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Abstract

Many applications require that nodes be scattered locally quasi-uniformly within 2-D regions
or on curved surfaces in 3-D space, while obeying some prescribed spatially varying density
function. This study focuses on creating variable density node layouts that are suitable for mesh-
free discretizations of PDEs. Another application is ‘dithering’ to simulate half-tone images.
The method is an ’advancing-front type’ scheme, inspired by the physical process of dropping
of variable sized grains into a bucket.

1 Introduction

Discretizations of PDEs have traditionally relied on structured meshes. Requirements for geometric
flexibility, both to conform to irregular geometries and to achieve local refinement in critical areas,
have led to an increased use of unstructured meshes, often in the form of triangular/tehrahedral
elements. In contrast, RBF-generated finite differences (RBF-FD) is a recent and altogether mesh-
free approach. It makes it easy to combine geometric flexibility with high levels of accuracy and
computational efficiency [6, 7, 22, 23, 25, 28]. It uses scattered nodes with spatially varying density,
without forming any associated ‘elements’ or connectivites between nodes.

A key to successful implementation of RBF-FD methods is being able to simply and very rapidly
generate node layouts, as needed for applications such as real-time weather forecasting, tsunami
modeling, and seismic imaging. Current methods in the literature for node distribution can be
classified into two categories: 1) iterative methods, where for a given number of nodes the quality
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of the distribution is dependent on how soon the iteration is stopped, and 2) advancing front
methods that start at a boundary and advance forward until the domain is filled.

Examples of iterative-type schemes include minimal energy (ME) distributions [10, 15, 27] (simulat-
ing equilibria for freely moving electrons), where the repelling force can be made spatially variable
in order to concentrate nodes in areas where increased resolution is needed [5]. It was noted in
[11, 24] that the energy minimization can be formulated in such a way that it can be applied to the
task of image dithering, in which there is a rich literature. In this context, there may be additional
requirements motivated by the characteristics of certain printers. For example, dot sizes may be al-
lowed to be variable, and /or the dot locations may be confined to a Cartesian or hexagonal lattice;
see [20] and references therein. Additional iterative strategies include Lloyd’s algorithm [1, 16],
also known as Voronoi relaxation, and the approach presented in [21], in which Delaunay triangula-
tions are used iteratively to adjust a partly random initial distribution. A Matlab implementation
distmesh2d of the latter algorithm is available online at http://persson.berkeley.edu/distmesh/,
aimed towards finite element diretizations of PDEs.

The algorithms from the literature that are conceptually closest to the present one are known as
advancing front methods [4, 14, 26]. These differ however significantly from the present algorithm.
In most 2-D cases, triangular mesh generation typically proceeds inwards from boundaries. In some
cases, generalizations are available to 3-D. These methods often require background grids, causing
effectiveness issues in cases of strong node density variations. Several strategies and implementa-
tions are compared in [3]. In cases where no spatial node density variations are needed, the method
in [2] is effective in 2-D.

The primary advantages of the present algorithm are computational speed, algorithmic simplicity,
and the quality of the generated node distributions. Since it is not iterative, we refer to it as ‘node
placing’. The user does not need to decide on trade-offs between computer time and distribution
quality. Our focus will be on how to implement it simply and effectively, and not on mathematical
analysis of either the algorithm itself or of the generated node distributions. For certain aspects
(e.g. internal parameter choices) that only minimally influence the quality of the obtained node
distributions, our preference has been to make robust ad hoc choices rather than to pursue theoret-
ical analysis of possible variations. Figure 1 illustrates in a very small case the node sets the present
procedure will produce very rapidly - in Matlab at a rate of roughly 10,000 nodes per second.

There is a rapidly growing literature on applying RBF-FD to solve many different types of PDEs.
This includes a wide range of systems arising in elasticity, geophysics, seismic exploration, electro-
magnetics, etc., mostly of time dependent character, but also elliptic-type equilibrium equations.
The present paper will not repeat this literature but instead focus on associated node generation
issues. Although the RBF-FD literature by now is quite extensive, there are as of yet few survey
type articles in the field. The first one, with focus on geosciences, appeared recently [7], with an a
more general survey article [9] as well as a monograph [8] scheduled for publication in 2015.

The outline of this paper is as follows: Section 2 presents the basic node placing algorithm, with
the Matlab code given in the Appendix, as well as a common test case used in image rendering.
The paper starts with this test case as it provides a much more challenging example than normally
would be found in the PDE discretizations for creating layouts due to its extreme variations in node
density. Section 3 discusses the use of a local node repel algorithm for making minor adjustments
near non-rectangular boundaries, as required in RBF-FD discretizations. Section 4 describes how
to generalize the domain from a rectangle to 2-D surfaces embedded in 3-D space, such as spheres



Example of coastline/harbor node set
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Figure 1: Conceptual illustration of a small (N = 1438) RBF-FD node set for coastal hazard
modeling including a harbor, breakwater, and nearby island.

and tori. This is followed by some conclusions.

2 The basic algorithm: Creating node sets of variable density in a rectangular
domain

2.1 The basic node placing algorithm

We first present the algorithm with the Matlab code (see Appendix) for generating any type of
node distribution in a rectangular domain, and then generalize later to irregular boundaries and
surfaces. As stated in the introduction, this is an advancing-front type algorithm as shown in Figure
2. It starts by randomly scattering ‘potential dot locations’ (PDPs) relatively densely along the
bottom edge of the rectangle and then proceeds by the following steps, also illustrated in subplots
1-4, respectively, of Figure 3:

repeat until lowest PDP is above the top edge of the domain
1. Identify the lowest PDP (if several are equally low, choose any one), and select it as a new
dot location.

2. Mark out a circle centered at the new dot and with a radius matching the desired node
separation distance at this location.

3. Keep the new dot, but remove all other PDPs within this circle.
4. Note the directions to the nearest remaining PDP on each side. On the circle periphery,
within this sector, place five new PDP equally spaced in angle.
end repeat

In step 2, the radius is what we also describe as the ‘grain size’. For image rendering, it will
be a mathematical function of the brightness, with large radii in light areas and small in dark
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Figure 2: Illustration of the advancing front after several loops of steps 1-4 of the basic algorithm.
The dots in the rectangle are used in Figure 3 to demonstrate steps 1-4.
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Figure 3: The steps 1-4 in the present algorithm.

ones; cf. Section 2.2.1. Regarding the number of new PDP in step 4, using less than five may
degrade the quality of the distribution, and more than eight becomes computationally wasteful. At
(non-periodic) side boundaries, new PDPs outside the domain are immediately removed.

2.2 A test case: Dithering of a gray-scale image

Although not directly related to our primary interest in PDE discretizations, we choose as our first
demonstration the task of dithering a grey scale image, since

i The very sharp transitions between very light and very dark regions provide a more
challenging test case than what typically arises in the context of PDE discretizations,
and

ii. It offers an opportunity to compare the present approach against the state-of-the-art in
an area in which numerous node distribution strategies have already been extensively
studied.

We consider the 256 x 256 gray scale image shown in Figure 4 (a). Since it is commonly used for
testing image rendering schemes, it is readily found by a web search for ‘trui.png’. The rendering
shown in Figure 4 (b) is obtained by the Matlab code given in the Appendix. It contains N = 36, 303
dots and requires 3 seconds of computing on a standard laptop, using only a single core. Since scalar
operations dominate, it is expected that conversion to Fortran or C++ will reduce this by more
than an order of magnitude, to a fraction of a second. Figure 5 illustrates that the dot distribution



(a) Original gray scale image (b) Dithered version
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Figure 4: Test image trui.png and its discrete rendering with the present algorithm, using N =
36, 303 dots/nodes.
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Figure 5: Successive enlargements of Figure 4 (b) around the coordinate location (0.8,0.4), showing
node details also in darker / denser areas of the image.

retains a locally quasi-uniform character also in dark areas and transitions without artifacts where
density gradients are large.

The dot distributions shown in Figures 4 and 5 can be compared to similar ones, for the same
image, reported in [11, 24]. The numerical approach used there first creates a quadratic functional
which incorporates the original image gray-scale information. This is then iteratively minimized
until the desired dot distribution is reached. Conjugate gradients (and, for nodes on a sphere/torus,
non-equispaced FFTs) can be applied. However, computer times nevertheless become substantial,
reported in [11] to be between 15 minutes and one day for N = 30,150 renderings of different
qualities of this same ‘trui’ image (with the use of C++ coding).

2.2.1 Conversion between gray levels and grain radii
Each pixel of the original image has a brightness varying from 0 (black) to 255 (white). When

scaled to the range s € [0, 1], the histogram in Figure 6 (a) shows the number of pixels of different
brightness levels. When converting each pixel’s brightness s to an actual grain radius 7(s) (Step 2



(a) Histogram of pixel brightness (b) Conversion from brightness to grain radius
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Figure 6: (a) Distribution of brightness for the pixels in the trui image, (b) The conversion function
r(s) between pixel brightness and grain radii used for the present trui image rendering.

in the algorithm description in Section 2.1), the main considerations are:

- Solid black (s = 0) should correspond to a small but non-zero radius r(0),

- The function r(s) should be monotonically increasing and, in order to represent white
well, r(s) should be increasing very rapidly as s = 1 is approached,

- The slope of the curve for r(s) controls the contrast of the image.

Basically any function meeting these criteria will work well. Figure 6 (b) shows the one used in
the demonstration code in the Appendix. The total number of dots in an image can be adjusted
by multiplying the function r(s) by a scalar.

For PDE applications, the grain radii (node separations) can either be given a priori, or altered
dynamically. For the latter case, somewhat similar conversion functions have been described in
the finite element literature (in which case node separations typically relate to some local error
measure).

3 Generating RBF-FD node sets: Combining the basic algorithm with local
node adjustment near boundaries

In the previous section’s test case, there was no need to adjust nodes near/along boundaries.
However, in generating node layouts for RBF-FD discretizations, the details of how the nodes
are distributed along/near the boundaries are critical for accurately imposing a PDE’s boundary
conditions. The algorithm, as described above, will not automatically conform to the exact bound-
ary; cf. the details shown in Figure 7. In PDE contexts, the domain shape is furthermore often
non-rectangular. To address these issues, some remarks on ‘node repel’ methods are made. Fol-
lowing that, a method of how to combine the node placing algorithm with a local repel adjustment
near boundaries is discussed, both in the case of a commonly-used test problem for seismic wave
modeling and in the coastline example given in Figure 1.
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Figure 7: Detail of bottom right and top right corners of the dithered image in Figure 4 (b). Only
at the bottom edge do the nodes fall precisely on the boundary.

3.1 Some observations with regard to ‘node repel’ algorithms

The strategy of adjusting node locations based on a repelling force acting between nearby nodes can
be highly efficient for obtaining good distributions on a local level. However, it should be noted
that this usually becomes very inefficient if the initial node distribution is far from the desired
equilibrium. Figure 8 illustrates this. In this simple 1-D test case, it is assumed that each node
exerts a force of the strength p(z)/r? on its immediate neighbor on each side, located the distance
r away. A node at location x, between nodes at locations xj_1 and xg1, will thus reach its local
$k71\/P(xk+1)+xk+1\/ﬂ($k71). With p(z) as

Ve@es)+y/p(zk-1)

shown in Figure 8 (a), we see in part (b) how the movement of initially uniformly placed nodes
occurs by a process akin to diffusion. More than 10* relaxation steps are needed over all the nodes
before the global process has settled. In sharp contrast to ‘transporting’ nodes much further than
their typical separation distances (e.g. as seen in the right part of Figure 8 (b)), merely adjusting
node locations to that of their immediate neighbors is a rapid process. It is in this manner that we
use node repelling.

force equilibrium when moved to the adjusted location

The strategy used in distmesh2d is to initally distribute nodes on a dense near-hexagonal grid, and
then remove nodes by a random process that leads to roughly the desired density variations. This
is followed by an iterative scheme to adjust nodes locally using Delaunay trangularizations rather
than a local repel process. For the trui test problem, almost independently of the total number
of nodes, each of these successive iterations requires about 1/4 of the total time than the present
node placing method to complete. However, considerably more than four iterations are typically
needed to remove ‘artifacts’ originating from the initial node layout.

3.2 An RBF-FD node distribution strategy
In the following two subsections, examples are given on how to generate RBF-FD node distributions

for domains with boudanries and interfaces. Although the examples differ in the details, the general
strategy is the same for both cases. The overall steps are as follows:



(a) Function p(x) specifying the strength of repel force
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Figure 8: Illustration of repel algorithm in a case where the nodes initially are some distance away
from their final locations; (a) 1D repel coefficient p(z) = 2 +  arctan(60(z — 0.6)); (b) Movement
of N = 100 nodes during 10° repel iterations, each of which adjusts all the nodes as described in
Section 3.1.



1. Fill the entire domain of a rectangle using the basic node algorithm presented in Section 2.1.
The nodes can be quasi-uniform or not.

2. Superimpose equi-spaced boundary and/or interface nodes.
3. Discard nodes that are within a distance of /2 from any boundary and/or interface node.

4. Perform a few local repel steps only on nodes that are in the immediate vicinty of a bounday
/ interface node (e.g. 20 nearest neighbors).

3.2.1 An RBF-FD node distribution for seismic wave modeling

Figure 9 illustrates the Marmousi test case, which is widely used for evaluating seismic wave
propagation codes. Pressure waves are initiated at different surface locations (top boundary), and
returning pressure and shear waves need to be calculated. These returning signals arise mostly from
the numerous material interfaces that separate the different geological strata. For each wave that
arrives at an interface, four main outgoing waves are produced - reflected and transmitted pressure
and shear waves. The RBF-FD approach to this type of simulations ([17, 18, 19]) uses for each
region bound by interfaces a node set that is quasi-uniform both along its boundaries and inside. To
visualize individual node locations, the domain is simplified further in Figure 10. Part (a) shows
a rectangular region filled with quasi-uniform nodes obtained with the present node placement
algorithm (in this example using a grain size of radius » = 0.03 throughout). Superimposed on this
is the desired node locations along the domain boundary and the interfaces, shown as small blue
circles. We next (i) discard all nodes outside the domain boundary and within a distance of /2 of
any boundary / interface node, and (ii) run a few node repel steps only on nodes in the immediate
vicinity of any boundary /interface point. In this process, none of the boundary / interface points
are moved. This leads to the node distribution in part (b). All the calculations behind Figure 10
(including the node placement and the repel steps) require only a fraction of a second in Matlab.
One contributing factor to the high computational speed is the use of the k-d tree algorithm for
finding a given number of nearest neighbors for any subset or even all the nodes in a domain. This
algorithm is conveniently available in several versions in Matlab’s statistics toolbox (knnsearch,
rangesearch, createns).

In the context of seismic exploration, the forward’ wave propagation problem needs to be solved
very large numbers of times in order that ’inverse’ solvers will be able to deduce underground
structures from reconciling measured and simulated wave responses at the surface. Since the
structures are constantly adjusted in this iterative process, it is critical that the necessary node
sets be computed very rapidly.
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Figure 9: Illustration of the variable medium properties/interfaces in the 2-D Marmousi test case
for seismic modeling.

(@) Small Marmousi-like test case: Interfaces and initially placed nodes
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(b) After the repel step: The black nodes remain in their previous positions
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Figure 10: The steps in creating node sets that align with boundaries and interfaces illustrated in
a small Marmousi-like test case: (a) Domain boundary and interface nodes (blue circles) are shown
superimposed on an independently generated quasi-uniform node set, which extends over a slightly
larger domain (black dots), (b) Resulting node distribution after the local repel process. Only the
nodes marked red were moved - all the black and blue ones remain in their previous positions.
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(a) Equispaced nodes marking coastline/breakwater
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Figure 11: The steps behind the generation of Figure 1.

3.2.2 An RBF-FD node distribution for coastal hazard modeling

Figure 11 (a) shows the boundary coastline / breakwater (with nearby island) marked by a set
of roughly equispaced nodes. For any location in the the (x,y)-plane, the distance d(z,y) to the
neareast boundary node can be easily calculated. Figure 11 (b) shows the result of using the present
node placing algorithm with a variable grain size of radius » = 0.02 + 0.2y/d(x,y). The result is
that nodes become more densely packed as they approach the boundary coastline, while gently
becoming sparser out to sea. In the last step, leading to Figure 1, we (i) superpose the node set in
Figure 11 (a) on the node set in part (b), (ii) holding the coastline nodes fixed, run a local repel
on the nodes immediately adjacent to these, and (iii) discard nodes outside the domain of interest
(in this case the side that represents land).

4 Node distributions on 2-D surfaces embedded in 3-D space
The most straightforward approach for the surface of a sphere, as for many other curved surfaces,

is to use conformal mappings to reduce the task to one or several planar node distribution cases.
An additional option is noted in Section 4.4.
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Figure 12: Concept of a stereographic projection - the mapping between the upper half of the unit
sphere in z,y, z-coordinates and the unit disk in &, n-coordinates, as described by (1).

4.1 Node sets with quasi-uniform density on a sphere

Figure 12 illustrates the standard stereographic (conformal) mapping

2¢
14+&2+n? _ =
— %777 5_ 1+z (1)
142472 ’ - v
1822 = T
T 14E2H4?

between the upper half of a unit sphere in z,y, z-space and the unit disk in a &, n-plane (in the
figure coinciding with the z, y-plane). A similar mapping for the lower half of the unit sphere is
obtained by changing z — —z in (1). However, each of the two mapping cases can be used also on
the opposite hemisphere if one makes the changes

{é,n}ﬁ{ : 1 } 2)

G+t &4

A small circle with radius r on the surface of the sphere will, in the £, n-plane, correspond to a
circle with radius

pr) = —— =1+ +1). (3)

r

1+z 2
Hence, any node density function on the sphere is trivially translated to its counterpart in the &, n-
plane. This p-function is not explicitly chosen by the user, but follows from the conformal mapping
and the desired node separation function r(x,y, z) on the surface. As illustrated in Figure 13 and
described in its caption, nodes are placed using the algorithm in Section 2.1 with radius p(r = 0.06)
in a square in the &, n-plane. Then a band of boundary nodes, marked as blue circles in Figure
13 (a), are chosen (see caption). For the opposite hemisphere, in Figure 13 (b), the same interior
(black) nodes are used as in Figure 13 (a); however, the location of the boundary nodes are forced
by the transformation (2). This then requires a local repel process to be performed on the interior
nodes near the boundary (in red). Combining the two hemispheres gives the top row of subplots in

12



(a) Placed nodes and boundary markers (b) Opposite hemisphere, aftre repel step
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Figure 13: (a) Nodes placed over &,n € [—1.2,1.2] x [—1.2,1.2] with radii given by (3) using r = 0.06.
Nodes located within a thin band around the periphery of the unit circle are marked by small blue
circles, and will be referred to as ‘boundary’ nodes. The band, here given by 0.95 < /&2 + n? <
1.05, needs to be wide enough that it does not have any gaps along the circle periphery that are
longer than typical node separations, (b) The blue circles show the same boundary nodes after the
transformation given in (2). Nodes outside this new boundary have been discarded, and the repel
process has been carried out on the interior nodes shown in red.

Figure 14. An alternative, but more laborious and redundant approach, would have been to do a
separate node placing for each hemisphere. In many applications that require quasi-uniform nodes
on the sphere, details in the distributions matter very little (such as the distinctions between MD
and ME nodes; this has in particular been noted for numerical quadrature on the sphere [10]).

There are many ways to measure / illustrate 'node quality’, one of which is to create histograms
of the distances from each node to its nearest neighbor. Figure 15 shows this for the three node
sets displayed in Figure 14. Although the peak locations of the three distributions are somewhat
different, the ’spreads’ are comparable, indicating that they are all about equally well suited in the
present RBF-FD context.

4.2 Node sets with highly variable density on a sphere

We choose here the same dithering test case as is shown in Figure 9 of [11]. The data is available
as a 180 x 360 matrix in the file topo.mat in Matlab’s Mapping toolbox, cf. Figure 16. Nodes
are placed, as illustrated in Figure 13, but now the grain size is also scaled with the data via the
translation function r(s) as in the trui.png image. The execution time in Matlab, on a standard
notebook, is again just over 10,000 nodes/second, i.e. the N = 105,419 node distribution shown in
Figure 17 required just less than 10 seconds.

The projection used in Figure 17 may give the optical illusion that nodes near the sphere’s outer
edge are ‘lined up’ more distinctly than as displayed in the center of the image, and also that the
edge regions are darker. However, this is not the case. The same effects are seen in all the subplots
in Figure 14. The central area of all these figures convey most clearly the node patterns.

13
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Figure 14: Top row of subplots: The resulting quasi-uniform node distribution obtained when
combining the interior nodes from Figures 13 a,b with the boundary nodes, and then transferring
these to the sphere by means of the mappings in (1); N = 3,343 nodes displayed from three
different angles. Bottom two rows of subplots: The corresponding N = 3,364 MD and ME node
distributions, tabulated in [27].
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Figure 15: Histograms showing the distance from each node to its nearest neighbor in the three
distributions in Figure 14.
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Figure 16: Gray scale rendering of the file topo.mat in Matlab’s Mapping toolbox.

Figure 17: Dithered version of the data from Figure 16, N = 105,419 dots.
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4.3 Nodes on a torus

The case of a torus (also considered in [11]) is simpler than that of a sphere in that its surface
can be conformally mapped to a single rectangle (i.e. does not require the composite of two planar
cases). Figure 18 illustrates the conformal mapping between a torus with aspect ratio v/2 and a
periodic square. It is given by

f(§) cos mn ’ { €= atan2(z,v2y/z2 +y2 - 1) (4)
n

y = f(&) sinmy
> = () sin we atan2(y, x)

T

where f(&) = 1/(v/2 — cos 7€) and atan2(y’,z’) denotes the polar coordinate angle for a general
Cartesian location (z,y’). The counterpart to (3) becomes in this case

T T

pzng(\/ﬁ—cos ﬂf)

Tori with other aspect ratios can similarly be conformally mapped to rectangles.
4.4 Nodes on general surfaces

If the upper half of a sphere is generalized to a simply connected part of an arbitrarily curved surface,
conformal mappings can still be found to planar 2-D regions, making the presented algorithm
directly applicable. For a general surface, the mappings are not available in closed form, but Table
1 in [12] lists no less than five different computational options. The surfaces can be extraordinarily
convoluted, with the provided examples including a hand and a foot, the head of Michelangelo’s
David statue, and the heavily folded surface of the brain. Two of the methods are reviewed in more
detail in [13] (based on holomorphic differentials and on surface Ricci flows, respectively).

As an alternative to relying on conformal mappings, the node placing procedure for 2-D rectangles
presented in Section 2.1 can be directly generalized to curved surfaces. For example, in the case of
a sphere, nodes can directly be placed at the lowest PDP available on its surface. Then, the only
location at which a final repel adjustment becomes called for will be in the immediate vicinity of
the North Pole itself, involving only the last 10 or so placed nodes. However, the algebra becomes
slightly more involved than for the conformal mapping approach described in Section 4.1.

5 Conclusions

Numerous applications require node distributions of greatly variable density while still locally main-
taining a quasi-uniform structure. The proposed scheme is very simple to implement (cf. the Matlab
code in the Appendix). It provides a computationally fast alternative to algorithms based on en-
ergy minimization and Voronoi tessellations, with the additional benefit of both algorithmic and
mathematical simplicity. The high computational speed is especially significant for time dependent
problems that require the distribution to be updated frequently.

For irregularly shaped 2-D regions, node distributions can be specified as desired along the bound-
aries. This provides an approach for creating variable density node sets not only for planar regions,
but also for curved surfaces. In some applications, such as creating node sets for seismic modeling,
the presence of many separate regions allows straightforward parallelization on distributed memory
computers.
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Figure 18: The conformal mapping between the periodic square &, € [—1,1] and a torus, as
described by equation (4).

6 Appendix: Matlab code for rendering the trui image

The function node_placing is generic for placing nodes in a rectangle of any size. The brief 'main
script’ and the function radius_trui provide an example of how the function node_placing can be
called. The values for the variables ninit and dotmax are only used to size internal arrays. Their
values can be vastly increased without any adverse effects apart from proportional increases in
memory allocations. If the file trui.png is not conveniently available, any other .png image file can
be substituted with only trivial changes in the main script.
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function xy = node_placing (box, ninit, dotmax, radius)

% —-—-- Input parameters ---

%  box Size of box to be filled by nodes: [xmin,xmax,ymin,ymax]
% mninit  Upper limit on number of PDP entries

% dotmax Upper bound for number of dots to place

% radius The function radius(xy) provides grain radius to be used
% at location (x,y).

% —-—- Output parameter ---
% xy Array xy(:,2) with the generated node locations
dotnr = O; % Counter for the placed dots
rng(0); % Initialize random number generator
pdp = [linspace(box (1) ,box(2) ,ninit)’,box(3)+le-4*rand(ninit,1)];
pdp-end = ninit; % Number of PDPs in use
xy = zeros(dotmax,2); % Array to store produced dot locations
[ym,i] = min(pdp(1:pdp_end,2)); % Locate PDP with lowest y-coordinate
while ym <= box(4) && dotnr < dotmax;’ Loop over all dots that are to be placed
dotnr = dotnr + 1; % Keep count for next dot to be placed
xy(dotnr,:) = pdp(i,:); % Place the dot
r = radius(xy(dotnr,:)); % Get grain radius to be used

% —--- Calculate the distance from the placed dot to all present PDPs
dist2 = (pdp(1:pdp-end,1)-pdp(i,1))."2+(pdp(1:pdp-end,2)-pdp(i,2))."2;

% --- Find nearest old PDP to the left, outside the new circle
ileft = find(dist2(1:i) > r~2,1, ’last’ );
if isempty(ileft );

ileft =0; % Special case if no such point
ang_left = pi;
else
ang_left = atan2(pdp(ileft,2)-pdp(i,2),pdp(ileft,1)-pdp(i,1));
end
% —--- Find nearest old PDP to the right, outside the new circle

iright = find(dist2(i:pdp-end) > r~2,1, ’first’);
if isempty(iright);
iright 0; % Special case if no such point
ang.-right = 0;
else
ang_right = atan2(pdp(i+iright-1,2)-pdp(i,2),pdp(i+iright-1,1)-pdp(i,1));

end

% —--- Introduce five new markers along the circle sector, equispaced in angle
ang = ang-left-[0.1;0.3;0.5;0.7;0.9]*(ang_left-ang right) ;
pdp-new = [pdp(i,1)+r*cos(ang),pdp(i,2)+r*sin(ang)];
ind = pdp-new(:,1) < box(1) | pdpmnew(:,1) > box(2);
pdp-new(ind,:) = [1; % Remove any new PDPs outside the domain
nw = length(pdpnew(:,1)); % Number of new markers to be inserted

% —-- Remove obsolete and insert new PDPs in the array pdp
if iright == % Place rightmost block of old PDPs
pdp-end = ileft+nw; % to the right of the block of the new PDPs
elseind i+iright-1:pdp_end;
pdp-end = ileft+nw+pdp_end-i-iright+2;
pdp(ileft+nw+l:pdp_end,:) = pdp(ind,:);

end
pdp(ileft+i:ileft+nw,:) = pdp-new; % Insert the new PDPs into pdp

% —-- Identify next dot location, then iterate until all dots are placed
[ym,i] = min(pdp(1:pdp_end,2));

end

xy = xy(l:dotnr,:); % Remove unused entries in array xy
% —-- Main script for generating the dithered trui image

close all; clear all;

ninit = be+4; % Upper bound on potential dot positions (PDPs) to use
dotmax = b5e+5; % Upper bound on number of dots to place

% —-—- Carry out the node placing

xy = node_placing([0 1 O 1],ninit,dotmax,@radius_trui);

% —--- Display the resulting dithered image

plot(xy(:,1),xy(:,2),’k.’, ’MarkerSize’,2.1); axis square
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function r = radius_trui(xy) % Return grain radius at location (x,y)
persistent F

if isempty(F) % Read in the trui image once
A = double(imread(’trui.png’,’PNG’)); A = flipud(A(:,:,1));
rf = @(s) 0.002+0.006%s+0.012%s.78; % Conversion of brightness to grain radius
F = rf(A/255);

end

ixy = round(255%*xy) ; % Given a location (x,y), evaluate
r = F(ixy(:,2)+2566%ixy(:,1)+1); % the corresponding grain radius
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