Section 5). A drawback
of the scheme is that it is more memory intensive than standard techniques. Another potential limitation
is that, since the proposed technique relies on a spectral element discretization, the initial condition
needs to be sufficiently smooth u(x, 0) in order to achieve spectral accuracy with respect to p-refinement.

The ability to solve (1.1) in a time-parallel manner can be used to construct efficient parallel-in-
time schemes for the fully nonlinear evolution equations in the presence of time scale separation (see
Haut & Wingate, 2014). This extra source of parallelism can be useful if the speedup due to spatial
parallelization saturates. In addition, even when the speedup from spatial parallelization is not saturated,
the ability to parallelize with space-time blocks can have efficiency benefits. In fact, it is expected that
the cost of communication versus computation decreases with a space-time decomposition relative to
a purely spatial decomposition (heuristically, the ‘surface-to-volume’ ratio of a domain decomposition
decreases in higher dimensions). As far as parallelization of the direct solver, the algorithm involves
applying, at a number of levels that is logarithmic in the spatial grid size, small dense matrices that
can all be applied independently of each other. Since applying many small dense matrices in parallel is
amenable to efficient parallelization, we expect good parallel scaling for the direct solver; however, this
issue needs to be explored further.

We restrict the scope of this paper to when the application (τL − αm)
−1u0 can be reduced to the

solution of an elliptic-type partial differential equation (PDE) for one of the unknown variables. This sit-
uation arises in geophysical fluid applications (among others), including the rotating primitive equations
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that are used for climate simulations. However, the direct solver presented in Section 2 is quite general,
and in principle can be extended to first-order linear systems of hyperbolic PDEs with little modification
(though such an extension is speculative and, in particular, has not been tried).

1.2 Time discretization

In order to time-discretize (1.1), we fix a time-step τ (the choice of which is discussed shortly), a
requested precision 0< δ < 1, and ‘band-width’ Λ ∈ (0, ∞) which specifies the spatial resolution (in
effect, the scheme will accurately capture eigenmodes of L whose eigenvalues λ satisfy |λ| �Λ). We
then use an improved version of the scheme of Damle et al. (2013) to construct a rational function,

RM (ix)=
M∑

m=−M

bm

(ix − αm)
, (1.2)

such that

|eix − RM (ix)| � δ, x ∈ [−τΛ, τΛ], (1.3)

and

|RM (ix)| � 1, x ∈ R. (1.4)

It now follows from (1.3) and (1.4) that if we approximate exp(tL) by RM (τL), the approximation error
satisfies ∥∥∥∥∥eτLu0 −

M∑
m=−M

bm(τL − αm)
−1u0

∥∥∥∥∥
2

� δ‖u0‖2 + 2‖u0 − PΛu0‖2, (1.5)

where PΛ projects functions onto the subspace spanned by eigenvectors of L with modulus at most Λ.
Here the only property of L that we use is that L is skew-Hermitian, and hence has a complete spectral
decomposition with a purely imaginary spectrum.

In the absence of spatial discretization errors, the bound (1.4) ensures that the repeated application
of RM (τL) is stable on the entire imaginary axis. It also turns out that the number 2M + 1 of terms
needed in the rational approximation in (1.3) is close to optimally small (for the given accuracy δ).
It is important to point out that, when the above temporal discretization is coupled with the spatial
discretization discussed in Section 2, stability analysis of the time-stepping method requires an error
analysis for the direct solver discusses in Section 2.3, which is nontrivial and beyond the scope of
this paper. We simply note that the stability of the time-stepping scheme is substantiated via extensive
numerical experiments and using a broad range of different time steps τ . In all of these numerical
experiments, we have not observed any instabilities, including when we choose large τ (resulting in
hundreds of terms in (1.2)) and nonsmooth initial conditions.

The scheme described above allows a great deal of freedom in the choice of the time step τ . While
classical methods typically require the time step to be a small fraction of the characteristic wavelength,
we have freedom to let τ cover a large number of characteristic wavelengths. Therefore, the scheme is
well suited to parallelization in time, since all the inverse operators in the approximation of the operator
exponential can be applied independently. In fact, the only constraint on the size of τ is on the memory
available to store the representations of the inverse operators (as explained in Section 1.3, the memory
required for each inverse scales linearly in the number of spatial discretization parameters, up to a
logarithmic factor).
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Fig. 1. Illustration of the grid of points {xj}N
j=1 introduced to discretize (2.12) in Section 2.2. The figure shows a simplified case

involving 4 × 4 squares, each holding a 6 × 6 local tensor product grid of Chebyshev nodes. The PDE (2.12) is enforced via
collocation using spectral differentiation on each small square at all solid (‘internal’) nodes. At the hollow (‘boundary’) nodes,
continuity of normal fluxes is enforced.

In serial, the efficiency of this approach is relatively insensitive to the number M of terms used,
since the number of poles per wavelength in (1.5) is constant (and just larger than the lower bound
imposed Nyquist constraint). However, since the M solution operators can be applied independently of
one another, this approach allows the ability to parallelize the computation in time over a large number
of characteristic wavelengths. In contrast, standard methods for applying the operator exponential are
inherently serial in the time variable.

1.3 Pre-computation of rational functions of L
The time discretization technique described in Section 1.2 requires us to build explicit approximations
to differential operators on the domainΩ such as (τL − αm)

−1. We do this using a variation of the tech-
nique described in Martinsson (2013). A variety of different domains can be handled, but for simplicity,
suppose that Ω is a rectangle. The idea is to tessellate Ω into a collection of smaller rectangles, and to
put down a tensor product grid of Chebyshev nodes on each rectangle, as shown in Fig. 1. A function is
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represented via tabulation on the nodes, and then L is discretized via standard spectral collocation tech-
niques on each patch. The patches are glued together by enforcing continuity of both function values and
normal derivatives. This discretization results in a block sparse coefficient matrix, which can rapidly be
inverted via a procedure very similar to the classical nested dissection technique of George (1973). The
resulting inverse is dense but ‘data-sparse,’ which is to say that it has internal structure that allows us to
store and apply it efficiently.

In order to describe the computational cost of the direct solver, let N denote the number of nodes
in the spatial discretization. For a problem in two dimensions, the ‘build stage’ of the proposed scheme
constructs 2M + 1 data-sparse matrices {Am}M

m=−M of size N × N , where each Am approximates (τL −
αm)

−1. The build stage has asymptotic cost O(MN1.5), and storing the matrices requires O(MN log(N))
memory. The cost of applying a matrix Am is O(N log(N)). (We remark that the cost of building the
matrices {Am}M

m=−M can often be accelerated to optimal O(MN) complexity (Gillman & Martinsson,
2014), but since the pre-factor in the O(MN1.5) bound is quite small, such acceleration would have
negligible benefit for the problem sizes under consideration here.) Section 2 describes the inversion
procedure in more detail.

We remark that the spatial discretization procedure we use does not explicitly enforce that the dis-
crete operator is exactly skew-Hermitian. The fact that the spatial discretization is done to very high
accuracy means that it is in practice very nearly so, and numerical experiments also indicate that
the scheme as a whole is stable in every regime where it was tested. However, a rigorous inves-
tigation of the numerical stability of the scheme is currently lacking and is the subject of future
investigation.

1.4 Comparison to existing approaches

The approach of using proper rational approximations for applying matrix exponentials has a long his-
tory. In the context of operators with negative spectrum (e.g., for parabolic-type PDEs), many authors
have discussed how to compute efficient rational approximations to the decaying exponential e−x,
including using Cauchy’s integral formula coupled with Talbot quadrature (cf. Schmelzer & Trefethen,
2007b), and optimal rational approximations via the Carathéodory–Fejer method (cf. Schmelzer & Tre-
fethen, 2007b) or the Remez algorithm (Cody et al., 1969). However, such methods are less effective
(or not applicable) when applied to approximating oscillatory functions such as eix over long inter-
vals. For computing functions of parabolic-type linear operators, the approach of combining rational
approximations and compressed representations of the solution operators using so-called H-matrices
has been proposed in Gavrilyuk et al. (2005).

Common approaches for applying the exponential of skew-Hermitian operators include high-order
time-stepping methods, scaling-and-squaring coupled with Padé approximations (cf. Higham, 2005) or
Chebyshev polynomials (cf. Bergamaschi & Vianello, 2000) and polynomial or rational Krylov methods
(cf. Hochbruck & Lubich, 1997; Güttel, 2013). Krylov methods, in particular, have enjoyed enormous
success due to their ability to handle very large problem sizes and their favourable approximation prop-
erties (see the review article Hochbruck & Ostermann, 2010). We note that rational Krylov methods
also exhibit near optimal approximation properties (see Güttel, 2013). Note that all these methods itera-
tively build up rational or polynomial approximations to the operator exponential, and correspondingly
approximate the spectrum eiωnτ of eτL with polynomials or rationals. Therefore, the near optimality
of (1.2) and the speed of applying the inverse operators in (1.5) will generally translate into high effi-
ciency relative to standard methods (or, in the case of rational Krylov methods, comparable efficiency).
Comparing the proposed method with these more standard approaches, one major advantage is that
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the method can be trivially parallelized in time over many characteristic wavelengths. The ability to
parallelize in the time variable is of particular relevance to large-scale simulations in geophysical fluid
applications, where the speedup from spatial parallelization alone is beginning to saturate.

In addition to approaches that rely on polynomial or rational approximations, let us mention two
alternative approaches for time-stepping on wave propagation problems. The authors in Beylkin &
Sandberg (2005) combine separated representations of multi-dimensional operators, partitioned low
rank compressions of matrices, and (near) optimal quadrature nodes for band-limited functions, in order
to compute compressed representations of the operator exponential over 1 − 2 characteristic wave-
lengths. Along different lines, the authors in Demanet & Ying (2009) use wave atoms to construct
compressed representations of the (short time) operator exponential, and in particular can bypass the
CFL constraint.

1.5 Outline of manuscript

The paper is organized as follows. In Section 2, we briefly describe the direct solver in Martinsson
(2013). We then discuss in Section 3 a technique for constructing efficient rational approximations of
general functions, and specialize to the case of approximating the exponential eix and the phi-functions
for exponential integrators (Cox & Matthews, 2002). In Section 4, we present applications of the method
for both the 2D rotating shallow water equations and the 2D wave equation in inhomogenous medium.
In particular, we compare the accuracy and efficiency of this approach against 4th order Runge–Kutta
(RK4) and the Chebyshev polynomial method (in our comparisons, we use the same spectral element
discretization). Finally, Appendix A contains error bounds for the rational approximations constructed
here.

2. Spectral element discretization

This section describes how to efficiently compute a highly accurate approximation to the inverse oper-
ator (L − α)−1, where L is a skew-Hermitian operator. As mentioned in the introduction, we restrict
our discussion to environments where application of the inverse can be reformulated as a scalar elliptic
problem. This reformulation procedure is illustrated for the classical wave equation and for the shallow
water equations in Section 2.1. Section 2.2 describes a high-order multidomain spectral discretization
procedure for the elliptic equation. Section 2.3 describes a direct solver for the system of linear equa-
tions arising upon discretization.

2.1 Reformulation as an elliptic problem

In many situations of practical interest, the task of solving a hyperbolic equation (L − α)u = f , where L
is a skew-Hermitian operator, can be reformulated as an associated elliptic problem. In this section, we
illustrate the idea via two representative examples. Example 1 is of particular relevance to geophysical
fluid applications, which serve as a major motivation of this algorithm.

Example 1 (the shallow water equation) We consider the rotating shallow water equations in the square
domain x ∈ [0, 1] × [0, 1] with periodic boundary conditions:

vt = −fJv + ∇η,

ηt = ∇ · v,
(2.1)
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where v(x, t)= (v1(x, t), v2(x, t)) denotes the fluid velocity, η(x, t) denotes perturbed surface elevation,
f is the (constant) Coriolis frequency and

J =
(

0 1
−1 0

)
.

For simplicity, we assume that the prescribed initial velocity components vj(x, 0) ∈ L2([0, 1] ×
[0, 1]) and the initial surface elevation η(x, t) ∈ L2([0, 1]) are continuous (so that pointwise evaluation
on the spectral element grid is well-defined). This condition can likely be relaxed to piecewise smooth
initial conditions, but is outside the scope of the current paper.

We write system (2.1) in the form
ut =Lu,

where

L
(

v
η

)
=
(−fJv + ∇η

∇ · v

)
. (2.2)

We note that the method generalizes to nonconstant coefficient f and more general domains and
boundary conditions in a transparent manner, and is of particular relevance for a spectral element dis-
cretization on the cubed sphere. In fact, a spatial domain that is composed of a union of squares can
be easily be handled by the direct solver. By smoothly mapping curvilinear patches near the boundary
to square patches, in theory more general domains can be handled without much difficulty. Of partic-
ular relevance to geophysical fluid applications (which serve as a big motivation), we plan to explore
the proposed method for the rotating shallow water equations on the cubed sphere. In this setup, six
square patches are mapped to patches on the sphere. The direct solver algorithm remains essentially
unchanged, except that the elliptic equation associated with the RSW equations now contain noncon-
stant coefficients that reflect the underlying geometry, which is also easily handled by the proposed
scheme.

In order to apply the method in this paper, we use the standard fact (cf. Paldor & Sigalov, 2011)
that if

(L − α)

(
v
η

)
=
(

v0

η0

)
, (2.3)

then η satisfies the elliptic equation

∇ · (Aα∇η)− αη= η0 + ∇ · Aαv0. (2.4)

Here Aα is defined by

Aα = 1

α2 + f 2

(
α −f
f α

)
.

Once η is computed, v can be obtained directly,

v = −Aαv0 + Aα∇η. (2.5)

When f is constant, equation (2.4) reduces to

(Δ− (α2 + f 2))η= α2 + f 2

α
(η0 + ∇ · (Aαv0)). (2.6)
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Example 2 (the wave equation) Consider the wave propagation problem

utt = κΔu, x ∈ [0, 1] × [0, 1], (2.7)

where κ(x)� κ0 > 0 is a smooth uniformly positive function, the initial conditions u(x, 0) and ut(x, 0)
are prescribed square integrable and continuous functions, and periodic boundary conditions are used.

In order to apply the method in this paper, we reformulate (2.7) as a first-order system in both time
and space by defining v = ut, w = ux and z = uy. Then we have that⎛

⎝wt

zt

vt

⎞
⎠=

⎛
⎝ 0 0 ∂x

0 0 ∂y

κ∂x κ∂y 0

⎞
⎠
⎛
⎝w

z
v

⎞
⎠ , (2.8)

with initial conditions

v(x, 0)= u0(x), w(x, 0)= ∂u0

∂x
(x), z(x, 0)= ∂u0

∂y
(x).

Here the scalar function u to the original system (2.7) can be recovered after the final time step by
solving the elliptic equation Δu = wx + zy.

To apply the method in this paper, we compute the solution to

(L − α)

⎛
⎝w

z
v

⎞
⎠=

⎛
⎝ vx − αw

vy − αz
κ(wx + zy)− αv

⎞
⎠=

⎛
⎝w0

z0

v0

⎞
⎠ (2.9)

as follows. First, solving for w and z in terms of v,

w = 1

α
(vx − w0), z = 1

α
(vy − z0), (2.10)

it is straightfoward to show that

(Δ− α2κ−1)v = ακ−1v0 + ∂w0

∂x
+ ∂z0

∂y
. (2.11)

Once v is known, w and z can then be computed directly via (2.10).

2.2 Discretization

In this section, we describe a high-order accurate discretization scheme for elliptic boundary value
problems (BVPs) such as (2.6) and (2.11) which arise in the solution of hyperbolic evolution equations.
Specifically, we describe the solver for a BVP of the form

Bu(x)= f (x), x ∈Ω , (2.12)

where B is an elliptic differential operator. To keep things simple, we consider only square domains
Ω = [0, 1]2, but the solver can easily be generalized to other domains. The solver we use is described in
detail in Martinsson (2015), our aim here is merely to give a high-level conceptual description.
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The PDE (2.12) is discretized using a multidomain spectral collocation method. Specifically, we
split the square Ω into a large number of smaller squares (or rectangles), and then put down a tensor
product grid of p × p Chebyshev nodes on each small square, see Fig. 1. The parameter p is chosen so
that dense computations involving matrices of size p2 × p2 are cheap (p = 20 is often a good choice).
Let {xj}N

j=1 denote the total set of nodes. Our approximation to the solution u of (2.12) is then represented
by a vector u ∈ C

N , where the j’th entry is simply an approximation to the function value at node xj, so
that uj ≈ u(xj). The discrete approximation to (2.12) then takes the form

Bu = f, (2.13)

where B is an N × N matrix. The j’th row of (2.13) is associated with a collocation condition for node
xj. For all j for which xj is a node in the interior of a small square (filled circles in Fig. 1), we directly
enforce (2.12) by replacing all differentiation operators by spectral differentiation operators on the local
p × p tensor product grid. For all j for which xj lies on a boundary between two squares (hollow squares
in Fig. 1), we enforce that normal fluxes across the boundary are continuous, where the fluxes from each
side of the boundary are evaluated via spectral differentiation on the two patches (corner nodes need
special treatment; see Martinsson, 2015).

2.3 Direct solver

The discrete linear system (2.13) arising from discretization of (2.12) is block-sparse. Since it has the
typical sparsity pattern of a matrix discretizing a 2D differential operator, it is possible to compute its LU
factorization in O(N1.5) operations using a nested dissection ordering of the nodes (Duff et al., 1986;
George, 1973) that minimizes fill-in. Once the LU-factors have been computed, the cost of a linear
solve is O(N log N). In the numerical computations presented in Section 4, we use a slight variation of
the nested-dissection algorithm that was introduced in Martinsson (2013) for the case of homogeneous
equations. The extension to the situation involving body loads is straightforward, see Martinsson (2015).

We note that by exploiting internal structure in the dense sub-matrices that appear in the factors of
B as the factorization proceeds, the complexity of both the factorization and the solve stages can often
be reduced to optimal O(N) complexity (Gillman & Martinsson, 2014). However, for the problem sizes
considered in this manuscript, there would be little practical gain to implementing this more complex
algorithm.

3. Constructing rational approximations

We now discuss how to construct efficient rational approximations to smooth functions f (x) defined on
the real line. For concreteness, we consider approximating the phi-functions

ϕ0(x)= eix, ϕ1(x)= eix − 1

ix
, ϕ2(x)= eix − ix − 1

(ix)2
,

that arise for high-order exponential integrators (cf. Schmelzer & Trefethen, 2007a and the review
article Hochbruck & Ostermann, 2010). By considering the real and imaginary components separately,
we assume that f (x) is real-valued (it turns out that the poles in the approximation will be the same for
the real and imaginary components, as explained shortly). The construction proceeds in two steps; the
second step is actually a pre-computation and needs only be done once, but is presented last for clarity.
First, we construct an approximation to f (x) by sums of shifted Gaussians ψh(x)= (4π)−1/2e−x2/(4h2)
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(see Section 3.1 for details),∣∣∣∣∣f (x)−
M∑

m=−M

bmψh(x + mh)

∣∣∣∣∣� δ1, −Λ� x �Λ. (3.1)

Here h is inversely proportional to the bandlimit of f (x), and M controls the interval Λ over which
the approximation is valid (roughly |x| � Mh). When f (x)= eix, the coefficients are explicitly given
by bm = (ψ̂h(1)/h)e−2π imh, and the approximation is remarkably accurate (see (3.6) for error bounds).
Secondly, using the approach in Damle et al. (2013), a rational approximation toψ1(x)= (4π)−1/2e−x2/4

is constructed over the real line (see Section 3.2 for details),∣∣∣∣∣∣ψ1(x)− 2 Re

⎛
⎝ L∑

j=−L

aj

ix − (μ+ ij)

⎞
⎠
∣∣∣∣∣∣� δ2, x ∈ R. (3.2)

Note that the imaginary parts of the poles in the above approximation are integer multiples
j = 0, ±1, . . . , ±L. For L = 11, we construct μ and coefficients aj such that the L∞ approximation error
δ2 satisfies δ2 < 10−12 (see Table 1). Finally, combining (3.1) and (3.2), we obtain a rational approxima-
tion to f (x), ∣∣∣∣∣f (x)− 2 Re

(
M+L∑

n=−M−L

cn

ix − h(μ+ in)

)∣∣∣∣∣� δ1 + 2(M + L)δ2. (3.3)

Here the coefficients cn are given by

cn = h
L2∑

k=L1

akbn−k ,

where
L1(n)= max(−L, n − M ), L2(n)= min(L, n + M ).

Importantly, constructing the rational approximation (3.2) to ψ(x) needs only be done once. In
particular, once μ and the coefficients aj are pre-computed, rational approximations to general func-
tions f (x) over arbitrarily long-spatial intervals can be obtained with minimal effort, as discussed in
Section 3.1. We present μ, and the coefficients aj, j = −11, . . . , 11, in Table 1, which are sufficient to
yield an L∞ error δ1 ≈ 7 × 10−13 in (3.2).

Using the reduction algorithm in Haut & Beylkin (2012), we find that the rational approximation
constructed for eix is close to optimal in the L∞ norm, for a given accuracy δ and spatial cutoff A.
In fact, the construction in this paper uses only 1.2 times more poles than the near optimal rational
approximation obtained from Haut & Beylkin (2012) when δ = 10−10 and Λ= 56π , which we use in
our numerical experiments. We chose Λ= 56π in the numerical experiments to demonstrate that the
computation can in theory be parallelized over hundreds of characteristic wavelengths, but this choice
for Λ is otherwise arbitrary and can be taken smaller or larger depending on the application. We note
that the residues corresponding to this near optimal approximation can be very large and, for this reason,
we prefer to use the sub-optimal approximation instead.

As clarified in Sections 3.1 and 3.2, the same poles can be used to approximate multiple functions
with the same bandlimit. For example, we can use the same poles to approximate all functions e2π itx,
for 0 � t � 1, since all these functions have bandlimit less than or equal to e2π ix; the dependence on
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HIGH-ORDER TIME-PARALLEL APPROXIMATION OF EVOLUTION OPERATORS 11 of 29

t is only through the coefficients, which are given explicitly by bm = (ψ̂h(t)/h)e−2π inth. In particular,
the poles αm = h(μ+ im) are independent of t and yield uniformly accurate approximations to eitx on
the same interval [−Λ,Λ]. This observation enables the efficient computation of multiple operator
exponentials eskLu0, for sk = tk/L, using the same computed solutions (tL − αm)

−1u0, m = 1, . . . , M .
A similar comment applies to the phi-functions from exponential integrators.

Generally, any rational approximation to eix (or more general functions) must share the same number
of zeros within the interval of interest; in particular, since the rational approximation can be expressed
as a quotient of polynomials, it is therefore subject to the Nyquist constraint. However, one advan-
tage of this approximation method is that it allows efficient rational approximations of functions that
are spatially localized. In fact, since the approximation (3.1) involves highly localized Gaussians, the
subsequent rational approximations are able to represent spatially localized functions as well as highly
oscillatory functions using (perhaps a subset) of the same collection of poles. This allows the ability to
take advantage of spectral gaps (e.g., from scale separation between fast and slow waves) and possibly
bypass the Nyquist constraint under certain circumstances.

3.1 Gaussian approximations to a general function

We discuss how to construct the approximation (3.1). To do so, we choose h small enough that the
Fourier transform f̂ (ξ) is zero (or approximately so) outside the interval [−1/(2h), 1/(2h)]. Then we
can expand f̂ (ξ)/ψ̂h(ξ) in a Fourier series,

f̂ (ξ)

ψ̂h(ξ)
=

∞∑
m=−∞

cme2π imhξ , (3.4)

where

cm = h
∫ 1/(2h)

−1/(2h)
e−2π imhξ f̂ (ξ)

ψ̂h(ξ)
dξ .

Transforming (3.4) back to the spatial domain, we have that

f (x)=
∞∑

m=−∞
cmψh(x + mh).

Note that the functions ψh(x + mh) are tightly localized in space, and truncating the above series from
−M to M yields accurate approximations for −(M − b)hx< x< (M − b)hx, where b> 0 is a small
number that is related to the decay of ψh(x). We remark that the authors in Maz’ya & Schmidt (1996)
discuss a related method of constructing quasi-interpolating representations via sums of Gaussians (see
Maz’ya & Schmidt, 2007 for a comprehensive survey).

Specializing to the case when f (x)= e2π ix, we have that f̂ (ξ)= δ(ξ − 1), and so the coefficients cm

are given by

cm = h

ψ̂h(1)
e−2π imh. (3.5)
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12 of 29 T. S. HAUT ET AL.

Similarly, for functions ϕ1(x) and ϕ2(x), the coefficients cm can be obtained numerically using the fact
that

ϕ̂1(ξ)=
⎧⎨
⎩2π , − 1

2π
� ξ � 0,

0, otherwise.

and

ϕ̂2(ξ)=
⎧⎨
⎩(2π)

2

(
ξ + 1

2π

)
, − 1

2π
� ξ � 0,

0, otherwise.

For example, the coefficients cm, e.g., φ1(x) can be computed via discretization of the integral,

cm = h
∫ 0

−1/(2π)
e−2π imhξ e−2π imhξ

ψ̂h(ξ)
dξ .

In Fig. 2, we plot the error, ∣∣∣∣∣ϕj(x)−
∞∑

m=−∞
cm,jψ(x + mh)

∣∣∣∣∣ ,
for the phi-functions ϕ1(x) and ϕ2(x), where we choose h = 1 and M = 200; note that the choice of h
corresponds to the bandlimit of ϕj(x). As shown in Fig. 2, the error is smaller than ≈ 3 × 10−13 for all
−191 � x � 191, and is shown to begin to rise at the ends of the intervals, which are close to Mh. This
behaviour can be understood by noting that

∣∣∣∣∣ϕj(x)−
M∑

m=−M

cm,jψ1(x + m)

∣∣∣∣∣�
∑

|m|>M

|cm,j|ψ1(x + m),

where we used that the support of ϕ̂j is contained in [− 1
2 , 1.2]. Since the functions ψ1(x + m) for m>M

decay rapidly away from x = −m, the error from truncation is negligible when |x| � (M − m0) and
m0 =O(1).

We remark that, for the function eix, it can be shown (see Appendix) that the approximation for eix

satisfies ∣∣∣∣∣eix −
M∑

m=−M

cmψh(x + mh)

∣∣∣∣∣� 1

ψ̂h(1)

⎛
⎝∑

k |= 0

ψ̂h

(
k

h

)
+
∑

|m|>M

ψh(x + mh)

⎞
⎠ , (3.6)

where cm is defined in (3.5). We see that the first sum is negligible, e.g., h � 1, owing to the tight
frequency localization of ψh. Similarly, the second sum is negligible when |x| � (M − m0)h and
m0 =O(1), owing to the tight spatial localization of ψ .

3.2 Rational approximation to a Gaussian

We now discuss how to construct the approximation (3.2).
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(a)

(b)

Fig. 2. The absolute error in the Gaussian approximations of ϕj(x) for (a) j = 1 and (b) j = 2, using h = 1 and M = 200.

To do so, we first use Adamyan–Arov–Krein (AAK) theory (see Damle et al., 2013 for details) to
construct a near optimal rational approximation,

∣∣∣∣∣∣
1√
4π

e−x2/4 − Re

⎛
⎝ N∑

j=1

bj

ix + αj

⎞
⎠
∣∣∣∣∣∣� δ.

For an accuracy of δ≈ 10−13, 13 poles γj are required.
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Fig. 3. Error in the rational approximation (3.2) to e−x2/4.

Setting μ= minj Re(αj), we next look for a rational approximation to (4π)−1/2e−x2/4 of the form

R(x)= Re

⎛
⎝ L∑

j=−L

aj

ix + μ+ ij

⎞
⎠ , (3.7)

where we take L = 11. We find the coefficients aj by minimizing the L∞ error

∥∥∥∥∥∥
1√
4π

e−x2/4 − Re

⎛
⎝ L∑

j=−L

aj

ixn + μ+ ij

⎞
⎠
∥∥∥∥∥∥

∞

,

where the points xn ∈ [−30, 30] are chosen to be more sparsely distributed outside the numerical support
of e−x2/4; the interval [−30, 30] is found experimentally to yield high accuracy for the approximation
over the entire real line. Finding the coefficients aj, j = −L, . . . , L, that minimize the L∞ error can be
cast as a convex optimization problem, and a standard algorithm can be used (we use Mathematica).
The resulting approximation error is shown in Fig. 3; the error remains less than ≈ 7 × 10−13 for all
x ∈ R.

We display the real number μ, and the coefficients aj, j = 1, . . . , 11 in Table 1. In particular, these
numbers are the only parameters that are needed in order to construct rational approximations to general
functions on spatial intervals of any size.

In Fig. 4, we show the resulting rational approximations of cos(2πx) and sin(2πx), which use the
same 172 complex–conjugate pairs of poles; the L∞ error is seen to be ≈ 10−10 over the interval −28 �
x � 28.
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Table 1 Coefficients aj, j = −11, . . . , 11 and numberμ, in the rational
approximation (3.7)

μ= −4.315321510875024,
a−11 = (−1.0845749544592896 × 10−7, 2.77075431662228 × 10−8),
a−10 = (1.858753344202957 × 10−8, −9.105375434750162 × 10−7),
a−9 = (3.6743713227243024 × 10−6, 7.073284346322969 × 10−7),
a−8 = (−2.7990058083347696 × 10−6, 0.0000112564827639346),
a−7 = (0.000014918577548849352, −0.0000316278486761932),
a−6 = (−0.0010751767283285608, −0.00047282220513073084),
a−5 = (0.003816465653840016, 0.017839810396560574),
a−4 = (0.12124105653274578, −0.12327042473830248),
a−3 = (−0.9774980792734348, −0.1877130220537587),
a−2 = (1.3432866123333178, 3.2034715228495942),
a−1 = (4.072408546157305, −6.123755543580666),
a0 = −9.442699917778205,
a1 = (4.072408620272648, 6.123755841848161),
a2 = (1.3432860877712938, −3.2034712658530275),
a3 = (−0.9774985292598916, 0.18771238018072134),
a4 = (0.1212417070363373, 0.12326987628935386),
a5 = (0.0038169724770333343, −0.017839242222443888),
a6 = (−0.0010756025812659208, 0.0004731874917343858),
a7 = (0.000014713754789095218, 0.000031358475831136815),
a8 = (−2.659323898804944 × 10−6, −0.000011341571201752273),
a9 = (3.6970377676364553 × 10−6, −6.517457477594937 × 10−7),
a10 = (3.883933649142257 × 10−9, 9.128496023863376 × 10−7),
a11 = (−1.0816457995911385 × 10−7, −2.954309729192276 × 10−8)

3.3 Constructing rational approximation of modulus bounded by unity

For our applications, it is important that the approximation to eix is bounded by unity on the real line. In
particular, the Gaussian approximation for eix constructed in Section 3.1 has absolute value larger than
one when |x| ≈ Mh, and this can lead to instability in repeated applications of etL.

The basic idea is to construct a rational function S(ix) that satisfies S(ix)≈ 1 for |x| � M0h and
S(ix)≈ 0 for |x| � M0h. As long as M0 is slightly less than M , the function S(ix)RM (ix) accurately
approximates eix for |x| � M0h, and decays rapidly to zero for |x| � M0h. Therefore, |S(ix)RM (ix)| � 1
for all x ∈ R, and repeated application of S(tL)RM (tL)u0 is stable for all t> 0. In Fig. 5, we plot a
rational filter that uses 33 complex–conjugate poles; we see that |S(ix)− 1| ≈ 10−10 for −28 � x � 28.

Although the above approach results in a stable method, a slightly modified version can reduce the
amount of computation by a factor of 2. This is motivated by the following simple observation: since
u0(x) is real-valued,

(tL − α)−1u0 = (tL − ᾱ)−1u0. (3.8)

Recalling that the poles from Section 3.2 come in complex–conjugate pairs, only half the matrix inverses
need to be pre-computed and applied if (3.8) is used. However, directly using (3.8) results in numerical
instabilities, where small errors in the high frequencies are amplified after successive applications of
RM (tL)u0.
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(a)

(b)

Fig. 4. Error in the rational approximations of sin(2πx) and cos(2πx) (plots (a) and (b)), for −28 �x �28. These approximations
use the same 172 pairs of complex–conjugate poles.

The fix is to eliminate the errors in the high frequency components by instead computing
S(k0Δ)RM (tL)u0, where the parameter k0 is adjusted experimentally so that

(1) ‖S(k0Δ)u0 − u0‖2 is smaller than the desired approximation accuracy

(2) Decreasing k0 by a factor of 2 results in the error ‖S(k0Δ)u0 − u0‖2 being larger than the desired
approximation accuracy

The error and the stability of the time-stepping scheme appears relatively insensitive to the precise
choice of k0 and the above procedure has sufficed for all problems we have examined. We note that
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(a) (b)

Fig. 5. (a) Plot of the rational filter function S(ix), for −400 �x �400. (b) Plot of the difference |S(ix)− 1| for −150 �x �150.

the transition region between S(ix)≈ 1 and S(ix)≈ 0 can be made arbitrarily small (see Fig. 5), and the
rational function S(ix) uses a number of poles that scales logarithmically in the width of the transition
region.

We now discuss how to construct the rational filter function S(ix):

S(ix)= Re

⎛
⎝ M1∑

j=1

dj

(ix + βj)

⎞
⎠ . (3.9)

The poles βm and residues dm are explicitly given in Tables 2 and 3 for M1 = 33 (see also Fig. 5).
To do so, we use that (see Müller & Varnhorn, 2007)

∣∣∣∣∣ 1

ψ̂h(1)

∞∑
m=−∞

ψh(x + hm)− 1

∣∣∣∣∣� 1

hψ̂h(1)

∑
k |= 0

ψ̂h

(
k

h

)
,

which follows from the Poisson summation formula. For h � 1, the right-hand side is negligible, owing
to the tight frequency localization of ψ̂h(ξ). Truncating the above sum and using the tight spatial local-
ization of ψh(x), we see that the function

χ(x)=
M0∑

m=−M0

ψh(x + mh), (3.10)

is approximately unity for |x| � M0h, and decays to zero rapidly when |x| � M0h. It also holds out that
|χ(x)| � 1 for all x ∈ R. Therefore, using the techniques from Sections 3.1 and 3.2, we construct a
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Table 2 Poles for rational filter function S(ix),βj,
j = 1, . . . , 33, in (3.9)

β1 = (−5.6815244593211665, 195.60368900644573),
β2 = (−5.681487525698976, −195.60354575365798),
β3 = (−5.790937378563278, 193.51258302488918),
β4 = (−5.790931808899799, −193.512407062321),
β5 = (−5.862236792305668, 191.74408220195133),
β6 = (−5.862237702715605, −191.743890714106),
β7 = (−5.936140551272466, 190.12359157219748),
β8 = (−5.936124270898454, −190.12341069616582),
β9 = (−189.4725566345281, 0.0005010358202330836),
β10 = (−176.66776934247073, 68.32388925486636),
β11 = (−176.6680762718217, −68.3230079401094),
β12 = (−145.68006428301598, 120.86369765397113),
β13 = (−145.68050951454478, −120.863074132019),
β14 = (−110.26321457057725, 153.676839340607),
β15 = (−110.26363743084794, −153.6764516160099),
β16 = (−79.29081523941767, 171.57427345997775),
β17 = (−79.29114472221063, −171.57404315017212),
β18 = (−55.356508023495955, 180.6106832990567),
β19 = (−55.356733683903755, −180.61054964388333),
β20 = (−37.847789557552204, 184.98161469308596),
β21 = (−37.847920735512524, −184.98155004038057),
β22 = (−25.222413671409782, −187.02183399118556),
β23 = (−25.22237138528123, 187.0218302467066),
β24 = (−6.02552562063538, 188.52945956389644),
β25 = (−6.025505490003158, −188.52931522046455),
β26 = (−15.837104131666214, −187.83927148804779),
β27 = (−15.83719317531402, 187.8391829927176),
β28 = (−6.054693412832868, 186.81930649684463),
β29 = (−6.054700825299065, −186.81918507624317),
β30 = (−6.0164875510372156, 184.96674677593367),
β31 = (−6.016529115859488, −184.96664278981225),
β32 = (−5.9124443095601, 182.8128396205155),
β33 = (−5.912519458298405, −182.81276452097833)

rational approximation Q(ix) to the function χ(x) in (3.10),

∣∣∣∣∣Q(ix)−
M0∑

m=−M0

ψh(x + mh)

∣∣∣∣∣� δ, x ∈ R, (3.11)

The number of poles required to represent the sub-optimal approximation for Q(x) can be drastically
reduced with the reduction algorithm (Haut & Beylkin, 2012), which produces another proper rational
function S(x) such that

|Q(ix)− S(ix)| � δ0, x ∈ R,
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Table 3 Residues for rational filter function
S(ix), dj, j = 1, . . . , 33, in (3.9)

d1 = (−0.005515883340470063, 0.0018078912091650061),
d2 = (−0.005517983400057653, −0.0018065984116659806),
d3 = (0.29517517913626257, 0.030850668188794006),
d4 = (0.2952473284303156, −0.0309522473436694),
d5 = (−2.8087936414479624, −0.1811594749911728),
d6 = (−2.809264947520908, 0.18217487582852943),
d7 = (9.005601902434998, −2.188432070313594),
d8 = (9.006566533922124, 2.1854340243226966),
d9 = (−11.388204088432527, 2.7476480737856203e − 5),
d10 = (−9.90121707360217, 3.846338806959291),
d11 = (−9.901252091929033, −3.8463011680536536),
d12 = (−6.7340017287953335, 5.617362425311499),
d13 = (−6.7340440687043035, −5.617355388135177),
d14 = (−3.8615372397992824, 5.421083499590135),
d15 = (−3.8615686391768222, −5.421094962675174),
d16 = (−2.0029034444370817, 4.379034646612036),
d17 = (−2.0029227879567775, −4.379051310390535),
d18 = (−0.9837969850082168, 3.2617150351336717),
d19 = (−0.9838093306384953, −3.261730953927478),
d20 = (−0.467449411102599, 2.3543689422597613),
d21 = (−0.4674597496668436, −2.354383201175641),
d22 = (−0.2107304966321986, −1.7074746753873138),
d23 = (−0.2107185642076128, 1.7074599077825507),
d24 = (−10.983655336199284, 6.785929970040307),
d25 = (−10.984308465853344, −6.782645956476531),
d26 = (−0.050388404664131234, −1.3292002320672072),
d27 = (−0.05037565142175525, 1.3291638757790596),
d28 = (4.942459887889321, −2.709981483171564),
d29 = (4.942545539190744, 2.7086540705572233),
d30 = (−0.6505063364528741, 0.12905013280033062),
d31 = (−0.6504802925485075, −0.12888345506775425),
d32 = (0.011414313921891395, 0.006515262160355019),
d33 = (0.011411943056417042, −0.006518333287066878)

and with a near optimally small number of poles for the prescribed L∞ error δ0. Since the poles of S(ix)
and R(ix) are distinct, the function S(ix)R(ix) can be expressed as a proper rational function. The final
function S(ix) is what is shown in Fig. 5.

4. Examples

4.1 The 2D (rotating) shallow water equations

We apply the technique proposed to the linear shallow water equations:

vt = −fJv + ∇η,

ηt = ∇ · v,

where all quantities are as in Section 2.1, cf. equation (2.1).
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We apply the algorithm in the spatial domain [0, 1] × [0, 1], using periodic boundary conditions and
a constant Coriolis force f = 1. In this case, an exact solution can be computed analytically since the
matrix exponential is diagonalized in the Fourier domain, and can be rapidly applied via the fast Fourier
transform. In particular,

L(rl
keik·x)= iωl

krl
keik·x,

where rl
k are eigenvectors of the matrix ⎛

⎝ 0 −f ik1

−f 0 ik2

ik1 ik2 0

⎞
⎠ .

Explicit expressions for the eigenvectors rl
k can be found in Majda (2003).

We first compare the accuracy and efficiency of applying enτLu0, for τ = 3 and n = 1, . . . , 10, against
RK4 and against using Chebyshev polynomials. In particular, the Chebyshev method uses the approxi-
mation

eΔtLu0 ≈ J0(i)u0 + 2
K∑

k=0

(i)kJk(−i)Tk(ΔtL)u0, (4.1)

coupled with the standard recursion for applying Tk(ΔtL).
For stability, Δt must be chosen so that the spectrum of the spatially discretized version of the

operator ΔtL is O(1) in magnitude (otherwise the terms in the sum (4.1) get very large and this results
in catastrophic cancellation).

We choose a polynomial degrees of 12 and 9 for the high-accuracy and low-accuracy simulations,
respectively, which we find experimentally is a good compromise between the time step size Δt needed
for a given accuracy, and the number of applications of L. In all the time-stepping schemes, we use the
same spectral element discretization and parameter values as described above. All the algorithms are
implemented in Octave, including the direct solver described in Section 2. The rational filter parameter
k0 is chosen according to the steps discussed in Section 3.3. For the all the following numerical exam-
ples, when applying the operator exponential using the rational approximation (1.5), we take M = 160
in (3.3), which results in 376 overall terms in (1.5) ((2 × (160 + 11)+ 1 + 33) terms, with 33 com-
ing from the rational filter function); the parameter h in (3.3) is taken to be 1

3 for the lower accuracy
simulations and 1

5 for the higher accuracy simulations.

4.1.1 First test case for the shallow water equations We first consider the initial conditions:

η(x)= sin(6πx) cos(4πy)− 1
5 cos(4πx) sin(2πy),

v1(x)= cos(6πx) cos(4πy)− 4 sin(6πx) sin(4πy),

v2(x)= cos(6πx) cos(6πy).

(4.2)

For these initial conditions, we use 6 × 6 = 36 elements of equal area, and 16 × 16 = 256 Chebyshev
quadrature nodes for each element. To assess the accuracy of the method, the exponential enτLu0 is
applied in the Fourier domain.

When applying the operator exponential using the rational approximation (1.5), we take M = 160
and h = 1

5 in (3.3), which results in 376 overall terms in (1.5) ((2 × (160 + 11)+ 1 + 33) terms, with 33
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(a)

(b)

Fig. 6. (a) Plots of the L∞ error, ‖un − enτLu0‖∞, versus the big time step nτ , where τ = 3 and 1 �n �10. Here the approx-
imation un is computed via RK4, the Chebyshev polynomial method, and the rational approximation method. (b) Plots of the
computation time (min) versus the big time step nτ , for the RK4, the Chebyshev polynomial method and the rational approxima-
tion method.

coming from the rational filter function).We also choose a big time step τ = 3; with this overall choice
of parameters, this results in an L∞ error of 3.4 × 10−10 for a single (large) time step.

For this choice of parameters in the spectral element discretization, the cost of applying the solution
operator of (2.3)—i.e., forming the right hand side of (2.6), solving (2.6), and evaluating (2.5)—is about
4.5 times more expensive than the cost of applying the forward operator (2.2) directly.

For the three time-stepping methods, the L∞ errors in the approximation of enτLu0, n = 1, . . . , 10,
are plotted in Fig. 6(a). Similarly, the total computation times (in minutes) of approximating enτLu0,
n = 1, . . . , 10, are plotted in Fig. 6(b) (this includes the pre-computation time for representing the
inverses). From Fig. 6(a), we see that the L∞ errors from all three methods remain < 10−8 for
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Table 4 Comparison of the accuracy and efficiency of applying, eτLu0 and
τ = 1.5, for system (2.1) and u0 in (4.2). The comparison uses RK4, Chebyshev
polynomials and the rational approximation (1.5); in the spatial discretization
of all three comparisons, 12 × 12 = 144 elements and 16 × 16 = 254 Chebyshev
quadrature nodes per element are used

eτL, τ = 1.5 L∞ error Time (min) Pre-comp. (min)

Rational approx., M = 376 terms 2.1 × 10−10 4.39 103.1
RK4 7.0 × 10−10 131.9 NA
Cheby. poly., degree 12 1.1 × 10−10 150.5 NA

n = 1, . . . , 10. From Fig. 6(b), we see that the first time step for the rational approximation method
is about half the cost of both RK4 and the Chebyshev polynomial method. However, subsequent time
steps for the new method is about 40 times cheaper than both RK4 and the Chebyshev polynomial
method (for about the same accuracy).

4.1.2 Second test case: doubling the spatial resolution Next, we compute eτLu0, τ = 1.5, with the
initial conditions:

η(x)= sin(12πx) cos(8πy)− 1
5 cos(8πx) sin(4πy),

v1(x)= cos(12πx) cos(8πy)− 4 sin(12πx) sin(8πy),

v2(x)= cos(12πx) cos(12πy).

(4.3)

In particular, we double the bandlimit in each direction. In each of the time-stepping schemes, we
use 12 × 12 = 144 elements of equal area, and 16 × 16 = 256 Chebyshev quadrature nodes for each
element. We again use the same parameters for the rational approximation (1.5) as described in
Section 4.1.1.

We only examine the error and computation time for one big time step. For the rational approxi-
mation method, we present both the pre-computation time for obtaining data-sparse representations of
the 376 inverses in (1.5), and the computation time for applying the approximation in (1.5) (once the
data-sparse representations are known). The results are summarized in Table 4. Since we only consider
a single time step, the pre-computation time and application time are included separately. The main
conclusion to draw from these results is that doubling the spatial resolution does not appreciably change
the relative efficiency of the three time-stepping methods (once representations for the inverse operators
in (1.5) are pre-computed).

4.1.3 Third test case: applying the operator exponential over a long time interval We now access
the accuracy of the new method when repeatedly applying eτL, τ = 1, in order to evolve the solution
over longer time intervals. In this example, we use the initial conditions:

η(x)= exp(−100((x − 1/2)2 + (y − 1/2)2)),

v1(x)= cos(6πx) cos(4πy)− 4 sin(6πx) sin(4πy),

v2(x)= cos(6πx) cos(6πy).

(4.4)
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Fig. 7. Plot of the L∞ error, ‖un − enτLu0‖∞, versus the big time step nτ , where τ = 1 and 1 �n �300. Here un denotes the
numerical approximation to enτLu0, as computed by the rational approximation (1.5) and the direct solver from Section 2.

Note that these initial conditions cannot be expressed as a finite sum of eigenfunctions of L. We use the
same spatial discretization parameters as in Section 4.1.2.

In Fig. 7, we show the L∞ error of the computed approximation un(x) to u(x, nτ), n = 1, . . . , 300.
As expected, the error increases linearly in the number of applications of the exponential. Note that, due
to the large step size of τ = 1, the error accumulates slowly in time and the solution can be propagated
with high accuracy over a large number of characteristic wavelengths.

4.1.4 Fourth test case: applying the operator exponential with lower accuracy We now repeat the
first example 4.1.1, but this time using lower accuracy for the temporal discretization. In particular,
we again use use M = 376 inverses for the rational approximation. However, we take a both smaller
accuracy by choosing h = 1

3 in the rational approximation (3.3), as well as a larger single (large) time
step τ = 5. This choice of parameters results in an L∞ error of 4.04 × 10−6 for a single (large) time step.

The results are summarized in Table 5. From this table, we see that the pre-computation time needed
to represent the M = 376 solution operators in (1.5) is 17.8 min, and the computation time needed to
apply the exponential is 0.925 min; the final accuracy in the L∞ norm is given by 4.0 × 10−6. For the
Chebyshev polynomial method, we used degree 9 polynomials and a time step of 0.004; the overall
time for the application of the exponential is 23.3 min, and the final accuracy is given by 3.7 × 10−6.
Finally, for RK4 we used a time step of 0.002; using RK4 takes an overall time of 5.44 min, with a final
accuracy of 1.37 × 10−5.

4.1.5 Fifth test case: applying the operator exponential to a nonsmooth initial condition We now
repeat the third example 4.1.3 for long time simulations, but this time we use an initial condition with a
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Table 5 Comparison of the accuracy and efficiency of applying, eτLu0 and
τ = 5, for system (2.1) and u0 in (4.2). The comparison uses RK4, Chebyshev poly-
nomials and the rational approximation (1.5); in the spatial discretization of all
three comparisons, 6 × 6 = 36 elements and 16 × 16 = 254 Chebyshev quadra-
ture nodes per element are used

eτL, τ = 5 L∞ error Time (min) Pre-comp. (min)

Rational approx., M = 376 terms 4.0 × 10−6 0.925 17.8
RK4 1.3 × 10−5 5.44 NA
Cheby. poly., degree 9 3.7 × 10−6 23.3 NA

Fig. 8. Plot of the L∞ error, ‖un − enτLu0‖∞, versus the big time step nτ , where τ = 3 and 1 �n �170. Here the initial condition
in Section 4.1.5 is used, which contains a cusp-type singularity, and un denotes the numerical approximation to enτLu0 obtained
from the rational approximation method.

cusp-type singularity. In particular, we use τ = 3, M = 376 inverses for the rational approximation, the
same spectral element grid from Section 4.1.1, and initial conditions:

η(x)= exp(−100
√
((x − 1/2)2 + (y − 1/2)2)),

v1(x)= 0,

v2(x)= 0.

(4.5)

Note that the interface variable η now has a cusp-type singularity at ( 1
2 , 1

2 ).
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Table 6 Comparison of three methods for a high accuracy computation of the
operator exponential etLu0 and t = 1.5, for system (2.8) and u0 in (4.7). The com-
parison uses RK4, Chebyshev polynomials and the rational approximation (1.5);
in the spatial discretization of all three comparisons, 12 × 12 = 144 elements and
16 × 16 = 254 Chebyshev quadrature nodes per element are used

etL, t = 1.5 L∞ error Time (min) Pre-comp. (min)

Rational approx., M = 376 terms 1.6 × 10−9 3.76 113.4
RK4 3.5 × 10−10 63.9 NA
Cheby. poly., degree 12 3.5 × 10−8 57.5 NA

In Fig. 8, we show the L∞ error of the computed approximation un(x) to u(x, nτ), n = 1, . . . , 300.
As expected, the singularity in η results in essentially no accuracy (due to a lack of spatial resolution in
the spectral element grid). However, note that the time-stepping scheme itself remains stable throughout
the evolution.

4.2 Example 2

4.2.1 First test case: applying the operator exponential with high accuracy In our second example,
we consider the wave propagation problem

utt = κΔu, x ∈ [0, 1] × [0, 1], (4.6)

where κ(x) > 0 is a smooth function, the initial conditions u(x, 0) and ut(x, 0) are prescribed, and peri-
odic boundary conditions are used.

Since the procedure and results are similar to those in Section 4.1, we simply test the efficiency and
accuracy of this method over a single time step τ = 1.5. In particular, we compare the accuracy and
efficiency for one application eτLu0, τ = 1.5, against RK4 and against using Chebyshev polynomials.
In our numerical experiments, we use the initial condition

u(x, y, 0)= sin(2πx) sin(2πy)+ sin(4πx) sin(4πy), (4.7)

and ut(x, y, 0)= 0. We also use

κ(x, y)=
(

3 + sin(4πx)

4

)1/2(3 + sin(4πy)

4

)1/2

.

Finally, in the spatial discretization, we use 12 × 12 = 144 elements with 16 × 16 = 256 points per ele-
ment (for all three time-stepping methods), and M = 376 poles in (1.5). For these parameters, the time
to apply the inverse of (2.9)—which involves forming the right hand side in (2.11), solving for v, and
computing (2.10)—is about 5.2 times more expensive than directly applying the forward operator (2.8).

Unlike Section 4.1, the operator exponential is not diagonalized in the Fourier domain. To assess
the accuracy, we use the Chebyshev polynomial method with a small enough step size to yield an
estimated error of < 10−10. In particular, we verify that the L∞ residual, ‖u(x, t;Δt)− u(x, t;Δt/2)‖∞,
using numerical approximations to u(x, t) computed with step sizes Δt and Δt/2 and the Chebyshev
polynomial method, is < 10−10. We then use u(x, t;Δt/2) as a reference solution.

 by guest on June 17, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


26 of 29 T. S. HAUT ET AL.

Table 7 Comparison of three methods for a lower accuracy computation of the
operator exponential etLu0 and t = 2.5, for system (2.8) and u0 in (4.7). The com-
parison uses RK4, Chebyshev polynomials and the rational approximation (1.5);
in the spatial discretization of all three comparisons, 12 × 12 = 144 elements and
16 × 16 = 254 Chebyshev quadrature nodes per element are used

etL, t = 2.5 L∞ error Time (min.) Pre-comp. (min.)

Rational approx., M = 376 terms 1.1 × 10−6 4.0 121
RK4 1.4 × 10−6 16.2 NA
Cheby. poly., degree 9 8.5 × 10−6 73.8 NA

The results are summarized in Table 6. From this table, we see that the pre-computation time
needed to represent the M = 376 solution operators in (1.5) is 113.4 min, and the computation time
needed to apply the exponential is 3.7 min; the final accuracy in the L∞ norm is given by 1.6 × 10−9.
For the Chebyshev polynomial method, 575 time steps of size Δt ≈ .0026 are taken, for an overall
time of 57 min; the final accuracy is given by 3.5 × 10−8. Finally, for RK4, 7, 500 time steps of size
Δt = 1

5 × 10−3 are taken, for an overall time of 63.9 minutes; the final accuracy is 3.5 × 10−10.

4.2.2 Second test case: applying the operator exponential with lower accuracy We now apply the
operator exponential with lower accuracy, using the same initial conditions and spatial parameter values
as Section 4.2.1. In particular, we again use M = 376 inverses for the rational approximation, but instead
choose a larger temporal discretization parameter h = 1

3 in the rational approximation (3.3), as well as
a larger single (large) time step τ = 5

2 , which results in both ≈ 10−6 accuracy. We verify stability of the
scheme for many time steps (though we only show efficiency and accuracy comparison for a single time
step).

We assess the accuracy of all three methods by against the solution obtained via use of Cheby-
shev polynomial method with degree 12 polynomials and Δt = .0025/2. The results are summarized in
Table 7. For the rational approximation method, the total precomputation time for computing a repre-
sentation of the operator exponential is 121 min, and the time for a single application of the operator
exponential is 4.0 min; the final accuracy is given by 1.1 × 10−6. Similarly, for the Chebyshev poly-
nomial method, the total time for applying the operator exponential using a time step of 0.0025 and
degree 9 polynomials is 73.8 min, with a final accuracy of 8.5 × 10−6. Finally, the time for applying
the operator exponential using RK4 and a time step of 0.00125 is 16.2 min, with a final accuracy of
1.41 × 10−6.

5. Generalizations

The manuscript presents an efficient technique for explicitly computing a highly accurate approxima-
tion to the operator ϕ(τL) for the case where L is a skew-Hermitian operator and where ϕ(t)= et,
so that ϕ(τL) is the time-evolution operator of the hyperbolic PDE ∂u/∂t =Lu. The technique can
be extended to more general functions ϕ. In particular, in using exponential integrators (cf. Cox &
Matthews, 2002), it is desirable to apply functions ϕj(τL), where ϕj(·) are the so-called phi-functions.
In Section 3, we presented (near) optimal rational approximations of the first few phi-functions. An
important property of these representations is that the same poles can be used to simultaneously apply
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all the phi-functions, and with a uniformly small error. In particular, linear combinations of the same
2M + 1 solutions (τL − αm)

−1u0, m = −M , . . . , M , can be used to apply ϕj(τL) for j = 1, 2, . . .. In a
similar way, linear combinations of the same 2M + 1 solutions can be used to apply esL for 0 � s � τ .

In addition, where there is a priori knowledge of large spectral gaps—for example, when there
is scale separation between fast and slow waves—the techniques in this paper, coupled with those in
Haut & Beylkin (2012), can be used to construct efficient rational approximations of eix which are
(approximately) nonzero only where the spectrum of L is nonzero. Since suitably constructed rational
approximations can capture functions with sharp transitions using a small number of poles (see Haut &
Beylkin, 2012), this approach requires a potentially much smaller number of inverse applications.
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Appendix Error bounds

Define the rational approximation RM (ix) to eix,

RM (ix)=
M+11∑

m=−M−11

cm

ix − h(μ+ im)
, (A.1)

where cm is defined as

cm = h

ψh(1)

max(−11,m−M )∑
k=− max(−11,m−M )

ake−(i/h)(m−k),

and the values ak and μ are given in Table 1. Then we have the following theorem.

Theorem A.1 The rational approximation in (A.1) satisfies

|eix − RM (ix)| � δ1 + 2(M + 11)δ2,

where

δ1 = 1

ψh(1)

⎛
⎝∑

k |= 0

ψ̂h

(
k

h

)
+
∑

|m|>M

ψh(x + mh)

⎞
⎠ ,

ψh(x)= (4π)−1/2e−x2/(4h2) and δ2 ≈ 5 × 10−13.

Proof. From equation (3.3), we see that it suffices to bound δ1. To do so, we use an application of the
Poisson summation formula:

∞∑
m=−∞

Ψh(x + mh)= 1

h

∞∑
k=−∞

e2π i(k/h)xΨ̂h

(
k

h

)
.
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Indeed, applying this to Ψh(x)= e−2π ixψh(x), we have that

∞∑
m=−∞

Ψh(x + mh)= e−2π ix
∞∑

m=−∞
e−2π imhψh(x + mh)

= 1

h

∞∑
k=−∞

e2π i(k/h)xΨ̂h

(
k

h

)

= 1

h

∞∑
k=−∞

e2π i(k/h)xψ̂h

(
k

h
+ 1

)
,

where the last equality uses the fact that

Ψ̂h

(
k

h

)
= ψ̂h

(
k

h
+ 1

)
.

Therefore, ∣∣∣∣∣
∞∑

m=−∞
e−2π imhψh(x + mh)− ψ̂h(1)

h
e2π ix

∣∣∣∣∣� 1

h

∑
k |= 0

ψ̂h

(
k

h

)
.

Finally, truncating the sum we obtain the bound (3.6). �

Theorem A.1 shows that the first term in the right-hand side (involving ψ̂h(k/h)) is negligible for
h � 1, owing to the tight frequency localization of ψh. Indeed, the error decays at a super exponential
rate once 1/h is larger than the bandlimit of eix. In addition, the second term in the right-hand side above
(involving ψh(x + mh)) is negligible for |x| � (M − m0)h, where m0 =O(1). Therefore, the interval
over which the approximation is valid is |x| � Mh.  by guest on June 17, 2015
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