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Abstract: A numerical method for variable coefficient elliptic PDEs on three dimensional
domains is described. The method is designed for problems with smooth solutions, and is based
on a multidomain spectral collocation discretization scheme. The resulting system of linear
equations can very efficiently be solved using a nested dissection style direct (as opposed to
iterative) solver. This makes the scheme particularly well suited to solving problems for which
iterative solvers struggle; in particular for problems with oscillatory solutions. A principal
feature of the scheme is that once the solution operator has been constructed, the actual solve
is extremely fast. An upper bound on the asymptotic cost of the build stage of O(N4/3) is
proved (for the case where the PDE is held fixed as N increases). The solve stage has close
to linear complexity. The scheme requires a relatively large amount of storage per degree of
freedom, but since it is a high order scheme, a small number of degrees of freedom is sufficient
to achieve high accuracy. The method is presented for the case where there is no body load
present, but it can with little difficulty be generalized to the non-homogeneous case. Numerical
experiments demonstrate that the scheme is capable of solving Helmholtz-type equations on a
domain of size 20×20×20 wavelengths to three correct digits on a modest personal workstation,
with N ≈ 2 · 106.

1. Introduction

The manuscript describes an algorithm for solving the boundary value problem

(1)

{
[Au](x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ ∂Ω,

where Ω = [0, 1]3 is the unit cube, and where A is an elliptic partial differential operator

(2) [Au](x) = −c11(x)[∂21 u](x)− c22(x)[∂22 u](x)− c33(x)[∂23 u](x)

− 2c12(x)[∂1∂2 u](x)− 2c13(x)[∂1∂3 u](x)− 2c23(x)[∂2∂3 u](x)

+ c1(x)[∂1 u](x) + c2(x)[∂2 u](x) + c3(x)[∂3 u](x) + c(x)u(x).

We assume that all coefficients in (2) are smooth functions, and that the matrixc11 c12 c13
c12 c22 c23
c13 c23 c33


is positive definite throughout the domain to ensure the ellipticity of the equation. The general-
izations to problems with a body load, to different boundary conditions, and to general domains
are straight-forward, as was demonstrated for problems in two dimensions in [24, 23, 18].

The method proposed is a generalization to three dimensions of a technique that was described
for problems in two dimensions in [23, 11, 12, 24]. The idea is to explicitly build an approximation
to the solution operator of (1) via a a hierarchical divide-and-conquer approach. This makes
the scheme a direct solver, as opposed to more commonly used iterative solvers. The domain Ω
is recursively split in halves to create a tree of boxes, cf. Figure 2. The splitting continues until
each box is small enough that the solution, and its first and second derivatives, can accurately
be resolved on a local tensor product grid of p × p × p Chebyshev nodes (where, say, p = 10
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or p = 15). The PDE (1) is enforced via collocation to locally compute a solution operator for
each leaf. Then in a single pass up through the tree of boxes, solution operators are constructed
hierarchically by “gluing together” the solution operators of the two children of each box.

The solver we propose has three principal advantages over standard solvers for (1): (i) Since
the solver is direct, the method is particularly well suited for problems for which efficient pre-
conditioners are difficult to find, such as, e.g., problems with oscillatory solutions. (ii) In situ-
ations where a sequence of equations involving the same operator but different boundary data
needs to be solved, the method is very fast. Once the solution operator has been built, we
demonstrate that problems with 106 degrees of freedom can be solved in about 1 second on a
standard workstation. (iii) Even though the solver is direct, its asymptotic complexity is at

worst O(N4/3) (as opposed to O(N2) complexity for classical nested dissection).
The idea of building a solution operator via a hierarchical process on a binary tree of boxes

is directly analogous to classical “nested dissection” and “multifrontal” solvers [9, 10, 8]. The
asymptotic complexity for these classical methods is O(N2) for the first solve, and then, once

the solution operator has been built, O(N4/3) for subsequent solves. The principal reason for
the unfavorable scaling is the need to perform operations such as matrix inversion and matrix-
matrix multiplication on dense matrices that are defined on the interfaces of the boxes. Since
the number of interface nodes for two boxes close to the top of the tree is O(N2/3), this leads to
O(N2) overall complexity. It has recently been observed [19, 26, 31, 13, 22] that by exploiting
internal structure in these dense matrices, the overall complexity can be reduced to linear, or
close to linear, for both the build and the solve stage. Specifically, the structure exploited is that
the off-diagonal blocks of these dense matrices have low numerical rank, and can be represented
using so called “data sparse” formats such as, e.g., the H-matrix format of Hackbusch and
co-workers [16, 15, 3, 2]. The direct solver described here follows exactly the same idea as
these linear complexity nested dissection schemes, but has a powerful advantage: While the
performance of existing nested dissection schemes deteriorates very rapidly when the order of
the discretization is increased, see [11, Table 3], the scheme proposed here allows very high order
methods to be used with essentially no additional cost for the direct solver. (Loosely speaking,
in the nested dissection method, the “separators” required to split the mesh into disconnected
pieces grow thicker as the order is increased. In contrast, they stay razor thin in our version,
regardless of the order.)

Like existing direct solvers for 3D problems, the method proposed here has two disadvantages
in that it requires a fairly large amount of storage, and in that the time required to initially
build the solution operators is comparatively large. In situations where an equation needs to
be solved only once, and iterative methods converge rapidly, the method proposed here will in
consequence not be competitive to techniques such as, e.g., multigrid. Our target is instead
situations where iterative methods converge slowly, or where the cost of building the solution
operator can be amortized over a large number of solves. Moreover, the method proposed
involves less communication than iterative methods (since each solve involves only a single pass
through the hierarchical tree, as opposed to one pass per iteration for iterative methods), which
opens a path to the construction of solvers that can efficiently be parallelized.

2. Outline of proposed solver

The method described is based on a hierarchical subdivision of the computational domain,
as illustrated in Figure 2. The solver consists of two stages. In the “build stage,” we first
process all of the leaf boxes in the tree. For each such box, a local solution operator and an
approximation to the local Dirichlet-to-Neumann (DtN) operator are built. The build stage
then continues with an upwards pass through the tree (going from smaller boxes to larger)
where for each parent box, we construct approximations to its local solution operator and its
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local DtN operator by “merging” the corresponding operators for its children. The end result of
the “build stage” is a hierarchical representation of the overall solution operator for (1). Once
this solution operator is available, the “solve stage” takes as input a given boundary data f , and
constructs an approximation to the solution u valid throughout the domain through a single
pass downwards in the tree (going from larger boxes to smaller).

The scheme described is a collocation scheme that uses for its collocation points tensor product
grids of q× q Gaussian nodes (a.k.a. Legendre nodes) placed on each face of each leaf box in the
domain. In addition to this global grid of Gaussian nodes, the computations executed on each
leaf also rely on a local p× p× p tensor product grid of Chebyshev nodes. Typically, p = q + 1
or p = q + 2.

The manuscript is structured as follows: Section 3 describes how a local spectral collocation
method can be used to construct the local “solution operators” on a leaf in the tree. Section 4
describes how to construct a solution operator for a parent node, given the solution operators
for its two children. Section 5 describes how the techniques in Sections 3 and 4 can be combined
to form a direct solver for (1) based on a multidomain spectral discretization. The method
described in Sections 3 – 5 has complexity O(N2) for the build stage. In Sections 6 and 7 we

then describe how to accelerate the build stage to O(N4/3) complexity by exploiting internal
structure in the DtN operators. Finally, Section 8 illustrates the performance of the algorithm
with several of numerical examples, and Section 9 summarizes the key features and limitations
of the algorithm, and possibly extensions.

3. Leaf computation

3.1. Overview. This section describes a spectral method for computing a numerical approxi-
mation to the Dirichlet-to-Neumann operator associated with the equation (1) for a box domain
Ω. In this section, we use a global spectral method to construct this operator. Later in this
report, we will apply the techniques developed in this section to construct DtN operators for
every leaf box in the hierarchical tree.

We represent potentials and fluxes on the six sides of the box Ω by collocation on tensor
product grids of Gaussian nodes on each side. To be precise, fix a small positive integer q (say

q = 5 or q = 10), and place on each side q2 nodes in a tensor product grid. Let {zi}6q
2

i=1 denote

these points. Furthermore, let u ∈ R6q2 denote approximations to the potential at these points,

u(i) ≈ u(zi), i = 1, 2, . . . , 6q2.

Let v ∈ R6q2 denote approximations to the fluxes at the Gaussian nodes,

v(i) ≈

 ∂1u(zi), when zi lies on a face parallel to the x2-x3 plane,
∂2u(zi), when zi lies on a face parallel to the x1-x3 plane,
∂3u(zi), when zi lies on a face parallel to the x1-x2 plane.

Our objective is now to build a 6q2 × 6q2 matrix T such that

(3) v = Tu.

In order to build T, we will work with a tensor product grid of p × p × p Chebyshev nodes
inside Ω (typically, p = q + 1). We proceed through the following steps: Given the vector u
of tabulated Dirichlet data on the Gaussian nodes, we first interpolate to get Dirichlet data on
the Chebyshev nodes that lie on the boundary. We then solve the PDE (1) using a spectral
collocation method in the interior of the box, see [27]. This gives us the values of u tabulated at
all interior nodes. We use spectral differentiation to construct the boundary fluxes, tabulated
on the boundary Chebyshev nodes. Finally, we interpolate back from the Chebyshev nodes to
the boundary Gaussian nodes. The combination of these four linear maps defines the matrix T.
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3.2. Local spectral solver on the Chebyshev grid. With p the order of the local Chebyshev

approximation, as defined in Section 3.1, let {xk}p
3

k=1 denote the points in a p × p × p tensor

product grid of Chebyshev nodes. Let ũ ∈ Rp3 denote a vector holding approximations to u

at {xk}p
3

k=1 and let D(1), D(2), D(3) denote the spectral differentiation matrices corresponding
to the partial differential operators ∂/∂x1, ∂/∂x2 and ∂/∂x3. Then the operator in (1) can be
approximated via a p3 × p3 matrix

A = −C11(D
(1))2 − C22(D

(2))2 − C33(D
(3))2

− 2C12D
(1)D(2) − 2C13D

(1)D(3) − 2C23D
(2)D(3)

+ C1D
(1) + C2D

(2) + C3D
(3) + C,

where Cij are diagonal matrices with entries {ci,j(xk)}p
3

k=1, and Ci and C are defined analogously.
Partition the index set of Chebyshev nodes as

{1, 2, . . . , p3} = Ii ∪ Ie
where Ii lists the (p − 2)3 interior nodes and Ie lists the p3 − (p − 2)3 exterior nodes. Then
partition the vector ũ according to its value at internal and external nodes via

ũi = ũ(Ii) and ũe = ũ(Ie).

We also partition the A into four parts via

Ai,i = A(Ii, Ii), Ai,e = A(Ii, Ie), Ae,i = A(Ie, Ii), Ae,e = A(Ie, Ie).

Following [27], we discretize (1) by enforcing a collocation condition at all interior nodes,

(4) Ai,iũi + Ai,eũe = 0.

In constructing a DtN operator, we consider the Dirichlet data, as represented in ũe as given,
and seek to determine the values of the potential at the interior nodes. Solving (4), we find that

ũi = S ũe,

where the solution operator S is defined via

(5) S = −A−1i,i Ai,e.

3.3. Interpolation between Gaussian and Chebyshev grids. Construction of DtN oper-
ator consists for three steps:

Step 1 – re-tabulation from Gaussian nodes to Chebyshev nodes: Given a vector ue ∈ R6q2 of
potential values tabulated on the Gaussian nodes on each face, form for each face the corre-
sponding interpolating polynomial (this is the unique polynomial consisting of a sum of tensor
products of polynomials of degree at most q− 1). Then evaluate these six different polynomials
at the exterior Cheybshev nodes. Let LG2C denote the matrix that achieves the interpolation.

Step 2 – solve and differentiate on the Chebyshev grids: Once the vector ũe of Dirichlet data
on the Chebyshev grid is available, we solve (1) using the technique in Section 3.2. Once the
solution is available at the full p × p × p Chebyshev grid, we use spectral differentiation to
obtained the values of the boundary fluxes on each of the 6 faces. Let V denote the resulting
linear map.

Step 3 – re-tabulation from Chebyshev nodes back to Gaussian nodes: In the final step, we simply
interpolate the values of the boundary fluxes from the exterior Chebyshev nodes to the exterior
Gaussian nodes. Let this interpolation matrix be denoted LC2G.
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Putting everything together, we form the DtN operator T as a product of three matrices

(6)
T = LC2G V LG2C,

6q2 × 6q2 6q2 × 6p2 6p2 × (6p2 − 12p+ 8) (6p2 − 12p+ 8)× 6q2

where each matrix corresponds to one of the three steps described above.

4. Merge two DtN operators.

In this section, we describe how to construct the DtN operator for the PDE (1) under the
assumption that the domain Ωτ is a rectangular box formed by the union of two smaller rect-
angular boxes Ωσ1 and Ωσ2 , cf. Figure 1,

Ωτ = Ωσ1 ∪ Ωσ2 .

We further assume that the DtN operators Tσ1 and Tσ2 for the two “children” boxes have
already been computed using the techniques described in Section 3. In this section, we describe
how these two operators can be combined in a “merge operation” to form the DtN operator Tτ

associated with the union box.

Figure 1. Illustration of the “merge step” described in Section 4, where the two
boxes Ωσ1 and Ωσ2 are fused to form the larger rectangular domain Ωτ . With the
notation as in Section 4, the interpolation points are colored blue for J1, black
for J2, and red for J3.

We suppose that on each of the 11 faces involved in this geometry, there is a local tensor
product grid of q × q Gaussian nodes. (Observe that the merge operation involves only sets of
q × q Gaussian nodes on faces of boxes. The interior p × p × p grids of Chebyshev nodes are
used only for the leaf computations.) We partition these nodes into three sets:

J1 Boundary nodes of Ωσ1 but not boundary nodes of Ωσ2 .
J2 Boundary nodes of Ωσ2 but not boundary nodes of Ωσ1 .
J3 Boundary nodes shared by Ωσ1 and Ωσ2 . (These are interior nodes of Ωτ ).

Let u denote the vector holding tabulated solution values and let v denote the vector holding
boundary fluxes values as in Section 3. Letting ui and ue denote the solution tabulated on the
interior and exterior nodes of Ωτ , we have

ui = u3, and ue =

[
u1
u2

]
.

By the definitions of DtN operators for σ1 and σ2, we have

(7)

[
v1
v3

]
=

[
Tσ11,1 Tσ11,3
Tσ13,1 Tσ13,3

] [
u1
u3

]
and

[
v2
v3

]
=

[
Tσ22,2 Tσ22,3
Tσ23,2 Tσ23,3

] [
u2
u3

]
.

Eliminating v3 from the equations in (7), we find

Tσ13,1u1 + Tσ13,3u3 = Tσ23,2u2 + Tσ23,3u3.
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Therefore,

(8) u3 = (Tσ13,3 − Tσ23,3)
−1(−Tσ13,1u1 + Tσ23,2u2) = Sτ

[
u1
u2

]
,

where the solution operator Sτ for the box τ is defined by.

(9) Sτ = (Tσ13,3 − Tσ23,3)
−1[−Tσ13,1 | T

σ2
3,2].

Observe that Sτ has a role analogous to the solution operator we defined for a leaf, cf. (5): it
maps potential values on the boundary to potential values on the interior.

Now that we have solved for u3, we can express the boundary fluxes {v1, v2} as a function of
{u1,u2}. To be precise, combining (7) and (8), we find[

v1
v2

]
=

[
Tσ11,1u1 + Tσ11,3u3
Tσ12,2u2 + Tσ12,3u3

]
=

[
Tσ11,1u1 + Tσ11,3(T

σ1
3,3 − Tσ23,3)

−1(−Tσ13,1u1 + Tσ23,2u2)
Tσ12,2u2 + Tσ12,3(T

σ1
3,3 − Tσ23,3)

−1(−Tσ13,1u1 + Tσ23,2u2)

]
= Tτ

[
u1
u2

]
,

where the Dirichlet-to-Neumann operator Tτ for τ is defined via

(10) Tτ =

[
Tσ11,1 0

0 Tσ22,2

]
+

[
Tσ11,3
Tσ22,3

]
Sτ .

Remark 1. Formula (8) involves the inverse of the matrix Tσ13,3 − Tσ23,3, which raises the ques-
tions of first whether this matrix is necessarily invertible, and second what its condition number
might be. We are unfortunately not aware of any rigorous mathematical results that answer these
questions. However, extensive numerical experiments indicate that for coercive elliptic problems
(e.g. Laplace, Yukawa), no difficulties in this regard arise. For problems with oscillatory solu-
tions (e.g. Helmholtz, time-harmonic Maxwell) the situation is different. In this case, the DtN
operator itself is not guaranteed to exist, and is in practice often ill-conditioned. This problem
can be eliminated by replacing the DtN operator by other Poincaré-Steklov operators that are
guaranteed to be well-posed, such as, e.g., the impedance-to-impedance map, as described in [12].
To keep the presentation simple, we in this paper use the DtN operator exclusively, which from a
practical point of view tends to work very well even for Helmholtz problems involving reasonably
large domains, as shown in the numerical experiments in Section 8.

5. Direct solver via composite spectral method

Now that we know how to construct the DtN operator for a leaf (Section 3), and how to
merge the DtN operators of two neighboring patches to form the DtN operator of their union
(Section 4), we are ready to describe the full hierarchical scheme for solving (1).

5.1. Discretization. To start with, partition the domain Ω into a hierarchical tree of boxes, as
shown in Figure 2. We let Ω1 = Ω denote the entire domain, the root of the tree. Then cut this
box into two halves Ω1 = Ω2 ∪Ω3. Then continue cutting into smaller boxes, until all boxes are
small enough that the local solution can accurately be resolved using a local grid of p × p × p
Chebyshev nodes. The set of boxes that were never subdivided are called leaves. If α and β are
two boxes whose union forms a box τ , we say that α and β are siblings, and are the children of
τ . We assume the ordering is such that if α is the child of τ , then α > τ . For simplicity, we
assume the tree is uniform so that all leaf nodes are on the same hierarchical level. Let ` = 0
denote the coarsest level and ` = L denote the level with the leaf nodes. Figure 2 shows the
boxes on levels 0 to 3.

Now fix a small integer q that denotes the local order of the approximation (picking q between
5 and 20 has proven to be good choices). On each face of the leaf boxes, we then place a q × q
tensor product grid of Gaussian nodes, which will serve as collocation nodes. Let {z`}N`=1
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Figure 2. The rectangular domain Ω is split into 2 × 2 × 2 leaf boxes. These
are then organized into a binary tree of successively larger boxes as described in
Section 5.1. Note that if box τ is the parent of a box σ, we have τ < σ.

denote the collection of all collocation nodes on the boundaries. Let u ∈ RN be the vector
holding approximation to the solution function u tabulated on {z`}N`=1. In other words,

u(`) ≈ u(z`).

5.2. The full hierarchical scheme. The algorithm we describe is a direct solver. It has a
build stage where we construct the solution operator to the equation (1). Once this solution
operator has been constructed, we can for any given boundary data f very rapidly construct
the full solution u by applying the solution operator in a solve stage.

The build stage involves the following steps:

(1) Discretization: The domain is partitioned into a hierarchical tree as described in Section
5.1 and the global grid {z`}N`=1 is formed.

(2) Leaf computation: For each leaf box, a solution operator and DtN operator are con-
structed as described in Section 3. Recall that this computation relies on a local spectral
discretization of (1) on the local p× p× p Chebyshev grid.

(3) Upwards pass: We execute a single sweep through the tree, starting at the leaves and
moving up to the root node (the entire domain). For each parent node, we construct its
DtN operator and solution operator by “merging” the DtN operators of its two children,
as described in Section 4.

The solve stage involves the following steps:

(1) Downwards pass: Given a vector holding the Dirichlet boundary data as input, we
execute a sweep downwards through the tree, starting with the root (the entire domain)
and working our way down towards the leaves. When processing a parent node, we
know the value of the potential on its boundary nodes, and construct the potential at
its interior nodes using the solution operator, as defined by (9).

(2) Leaf processing: At the end of the downwards sweep, we have constructed the potential
at the Gaussian grids on all leaf edges. We can then reconstruct the potential at the
interior Chebyshev nodes for every box by applying the local solution operator (5).

5.3. Asymptotic complexity. Let N be the total number of Chebyshev nodes used to dis-
cretize the three-dimensional rectangular domain Ω and suppose that we locally use Chebyshev
grids with p × p × p nodes. We further assume that the order of the Chebyshev and Gaussian
meshes are similar, so that q ≈ p. When analyzing the algorithm, we temporarily consider a
scheme in which the hierarchical tree is an octree rather than a binary tree. The corresponding
merge operator merges the DtN operators of the eight children of a parent box. Note that this
change from a binary tree to an octree is merely a cosmetic change made to simplify the analysis.
(The merge-8 operation can easily be executed as a sequence of three pair-wise merges.) At level
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`, a box in the octree has roughly 2−`N1/3 discretization points along a side. Finally, observe
that with L denoting the number of levels in the octree, we have N ≈ 8L p3.

Let us start with analyzing the “build stage” where we build all solution operators. Here,
we first process all leaves in the tree. Since computing the DtN operators for each leaf box
involves inverting dense matrices of size p3 × p3, and since there are N/p3 leaves, the total cost
for processing all leaves is

(11) Tleaf ∼
N

p3
× (p3)3 ∼ Np6.

Next, we perform an upwards pass through the tree where we merge boxes in sets of eight. For
each box τ on level `, the operators Tτ and Sτ are constructed via (9) and (10). A box on level

` has roughly 2−`N1/3 points along a side, which means the dense matrices involved in these
formulas are of sizes O(2−2`N2/3)×O(2−2`N2/3). Since there are 8` = 23` boxes on level `, and
since the cost of matrix inversion is cubic in the matrix dimensions, the cost to process level ` is

(12) T` ∼ 23` × (2−2`N2/3)3 ∼ 2−3`N2.

To summarize, the cost for the build stage is then

Tbuild = Tleaf +

L−1∑
`=0

T` ∼ N p6 +

L−1∑
`=0

2−3`N2 ∼ N p6 +N2.

Next we consider the “solve stage” where we build a solution for a given set of boundary
data. This stage consists of a downwards pass, where we at level ` need to apply dense matrices
of size O(2−2`N2/3) × O(2−2`N2/3). Since there are 23` boxes on level `, this gives a total

cost of processing level ` of 23` × (2−2`N2/3)2 ∼ 2−`N4/3. For each leaf box on the bottom
level, the solution operator is of size O(p3) × O(p2), so the cost of processing the leaves is
(N/p3)× p3 × p2 ∼ N p2. Consequently,

Tsolve ∼ N p2 +
L∑
`=1

2−`N4/3 ∼ N p2 +N4/3.

6. Fast algorithms for compressible matrices

The cost of the algorithm presented in Section 5.2 is dominated by constructing DtN opera-
tors at the top levels. The matrix operations involve inverting dense matrices of size O(N2/3)×
O(N2/3) where N is total number of discretization nodes, resulting in O(N2) total cost. How-
ever, there is internal structure in these dense matrices that can be explored to accelerate the
computation. Specifically, the off-diagonal blocks of these matrices are rank-deficient to high
precision and the diagonal blocks can be represented as Hierarchical Block-Separable (HBS)
matrices. In this section, we describe the HBS matrix format.

Remark 2. The format we refer to as HBS in this note is essentially identical to a format
sometimes referred to as Hierarchically Semi-Separable (HSS), see, e.g. [6, 4, 28]. We prefer the
term “block-separable” since these matrices are not really related to “semi-separable” matrices
but the term HSS has stuck for historical reasons.

6.1. Compressible matrices. We first give definition of block separable matrix. Let A be a
matrix of size mp×mp such that it is partitioned into p× p blocks, each of size m×m, i.e.

(13) A =


D1 A1,2 . . . A1,p

A2,1 D2 . . . A2,p
...

...
...

Ap,1 Ap,2 . . . Dp


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We say that the matrix A is block separable if each off-diagonal block admits the factorization

(14) Aσ,τ
m×m

= Uσ
m×k

Ãσ,τ
k×k

V∗τ
k×m

, σ, τ ∈ {1, 2, . . . , p}, σ 6= τ,

where U and V are m× k matrices. Therefore, the matrix A admits the factorization

(15) A
mp×mp

= U
mp×kp

Ã
kp×kp

V∗
kp×mp

+ D
mp×mp

,

where U = diag(U1,U2, . . . ,Up), V = diag(V1,V2, . . . ,Vp) and D = diag(D1,D2, . . . ,Dp).
Moreover,

Ã =


0 Ã1,2 Ã1,3 . . .

Ã2,1 0 Ã2,3 . . .

Ã3,1 Ã3,2 0 . . .
...

...
...

 .
Remark 3. In constructing the factorization (14), we use the so-called interpolative decompo-
sition (ID) [7]. For an m× n matrix B or rank k, the ID takes the form

B = X B(I, J) Y,
m× n m× k k × k k × n

where I and J are index vectors pointing to k rows and columns of B, respectively, and where the
matrices X and Y are well-conditioned and have the k×k identity matrix as submatrices. When
the ID is used in (14), the matrix Ãσ,τ will be simply a submatrix of A(Iσ, Iτ ). See [7, 20, 17, 21]
for details.

6.1.1. Hierarchically block-separable (HBS) matrices. To give the definition of HBS matrices,
we first define the binary tree structure associated with the discretization nodes with index
I = [1, 2, . . .M ]. Basically, let I denote the root of the tree and partition the index set into two
roughly equi-sized subsets level by level. Specifically, we call an index set as leaf node if there
is no further split. For a non-leaf node τ we call two nodes σ1 and σ2 as the children of τ if
Iτ = Iσ1 ∪ Iσ2 , and call τ the parent node of σ1 and σ2.

By now, we are ready to give definition of hierarchical block-separable with respect to a given
binary tree associated with index set I. Let ` = 0, 1, . . . , L denote the levels from the coarsest
level to the finest level. A matrix is called a HBS matrix if it satisfies two conditions:

(1) For each leaf node pair {τ, τ ′} (τ 6= τ ′) on level L, there exists integer k such that the
off-diagonal blocks Aτ,τ ′ admits factorization

(16) Aτ,τ ′
m×m

= Uτ
m×k

Ãτ,τ ′
k×k

V∗τ
k×m

.

(2) For off-diagonal blocks on level ` = L − 1, L − 2, . . . , 1, the rank-deficiency property at
level ` can be constructed based on the next finer level `+1. Specifically, for any distinct
non-leaf nodes τ and τ ′ on level ` with children σ1, σ2 and σ′1 and σ′2, define

Aτ,τ ′ =

[
Ãσ1,σ′1 Ãσ1,σ′2
Ãσ2,σ′1 Ãσ2,σ′2

]
.

There exists factorization

(17) Aτ,τ ′
2k×2k

= Uτ
2k×k

Ãτ,τ ′
k×k

V∗τ
k×2k

.

Define

Dτ = A(Iτ , Iτ )
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for each leaf node τ , and define

Bτ =

[
0 Ãσ1,σ2

Ãσ2,σ1 0

]
for non-leaf node τ with children σ1 and σ2. An HBS matrix A can then be fully described if

• for every leaf node, we are given the diagonal matrices Dτ , as well as column basis and
row basis Uτ and Vτ ;
• for every non-leaf node, we are given the interaction matrix Bτ between the children of
τ , as well as column basis and row basis Uτ and Vτ .

In other words, the HBS matrix A admits telescoping factorization given U, V, D and B hier-
archically:

(1) Ã
(0)

= B(0),

(2) Ã
(`)

k2`×k2`
= U(`)

k2`×k2`−1
Ã

(`−1)

k2`−1×k2`−1
(V(`))∗

k2`−1×k2`
+ B(`)

k2`×k2`
for ` = 1, 2, . . . , L− 1,

(3) A
m2L×n2L

= U(L)

m2L×k2L
Ã

(L−1)

k2L×k2L
(V(L))∗

k2L×n2L
+ D(L)

m2L×m2L
.

6.2. Fast algorithms on HBS matrices. Fast algorithms on how to add two HBS matrices,
apply HBS matrices to vector and invert HBS matrices are presented in [14]. Here we briefly
summarize the fast matrix-vector multiplication and inversion algorithms.

6.2.1. Matrix inversion. The inverse of an HBS matrix can be rapidly constructed using a vari-
ation of the classical Sherman-Morrison-Woodbury formula by exploring the low-rank deficiency
hierarchically. Here we provide a condensed description of the inversion procedure given in [14],
which has asymptotic cost of O(N k2), for an N×N matrix whose off-diagonal blocks have rank
k. Firstly, we define several matrices on each node τ

(18) D̂τ = (V∗τ D̃
−1
τ Uτ )−1,

(19) Eτ = D̃
−1
τ Uτ D̂τ ,

(20) Fτ = (D̂τV
∗
τ D̃
−1
τ )∗,

(21) Gτ = D̃
−1
τ − D̃

−1
τ Uτ D̂τV

∗
τ D̃
−1
τ .

In above equations, we define
D̃τ = Dτ

if τ is a leaf node and define

D̃τ =

[
D̂σ1 Bσ1,σ2
Bσ2,σ1 D̂σ2

]
if τ is a non-leaf node. Note that all the matrices {D̂τ ,Eτ ,Fτ ,Gτ}τ can be computed cheaply
level by level. Using the formula

(22) A−1 = E(Ã + D̂)−1F∗ + G,

we can express A−1 hierarchically via

(23) (Ã
(`)

+ D̂
(`)

)−1 = E(`−1)(Ã
(`−1)

+ D̂
(`−1)

)−1(F(`−1))∗ + G(`−1)

for ` = L,L− 1, . . . , 2, and

(24) (Ã
(1)

+ D̂
(1)

)−1 =

[
D̂2 B2,3

B3,2 D̂3

]−1
= G(0) = G1.

Algorithm 3 summarizes the inversion procedure of HBS matrices.
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6.2.2. Matrix-vector multiplication. In this section, we briefly describe how to compute y =
A−1x, for given x, using the compressed representation of A−1 resulting from the inversion
algorithm. Using equations (23) and (24), y can be computed hierarchically as

y = A−1x = (Ã
(L)

+ D̂
(L)

)−1x

= E(L−1)(Ã
(L−1)

+ D̂
(L−1)

)−1(F(L−1))∗x + G(L−1)x

= E(L−1)E(L−2)(Ã
(L−2)

+ D̂
(L−2)

)−1(F(L−2))∗(F(L−1))∗x + G(L−2)G(L−1)x

= E(L−1)E(L−2) . . .E(1)G1(F
(1))∗ . . . (F(L−2))∗(F(L−1))∗x + G(1) . . .G(L−2)G(L−1)x.

Details on the fast matrix-vector multiplication algorithm are given in Algorithm 4.

Algorithm 3 (inversion of an HBS matrix)

Given factors {Uτ , Vτ , Dτ , Bτ}τ representing an HBS matrix H, this algorithm constructs
factors {Eτ , Fτ , Gτ}τ representing H−1.

loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
loop over all boxes τ on level `,

if τ is a leaf node

D̃τ = Dτ

else
Let σ1 and σ2 denote the children of τ .

D̃τ =

[
D̂σ1 Bσ1,σ2

Bσ2,σ1
D̂σ2

]
end if

D̂τ =
(
V∗
τ D̃

−1

τ Uτ
)−1

.

Eτ = D̃
−1

τ Uτ D̂τ .

F∗
τ = D̂τ V

∗
τ D̃

−1

τ .

Gτ = D̃
−1

τ − D̃
−1

τ Uτ D̂τ V
∗
τ D̃

−1

τ .
end loop

end loop

G1 =

[
D̂2 B2,3

B3,2 D̂3

]−1

.

6.2.3. Asymptotic costs of HBS matrix algebra. Let us analyze the asymptotic cost of matrix
inversion and matrix-vector multiplication for an HBS matrix of size M ×M , with ranks of the
off-diagonal blocks k. Let L denote the total number of levels, and suppose that M ∼ k 2L.
In order to execute the inversion algorithm described in Section 6.2.1, we need to compute all
matrices D̂τ ,Eτ ,Fτ ,Gτ on each level `. The cost is dominated by performing dense matrix
inversion of matrices of size 2k × 2k on each level, where there are 2` nodes totally. The total
cost is therefore

Tinv ∼
L∑
`=1

2`(2k)3 ∼ 2L k3 ∼Mk2.

Moreover, the total cost of fast matrix-vector multiplication is

Tmulti =

L∑
`=1

2`(2k)2 ∼ 2Lk2 ∼Mk.
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Algorithm 4 (application of the inverse of an HBS matrix)

Given x, compute y = H−1 x using the factors {Eτ , Fτ , Gτ}τ resulting from Algorithm 3.

loop over all leaf boxes τ
x̂τ = F∗

τ x(Iτ ).
end loop

loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
loop over all parent boxes τ on level `,

Let σ1 and σ2 denote the children of τ .

x̂τ = F∗
τ

[
x̂σ1

x̂σ2

]
.

end loop
end loop[

ŷ2
ŷ3

]
= G1

[
x̂2
x̂3

]
.

loop over all levels, coarser to finer, ` = 1, 2, . . . , L− 1
loop over all parent boxes τ on level `

Let σ1 and σ2 denote the children of τ .[
ŷσ1

ŷσ2

]
= Eτ x̂τ + Gτ

[
x̂σ1

x̂σ2

]
.

end loop
end loop

loop over all leaf boxes τ
y(Iτ ) = Eτ q̂τ + Gτ x(Iτ ).

end loop

7. Accelerating the direct solver

In this section, we describe how to accelerate the direct solver in Section 5.2 using the fast
algorithms described in Section 6.2 to achieve O(N4/3) complexity.

7.1. Acceleration using structured matrix algebra. Recall from Section 5.3 that the dom-
inant cost of the basic scheme described in Section 5.2 derives from the need to perform matrix
computations on dense matrices whose sizes get large as we approach to top of the tree. For
instance, recall that the DtN operator for a node τ with children σ1 and σ2 is computed via the
formula, cf. (10),

Tτ =

[
Tσ11,1 0

0 Tσ22,2

]
+

[
Tσ11,3
Tσ22,3

]
(Tσ13,3 − Tσ23,3)

−1[−Tσ13,1 | T
σ2
3,2].

The key observation is now that since Tσ13,3 and Tσ23,3 each represent (discretized) parts of the DtN
operators for σ1 and σ2, they can be represented using the HBS format described in Section 6,
which allows us to perform matrix inversion very efficiently. Analogously, for every parent node
τ , the solution operator Sτ is a discretization of the operator that maps Dirichlet boundary data
for Ωτ to the face shared by Ωσ1 and Ωσ2 , which is an interior plane of Ωτ . Standard regularity
results for elliptic PDEs indicate that this operator is globally of low rank.

Observe that the accelerated scheme makes no detailed à priori assumptions on the numerical
ranks of the various matrices that arise. Instead, the scheme takes as input a tolerance ε, and
numerically determines the optimal rank that achieves the specified tolerance. We use insights
from regularity theory for PDEs only for two purposes: (1) As a guide on where to look for rank
deficiencies. (2) In order to estimate the overall asymptotic complexity of the scheme.
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Let us show in some additional detail how a merge operation gets executed once all discretized
DtN operators are represented in the HBS format. Using the same notation as in Section 4,
we suppose that τ is a parent box with children σ1 and σ2. We then have the DtN operators
Tσ1 and Tσ2 available in DtN formats. From these representations, we extract the low rank
factors associated with Tσ11,3,T

σ1
3,1,T

σ2
2,3 and Tσ23,2, and denote these by {Q1,3, R1,3}, {Q3,1, R3,1},

{Q2,3, R2,3} and {Q3,2, R3,2}, respectively. The sub-matrices Tσ13,3 and Tσ23,3 are themselves in
HBS format. Then the following computations will execute the merge:

(1) Add two HBS matrices Tσ13,3 and −Tσ23,3 resulting a new HBS matrix Tσ13,3 − Tσ23,3.
(2) Invert the HBS matrix Tσ13,3 − Tσ23,3.

(3) Apply the thin low rank factor

[
R1,3

R2,3

]
to the inverse (in HBS form). The resulting matrix

together with another low rank factor [−Q3,1 | Q3,2] form the low rank approximation
to the solution operator Sτ .

(4) Performing matrix products Tσ11,3 S
τ and Tσ22,3 S

τ are analogous, just exploiting all factors
are low rank.

(5) Perform a low-rank update to the block-diagonal matrix

[
Tσ11,1 0

0 Tσ22,2

]
, whose blocks are

provided in HBS-form to construct the new HBS matrix Tτ .

Remark 4. For intermediate size problems, we can use simpler “data sparse” formats to store
the matrices Tτ encoding all DtN operators. For instance, each such matrix can be represented as
a 6×6 block matrix, corresponding to interactions between the 6 faces of the box Ωτ . Substantial
gains are achieved by storing the six diagonal blocks of this matrix densely (without exploiting
any internal structure), and the 30 off-diagonal blocks using simple low rank representations. A
format such as this does not improve the asymptotic O(N2), but is far easier to code, and greatly
accelerates the practical execution time for mid-size problems.

7.2. Asymptotic cost of the accelerated solver. We use the same notation as in Section 5.3,
with N denoting the total number of Chebyshev nodes used to discretize the three-dimensional
rectangular domain Ω, and L denoting be the number of levels in the octree, so that there
are 8L leaf boxes. Since there are p3 Chebyshev discretization nodes on each leaf box, we have
N ≈ 8L p3. We further assume that the order of the Chebyshev and Gaussian meshes are similar,
q ≈ p.

We first discuss the cost of the “build stage.” When processing the leaves, we do not use
structured matrix algebra, so the cost (11) remains valid. For the upwards pass where we merge
boxes to construct the DtN operator Tτ and the solution operator Sτ for each parent node τ , we
exploit that all matrices are stored either in HBS format, or as low-rank matrices. Recall that
there are 23` boxes on level ` and that all matrices are now of size M ×M , with M ∼ 2−2`N2/3

(recall that there are roughly 2−`N1/3 points along a side of a box on level `). Using that the
time required to invert an M ×M HBS matrix of rank k is O(M k2) (see Section 6.2.3), we then
find that the cost to process level ` is

T` ∼ 23` × 2−2`N2/3k2 ∼ 2`N2/3k2.

This rank k depends on the level. In the present situation, the operator represented in the HBS
format approximates an integral operator defined on a face discretized into 2−`N1/3 × 2−`N1/3

points. It was shown in [5] the maximal rank k encountered in this situation satisfies

(25) k ∼ 2−`N1/3.



14

In consequence, the build stage has an overall asymptotic cost that is bounded by

(26) Tbuild = Tleaf +

L−1∑
`=0

T` ∼ N p6 +

L−1∑
`=0

2`N2/3 (2−`N1/3)2 ∼ N p6 +N4/3.

Remark 5. Observe that our derivation of a bound on the asymptotic complexity is slightly
crude. We assumed that at level ` in the “build stage,” the ranks used inside the HBS structure
were constant across all levels in the HBS structure, and satisfy (25). In reality, the ranks vary
across levels inside the HBS structure too, which means that the bound M k2 is pessimistic.
Performing a more careful analysis gets slightly involved given that there are two hierarchical
structures nested inside each other. We expect however that the final result would be substantially
better than O(N4/3), and would follow very closely the estimates provided in [29, 30, 25], where
the use of structured matrix algebra to accelerate the classical nested dissection algorithm is
analyzed in some detail.

For the “solve stage,” we execute a downwards pass through the tree. At level `, we apply
23` solution operators of size size O(2−2`N2/3) × O(2−2`N2/3) that have numerical rank k ∼
2−`N1/3. This results in a total time to process level ` of 23` × 4−`N2/3 × 2−`N1/3 ∼ N . For
each leaf box on the bottom level, the solution operator is of size O(p3)×O(p2), so the cost of
processing the leaves is (N/p3)× p3 × p2 ∼ N p2. Consequently,

Tsolve ∼ N p2 +
L∑
`=1

N ∼ N p2 +N logN.

Remark 6. In deriving the estimates on the asymptotic complexity, we assumed that the un-
derlying equation is fixed as N is increased. This is a reasonable assumption for problems such
as Laplace and low-frequency Helmholtz. However, when solving problems with oscillatory solu-
tions, one often strives to keep the “number of points per wave-length” constant as N increases.
In this case, the estimates given in this section will not hold.

8. Numerical experiments

This section presents numerical experiments that illustrte the performance of the proposed
direct solver. All the experiments are carried out on a personal work-station with an Intel Xeon
E-1660 3.3GHz 6-core CPU, and 128GB of RAM. The experiments serve two purposes. The first
is to systematically measure the speed and memory requirements (the amount of RAM used in
the build stage) for different problems. The second is to measure the accuracy of the algorithm.
Specifically, we report:

Ntot Total number of Chebyshev discretization nodes.
Tbuild Time for building the solution operator (seconds).
Tsolve Time to solve the equation once solution operator is built (seconds).
R Amount of memory required at build stage to store the solution operator (GB).

For all experiments, we chose the compression parameter ε = 10−5. The code was implemented
in Matlab, which means that while the timings reported should scale in a representative man-
ner, the absolute times can probably be improved. (Additionally, memory usage is not quite
optimal which means that we run out of memory sooner than what would happen in a careful
implementation in Fortran or C.) Finally, due to the overhead cost of structured matrix algebra,
we switch from dense matrix algebra to HBS matrix algebra only once the block sizes exceed
a certain threshold. This accelerates the practical run time of the code, but does not influence
the asymptotic cost estimate.
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Example 8.1: Laplace problem with known exact solution We first consider the Laplace
problem

(27)

{
−∆u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

on the domain Ω = [0, 1]3. The number of Chebyshev nodes is fixed p = 5 on each panel while
the number of panels on each side is increased. The boundary data is chosen to coincide with
the known solution

uexact(x) =
1

4π|x− x̂|
where x̂ = (−2, −1, 0). To measure the accuracy, we present both the error E∞ in `∞-norm as
well as the relative error Erel given by

E∞ = ||uapprox − uexact||`∞ and Erel =
||uapprox − uexact||`∞

||uexact||`∞
,

where uexact and uapprox denote the vectors holding the exact and the computed solutions eval-
uated at all interior Chebyshev nodes. This is an artificial problem in the sense that it could
very easily be solved to high precision using a single spectral grid. The purpose of this example
is primarily to investigate the stability and scaling properties of the algorithm. Speed, memory
and accuracy results are shown in Table 1. Note that the off-diagonal blocks of DtN operators
at top levels are stored in low-rank form which saves roughly 1.6 times of the memory compared
to dense form. If no low-rank computation is executed, the computation runs out of memory
(over 128GB) when N is about 2 · 106. Figure 3 shows the scales of time spent at build stage
and solve stage. For the very largest problem, the program started to store matrices on the hard
drive, which explains the large jump in the solve time.

In the examples we could fit in RAM, very little benefit was seen for using structured matrix
algebra, except at the very top levels. We would therefore not expect the measured behavior
for Tbuild to reflect the asymptotic bound proven in Section 5.3.

Ntot R (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

4 913 0.04 0.97 0.004 1.20e-06 3.38e-05
35 937 0.52 20.34 0.032 1.45e-08 4.08e-07

274 625 6.33 522.78 0.24 5.48e-08 1.54e-07
2 146 689 76.59 17103.21 1121.0 6.51e-09 1.83e-07

Table 1. Results for solving Laplace’s equation (27) in Example 8.1 with known
exact solution.

Example 8.2(a): Helmholtz problems with known exact solution and fixed number
of Chebyshev nodes on each panel. We next consider a Helmholtz problem

(28)

{
−∆u(x)− κ2u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

on domain Ω = [0, 1]3. The number of Chebyshev nodes is fixed p = 5 on each panel the same
as we did in Example 8.1. The boundary data is chosen to coincide with the known solution

uexact(x) =
eiκ|x−x̂|

4π|x− x̂|
where x̂ = (−2, −1, 0). Accuracy is measured in the same way as Example 8.1. Table 2 reports
the results when κ = 12.56 such that there are 2× 2× 2 wavelengths across the whole domain.
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Figure 3. (Example 8.1)(a) Time at build stage in seconds, (b) time at solve stage.

Ntot R (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

4 913 0.04 1.01 0.005 6.39e-03 1.70e-01
35 937 0.54 22.20 0.042 1.98e-03 5.60e-02

274 625 6.41 514.53 0.32 5.34e-04 1.53e-02
2 146 689 76.95 18605.66 1368 1.36e-04 3.81e-03

Table 2. Results for solving Helmholtz equation (28) in Example 8.2(a) with 2
wavelength in each direction.

Example 8.2(b): Helmholtz problems with known exact solution and fixed number
of boxes on each side. In this example, we still solve the Helmholtz problem (28). We now
keep the number of boxes constant, using an 8 × 8 × 8 grid, and instead test what happens as
the local discretization order is increased. (In other words, we do “p-refinement” rather than
“h-refinement.”) Note that in the following examples, we keep this problem setting in regards
to what happens as N is increased. Table 3 reports the results when κ = 62.8 such that there
are 10×10×10 wavelengths across the whole domain. Table 4 reports an analogous experiment,
but now for a domain of size 20× 20× 20 wavelengths.

Ntot R (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

274 625 6.79 850.5 0.2 1.55e-03 4.28e-02
531 441 15.03 2427.2 0.6 6.51e-05 1.80e-03
912 673 29.51 4967.0 1.1 1.83e-06 5.06e-05

1 442 897 52.80 10133.1 2.7 3.57e-08 9.86e-07
2 146 689 89.15 19831.9 558.8 1.14e-08 3.15e-07

Table 3. Results for solving Helmholtz equation (28) in Example 8.2(b) with
10× 10× 10 wavelength across the domain.
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Ntot R (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

274 625 8.65 1034.3 0.2 1.34e+00 3.76e+01
531 441 18.40 2910.6 0.5 1.70e-01 4.78e+00
912 673 34.55 7573.7 1.1 7.50e-03 2.11e-01

1 442 897 59.53 14161.1 2.8 9.45e-04 2.65e-02
2 146 689 97.73 25859.3 978.7 5.26e-05 1.48e-03

Table 4. Results for solving Helmholtz equation (28) in Example 8.2(b) with
20× 20× 20 wavelength across the domain.

Example 8.3: Laplace’s equation with unknown exact solution. In this example, we
solve the Laplace’s equation (27) with Dirichlet boundary data given by

(29) f(x) = cos(8x1)(1− 2x2) e
x3 .

Since we have no knowledge of an exact solution, we report pointwise convergence. Letting uN1

and uN2 denote the value of u computed using N1 and N2 degrees of freedom where N2 > N1,
we used

E∞ = |uN1(x̂)− uN2(x̂)| and Erel =
|uN1(x̂)− uN2(x̂)|

|uN1(x̂)|
as estimates for the pointwise errors at point x̂ = (0.5, 0.25, 0.75). Results are reported in Table
5.

Observe that the examples investigated in Examples 8.1 and 8.2(a/b) were slightly artificial
in that the solutions are perfectly smooth even near the corners. The current example represents
a more typical situation where the solution exhibits singular behavior near corners. However, as
the results show, the scheme handles these relatively mild singularities very well, and converges
rapidly.

Ntot R (GB) Tbuild (sec) Tsolve (sec) uint(x) E∞ Erel

117 649 2.13 84.7 0.06 -0.32055891842 1.10e-06 3.44e-06
274 625 6.09 540.1 0.2 -0.32055781677 9.43e-08 2.94e-07
531 441 14.35 1517.3 0.4 -0.32055772259 2.56e-08 7.98e-08
912 673 29.11 2822.4 0.7 -0.32055769701 1.24e-07 3.87e-07

1 442 897 50.44 9130.9 1.4 -0.32055757286 7.34e-08 2.29e-07
2 146 689 86.12 18076.5 541.5 -0.32055776368

Table 5. Results for Example 8.3: Solving Laplace’s equation (27) with Dirich-
let boundary data (29).

Example 8.4: Helmholtz equation with unknown exact solution. In this example, we
solve the Helmholtz equation (28) with Dirichlet boundary data given in (29). The wavenumber
is set κ = 62.8 such that there are 10× 10× 10 wavelength across the domain. Table 6 presents
the convergence as well as time and memory results. Pointwise errors are computed the same
as Example 8.3.

Example 8.5: Variable coefficient Helmholtz. We solve the variable coefficient problem

(30)

{
−∆u(x)− κ2(1− b(x))u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,
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Ntot R (GB) Tbuild (sec) Tsolve (sec) uint(x) E∞ Erel

274 625 6.58 662.9 0.2 1.93279205417 1.87e+00 9.68e-01
531 441 15.13 1382.9 0.3 3.80381724805 9.55e-02 2.51e-02
912 673 30.25 2992.5 0.7 3.70818462313 2.91e-03 7.84e-04

1 442 897 55.23 7895.9 2.3 3.71109259971 6.16e-05 1.66e-05
2 146 689 89.15 21190.2 789.8 3.71103088491

Table 6. Results for Example 8.4: Solving Helmholtz equation (28) with Dirich-
let boundary data (29).

where Ω = [0, 1]3, where Γ = ∂Ω and where

b(x) = (sin(4πx1) sin(4πx2) sin(4πx3))
2.

The Helmholtz parameter was chosen as κ = 62.8, corresponding to a domain of size 10×10×10
wavelengths. The Dirichlet boundary data was given by in (29). Again we measure the pointwise
errors since we do not know the exact solution. Results are reported in Table 7. We observe
that the accuracy as almost as good as constant coefficient case.

Ntot R (GB) Tbuild (sec) Tsolve (sec) uint(x) E∞ Erel

274 625 6.55 639.3 0.2 10.22765480303 6.13e-02 5.99e-03
531 441 15.15 1443.4 0.3 10.16634235402 8.69e-03 8.55e-04
912 673 30.35 3701.0 0.7 10.17503224623 4.56e-04 4.48e-05

1 442 897 55.39 5639.6 1.4 10.17548843592 1.35e-04 1.33e-05
2 146 689 89.27 20854.3 874.7 10.17535090141

Table 7. Results for Example 8.5: Solving the variable coefficient problem (30).

Example 8.6: Constant convection diffusion problem. Our last example is to solve a
convection diffusion problem

(31)

{
−∆u(x)− 1000 ∂3u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

on domain Ω = [0, 1]3 with Dirichlet boundary data given in (29). Results are reported in Table
8. We observe that despite the very sharp gradients encountered in this example, the method
is still capable of attaining more than 5 correct digits.

Ntot R (GB) Tbuild (sec) Tsolve (sec) uint(x) E∞ Erel

117 649 2.41 136.0 0.08 -0.90989632585 3.33e-02 3.66e-02
274 625 6.65 524.9 0.1 -0.87662189265 2.30e-03 2.62e-02
531 441 15.33 1806.0 0.3 -0.87432365086 4.36e-05 4.99e-05
912 673 30.45 3524.9 0.7 -0.87428002798 1.23e-05 1.41e-05

1 442 897 55.35 6719.9 1.3 -0.87429233218 3.30e-06 3.77e-06
2 146 689 88.03 19313.7 656.2 -0.87429562890

Table 8. Results for Example 8.6: Solving the constant convection problem (31).
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9. Conclusions and Future work

We have described a numerical method for solving variable coefficient elliptic PDEs on rect-
angular domains in 3D. The scheme is based on a composite spectral discretization and is an
extension of previous work for the two dimensional case [23, 11].

The technique is conceptually similar to the nested dissection method of George [10]. Like
this classical direct solver, our solver relies on a hierarchical subdivision of the domain into a
tree of nested sub-domains, in our case boxes. An approximation to the solution operator is
built in a single sweep through the tree from smaller to larger boxes. In this sweep, we build
for each box numerical approximations to its Dirichlet-to-Neumann (DtN) operator, and to a
local “solution operator.” However, in contrast to the classical nested dissection technique, our
method retains high practical efficiency even for high order discretizations. We demonstrate
that by exploiting that the matrix approximating each DtN operator can be represented in a
“data sparse” format, the asymptotic complexity of the solver can be accelerated from O(N2)

for the build stage to, at worst, O(N4/3). Our work is in this regard related to recent work on
accelerating nested dissection methods [19, 26, 31, 13, 22] but gives much higher accuracy for
the same number of degrees of freedom, due to the use of high-order discretizations. Specifically,
we solved a Helmholtz problem on a domain of size 20 × 20× 20 wave-lengths to three correct
digits using 2.1M degrees of freedom, cf. Table 4.

A key advantage of the method proposed is that it involves less communication than competing
iterative methods. Each solve involves only one or two sweeps through the hierarchical tree,
which keeps computations highly localized. The development of parallel implementations of this
algorithm is a work in progress, and will be reported at a later date.

The fact that the method can without difficulty handle high order local discretizations makes
it particularly well suited for solving Helmholtz problems with oscillatory solutions, as was
demonstrated in the numerical experiments in Section 8. It is hard to make a general recom-
mendation for an “optimal choice” of the local discretization order — choosing a higher order p
leads to needing fewer degrees of freedom overall, but on the other hand increases the storage
requirements per degree of freedom. Moreover, the fact that the cost of the leaf computations
scales as N p6 puts a practical limit on how large p can realistically be. We have found that p
in the range between 10 and 15 often works very well.

In this manuscript, we describe a basic version of the method applicable to simple rectangular
domains. The extension to more general domains, including curved and infinite domains, is in
principle straight-forward, as was demonstrated for problems in two dimensions in [24, 23, 18].

The scheme can easily be extended to cover the case of “body loads” (that is, the case
[Au](x) = g(x) rather than [Au](x) = 0). The corresponding extension for the 2D case was
described in [24, 1]. The more general version that includes body loads has the same asymptotic
scaling as the method reported here. In terms of absolute times, the cost of the build stage
increases only very slightly. For the solve stage, one must decide whether the solution operators
on the leaves should be stored or not. Storing them leads to very fast solves, but requires a lot
of memory. If they are not stored, then memory requirements are similar to the scheme reported
here, but then the solve stage becomes noticeably slower since the PDE needs to be solved on
the fly on each leaf box.
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