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Abstract How far the stability domain of a numerical method for appmeating solutions
to differential equations extends along the imaginary adscates how useful the method
is for approximating solutions to wave equations; this maxn extent is termed the imag-
inary stability boundary, also known as the stability oede It has previously been shown
that exactly half of Adams-Bashforth (AB), Adams-Moultohl{), and staggered Adams-
Bashforth methods have nonzero stability ordinates. Is plaiper, we consider two cate-
gories of Adams predictor-corrector methods and provettiet follow a similar pattern.
In particular, if p is the order of the method, ABAM p methods have nonzero stability or-
dinate only forp=1,2, 5,6, 9,10,..., and AB({p—1)-AM p methods have nonzero stability
ordinates only fop=3,4, 7,8, 11,12 .. ..
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1 Introduction

When wave equations are posed as first-order systems andtitisd in space to yield a
system of ordinary differential equations (ODES), a puigigginary spectrum will corre-
spond to the fact that only propagation takes place. Margsidal numerical methods for
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ODEs have stability regions that include an interval of terf[—iS,iS ] on the imaginary
axis. We call the largest such value$ftheimaginary stability boundary (1SB) of the ODE
integrator, which is also known as the stability ordinatethe context of solving semidis-
crete wave equations, one desires to use a method with alBBjevhich allows larger
stable time steps; methods with zero ISB’s (i.e., no imagiaais coverage in the stability
domain) will be unconditionally unstable. In this paper, @lore the question of which
Adams methods have nonzero ISB’s.

Adams-Bashforth (AB), Adams-Moulton (AM), and Adams pidr-corrector meth-
ods are widely used multistep methods for approximatingtemis to first-order differential
equations. In general, these methods maintain reasonabtyaccuracy and stability prop-
erties and have lower computational costs than equivaletdér Runge—Kutta methods; AB
and AM methods require only one new function evaluation pee tstep, while predictor-
corrector methods require two function evaluations [1];18,[9].

A standardm-step Adams method for approximating solutionsﬂ#o: f(t,y) has the
form

tjv1
Y1 =Y+ /t q(t)dt, (1)
]

wheretj =tp+ jh, his the stepsize, ang = y(tp). Here,q(t) is the polynomial interpolating
the pointg(ty, yk) for j —m+1 <k < j (AB methods) ofj —m+1 <k < j+1 (AM methods).
We will henceforth usg = 0 to simplify the notation. AB methods have orgex= mwhile
AM methods have ordgn = m+ 1.

For staggered AB methodg(t) in (1) interpolates a(tk+1/2,yk+1/2) for j—m+1<
k < j; like AB methods, these methods have orges m. For a given order of accuracy,
staggered multistep methods have about ten times lessthoc&lation error and stability
domains that extend approximately 2-8 times as far on thgimaay axis when compared to
their nonstaggered counterparts [4]. This improved aayusad stability with no additional
computational or storage cost makes such methods ideal thiegncan be applied; their
main use is in approximating solutions to linear wave equwti which can be formulated
with a grid which is staggered in space and/or time. For leoadidies of staggered methods
(to include more general multistep and Runge—Kutta methsds [4], [5].

In [2, Table G.3-1], it was observed (without proof) that ARtiods of ordep (AB p)
have nonzero ISB’s only for ordeps= 3,4, 7,8, 11,12 ... and AMp methods have nonzero
ISB’s only for ordersp=1,2, 5,6, 9,10,.... These results can be deduced from [10] and
were independently shown in [3] and [4]. While [10] is not hpgble to staggered methods,
[3] and [4] proved that staggered AB methods of orgdrave nonzero ISB’s only fop =
2,34, 7,8, 1112 ..., ; none of the aforementioned articles addressed Adamscpred
corrector methods. Henceforth, we will only consider naggered methods.

This study revisits our previous results from [4] with a n@snfiulation and then extends
our results to Adams predictor-corrector methods. In paldr, we examine the most com-
monly used Adams predictor-corrector methodspAMM p and AB(p—1)-AMp, both of
which have ordep. We are unaware of any other studies addressing the ISBlxcbfrmeth-
ods for general ordep. In [2, Table G.3-1], it was claimed that for such methodsysthhad
nonzero ISB’s while ‘'some’ had zero ISB’s. We now proceedhwitoving that such meth-
ods follow very similar patterns to those of AB and AM methodigh AB p-AM p methods
following the same pattern as AMmethods and AB§—1)-AM p methods following the
same pattern as ABmethods. We then offer an application illustrating the sigance of
these results.
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2 Preliminary Results
When solving Dahlquist’s linear test problem

dy

o = (2)
the edge of a stability domain is described by the ®et Ah of p(r) — £a(r) = 0 whenr
travels around the unit circle= €. Here,p(r) ando(r) are the generating polynomials of
the method (see, e.g., [9, p. 27]).

To consider whether or not a stability domain has imaginaiy eoverage, we wish to
describe the behavior of the stability domain boundary gear0. For an exact method, we
have(6) = Inr (see, e.g., [9, Theorem 2.1], usigg= %.) Thus the stability boundary
of an exact method satisfies

E:Inr:ln(eie):ie (3)

nearé = 0. A numerical scheme of ordgrwill instead lead to
£(0) =0+ cpli6)" 1+ dp(i6)P*2 0 ((i9)"?) @)

for some constants, andd,. The sign of the firsteal term in the expansion (4) will dictate
whether the stability domain boundary near the origin switogthe right or to the left of the
imaginary axis.

For example, AB2 has the expansi&() = i6 + (i6)° — 2(i6)*+...; because the
sign of the first real term in this expansion is negative, 88 d6f AB2 is zero. AB3 has the
expansiorg () =i6+ g(i 6)* 4 ...; because the sign of the first real term in this expansion
is positive, the ISB of AB2 is positive. See Figure 1 for ansliration comparing the stability
domains of AB2 (which has a zero ISB) and AB3 (which has an IS% ~0.724.)

@
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Fig. 1 Shown are portions of the boundaries of the stability region (a) AB2 and (b) AB3. The solid line
marks the presently relevant section of the stability domaimnidary near the origin; the stability regions
consist of the regions to the left of the boundary. Both gsagitow tha ~ i6 nearé = 0. When the first
real term in (4) is negative, the ISB is 0. (b) When the first teah in (4) is positive, the ISB is nonzero. The
intercepts of AB2 and AB3 on the negative real axisaﬂeandfl%, respectively.
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2.1 Backward difference forms of AB and AM methods

In [8, pp. 191-195], Henrici gave a backward difference espntation of (1) for AB and
AM methods. When applied to (2), anstep AB method can be represented by

m-1
y1=Yo+hA Z;  yo, (5)
k=

Y= (fl)k/o1 (15) ds. (6)

Similarly, anm-step AM method can be represented by

where

m
yi=Yo+hA ¥ Oy, (@)
K=o
where L
=0 [ (5 Y es ®)
0
Henrici [8, p. 195] also established that
k
Vi = % 9)
2"
from which
e = Y= V1. (10)

Lemma 2.1 For all integersk > 1, y¢ < 0. For all integers k > 0, yk > 0. For all integers
k>3 %>t

Proof Evaluating (8) directly giveg; = 1 andy; = —%. For the general case whé&n> 1,
we rewrite (8) to find

1 r1
Vi = g/0 (s—1)s(s+1)(s+2)...(s+k—2)ds (11)

The integrand is negative for@s < 1, soy; <0 fork> 1.
We next note that an alternate way to express (6) is

1 1
M‘:ﬁ/o S(s+1)(s+2)...(s+k—1)ds. (12)

Direct evaluation of (12) givegy = 1, i = 3, ¥ = 3, andys = 3 > 1. We now prove the
last part of the lemma via induction. We assume t)at Tl for somej > 3 and seek to
establish thayj1 > JT11 From (12),

1s(s+1)(s+2)...(s+j—l)<s+j) ( j ) ( j )1 1
i+t /o j! i+1) o) )] T i+

Thusy > % by induction for all integer& > 3, andy > 0 for all integersk > 0.

Table 1 gives the first six values gf andy;.
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5
mfolsl2]s] 4|5 |
1 5 3 251 95
ym || 1] 3 12 8 20 288
1 1 1 3
Yo || 1] -2 | | 24| 70 | “10

Table 1 First six values of4 andy; from (12) and (11). These results match Tables 5.2 and 5.4.0f [8

2.2 Exact solution

Using€ = A h, the exact solution to (2) igt) = e} = f/" where, without loss of generality,
we have chosety = 0 andy(tg) = 1. For an exact method,=i6 nearé = 0 from (3), so

yn=y(nh) = €&"®, (13)

An alternate way to view (13) is that we are seeking the exalatisn to the relevant differ-
ence equation when following the rauthat hag = €, which givesy, =" = ()" = €.

We now give a lemma that will help in finding the expansion @t)feneral order Adams
methods.

Lemma 2.2 For integersk > 1, when y, = "¢

Oyo = (i6) [17 g (i6)+0 ((ie)z)} : (14)
and
Okyy = (i) {1+ %‘ (i6) +O((i6)2)} : (15)
For integersM > 1, wheny,, = €,
Mo 1 o
k;ykD y0:1+§(|9)+o((|9) ) (16)
and
L 1. "
k;wrm y1:1+5(|9)+0((|6) ) 17)

Proof Fory, = €", [yp = (1—e19) andkyp = (1— e 19)* so that
Oy = [1— (l+(i6)+;(i9)2+0((i9)3))]k
= (i) {1—g(i6)+0<(i9)2>] 7

establishing (14). Foy, = €0, OKy; = €8 0Xyo. Multiplying (14) bye® = 1+i6+... gives
(15).
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Using (14), we find

S W 0= 3 K(i0) [1—5(i9)+o((ie)2)}
22, 2
=y [1+0((i6)%)] +na(i6)[1+0(i6) +0((i6)?)
- 1+%i6+0((i9)2),

where we have usegh = 1 andy, = % in the last step. This establishes (16). A similar
expansion using (15)§ = 1, andy; = —3 gives (17). o

In the next section, we apply these results to obtain theresipa (4) for general AP
and AMp methods. In Section 4, we apply these results to obtain tpareion (4) for
general AB-AM p methods and AB{—1)-AM p methods.

3 Reuvisiting stability ordinates for AB and AM methods

We now apply the backward difference forms of the Adams nasho consider the ISB’s
of general AB and AM methods, thereby giving an alternatepio [4].

Theorem 3.1 AB methods have nonzero ISB's only for orders p= 3,4, 7,8, ....

Proof We first note that it is well known that the ISB for AB1 (Eulen®ethod) is zero (see,
for example [2]). One can also check the expansion; AB1 haxpansion of =€ — 1=
i0 -+ % (ie)2 + ..., which has a negative first real term, confirming that the 18BAB1 is
zero. We now proceed with the general casegfor 2.

For AB methods, we will show that, > 0 anddp, < O for all ordersp > 2, wherec,
andd, are defined by (4). The pattern for which methods have nori&8ts then follows
from the powers of the imaginary unit in (4). For example, foe 3, the first real term
in the expansion (4) is3(i6)* = c36* > 0. Thus the boundary of the stability domain of
AB3 swings to the right of the imaginary axis near the origind we have a nonzero ISB
for this method, as seen in Figure 1b. Fp& 6, the first real term in the expansion (4) is
ds(i16)® = dg(8)® < 0; thus the stability domain boundary of AB6 swings to the téfthe
imaginary axis near the origin, and the ISB of this methocti®z

We seek to find the values of anddp in the case of a general ABmethod. We apply
(23) to (5), usingg = Ahto find

_ m-1
€ =1+& 5 k. (18)
K=0
As m— o, the AB method (5) reproduces the exact solution. Thusgudj we find
d?=1+i6 > Y 04o. (19)
K=o
Combining (19) and (18) gives

m-1
(E—-i0) Y %Yo =i0 S w*yo.
2, 2

k>m
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We now substitute fo€ using (4), where the ordgr= mfor AB. Using (14) and (16),
we find

[cm(ie)m+1+dm(ie)m+2+o((ie)m“)} {1+%(i9)+0((i9)2)}
= Yn(i6)™2 [1— g (i6)+0((i9)2)] F Yne1 (18)™2[140(i6))] +o((ie)m+3) .

Collecting like powers of6, we find thatcy, = ym and

1 m
ECm‘i‘dm = Ym (_5) + Ymy1
so that . L
m m+
Om = Ymi1— Eym— écm: Y1 — <T) Ym. (20)

From Lemma 2.1, we havg, = y, > 0 for integeram > 0. Using this result and (12) in (20)

gives
m+1
Om = Y1 — (T) Ym

2(m711)! /olS(S+ D(s+2):(s+m—1) [2s+m) —(m+ 1) ds

1 1
= fm/o S(s+1)(s+2)--- (s+m—1) [mP+1-2s|ds.

Becauser? +1—2s> 0 form> 2 and 0< s< 1, the integrand is positive so tha, < 0
for m > 2. Noting thatp = m for AB methods, examining the sign of the first real term
in (4) establishes our result that AB methods have nonzeBsI8nly for ordersp =
3,4,7,8 11,12 ... i
Theorem 3.2 AM methods have nonzero |SB’s only for orders p= 1,2, 5,6, 9,10,....
Proof We first note thap = 1 (Backward Euler) ang = 2 (AM2) are well-known A-stable
methods and thus have nonzero ISB’s; one can also checketkginsions. AM1 has an
expansion of =1-e7¢=i8—1(i)*+..., which has a positive first real term, indicating
that AM1 has a nonzero ISB. The expansion for AM2 containg pately imaginary terms;
this is to be expected since the stability domain boundarAf2 consists of the entire
imaginary axis.

We now prove the general result for> 3. We seek to find the values of anddy, in (4)
for a general AMp method. We apply (13) to (7), usirfg= A hto find

X m
d9=1+¢ ijﬁ Okys. (21)
K=
As m— o, the AM method (7) reproduces the exact solution. Thus,gu8h we find
d9=1+i0 ZOW Ofy1. (22)
k=
Combining (22) and (21) gives

(& —ie)kiyk* Dy =10 5 %Oy

k>m+1
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We now substitute fo€ using (4), where the ordgyr= m—+ 1 for AM. Using (15) and
(17), we find

[em16)™ 7+ dm(10)™2+ 0 ((16)™)] {l+ % (i6)+0 ((ie)Z)}

1-m

— Yora (10)™2 {1+ (i8)+0 ((ie)Z)] + Yons2(18)™°[14-0(i6)] + O (1)) .

Collecting like powers of6, we find thatcy = ¥, ; and

1 m-—1
Ecm+dm:%+2*Wn+1 (T) (23)
From Lemma 2.1, we hawen = ¥, < 0 form> 1. Using this result and (11) in (23)
and simplifying gives
m
dm = Vmi2— (5) Vi1 (24)
1

— i /ol(s— 1)s(s+1)(s+2)---(s+m—1) (25— mZ) ds.

Becausg(s— 1) and (2s— n¥) are both negative for & s < 1 andm > 2, the integrand
is positive form > 2. Therefored,, > 0 andcy, < 0 for AM methods, exactly opposite the
result for AB methods. After examining the sign of the firstlreerm in (4) and noting that
p = m+ 1 for AM methods, we conclude that Adams-Moulton methodsh®nzero ISB’s
only for ordersp=1,2, 5,6, 9,10,.... O

4 Stability ordinates of Adams predictor-corrector methods

We now examine two different categories of Adams predictorector methods: ApB-
AM p methods and AB§—1)-AM p methods.

4.1 Two examples

We first consider two examples, AB1-AM2 and AB2-AM2. The potar AB1 is given by

¥: =Yo+hf (to,Y0), (25)
and the predictor AB2 is given by

h
Y =Yo+ 5 (3f (to,yo) — f (t-1,y-1)). (26)
In both cases, the corrector AM2 is given by
h
yi=Yo+3 (f (t.y5) + f (to,¥0)) - (27)

We first consider AB1-AM2. Using (25), substitutingt,y) = Ay = %y, and letting
yk = rk to solve the resulting difference equation, we find that (&fomes

1 1
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To find the boundary of the stability domain, we follow thetrgan (28) nearl = 0 where
|r| = 1. The stability domain of this method is shown in Figure 2(# can also let = &
and do a Taylor expansion fgi(6) in (28) to find that

E=i0+2(6)°— (i6)*+ ... (29)

Because the first real term in this expansion is negative,-ABIR has a zero I1SB.
We next consider AB2-AM2. Using (26) and (27), we find that éimalogous equation
to (28) is
1 3 1
2 —_— — — — —
r _r+2£ (r+ 2(3r l))+25r,

which leads to the expansion
i Lieps Loy
E=i06 12(|19) +4(|9) +.... (30)

Since the first real term in this expansion is positive, ABZAhas a nonzero ISB (approx-
imately 129). The stability domain of this method is shown in Figure)2(

(@) (b)

15 1.5
1 1
0.5 0.5
< ®
E ° E 0

-15 -15

o

-2 -15 -1 -0.5 0 -2 -15 -1 -0.5
Re(E) Re(€)

Fig. 2 Shown are the boundaries of the stability regions for (a) #8412 and (b) AB2-AM2. The stability
regions consist of the inside of these curves. For (b), tiitSapproximately 229. The intercept on the
negative real axis is-2 for both methods.

4.2 General order predictor-corrector methods

In general, from (5), our AB predictor will take the form

M
VI =Yo+¢& > W 0vo (31)
k=

whereM = m— 1 for AB(p—1)-AM p methods andM = m for AB p-AM p methods; both
methods have ordgy = m+ 1. The general form of the AM corrector method is given by



10 M. Ghrist, B. Fornberg, and J. Reeger

(7), where we replace all instancesyafon the right-hand side by after the backward
difference operations are done. This leads to

ylzyo+ézowfDky1+6(%*+vl*+---%%)(y§—y1) (32)
J:

=¥+ 3 K D1+ & (¥ —y1)
J:

where we have used (9) in the last step.
We use (31) to substitute ftyﬁ’ in (32) and then use the exact solution (13) to find

m M
d9=1+1¢ ok +5m<1é9+5 Ok ) 33
JZOWL‘ y1+&x k;))'k Yo (33)

We now use the exact AM and AB expressions (22) and (19) totisutesfor the two in-
stances o€ in (33) respectively. Simplifying gives

0= (£-i6) (kiwr ka) -ie 3 K0
M

+ & Y [(E—ie) (2 kayo> -6y kayo},

k=0 k>M+1

whereM = m— 1 for AB(p—1)-AM p methods andl = mfor AB p-AM p methods.
Applying Lemma 2.2 gives

0=(£-i0) (1+g+0((i9)2)) 0y y [(ie)k<l+%((i6)+-~->} (34)

k>mH-1

+&Vm

. . . . k . .
(£-10)(1+0(i0))—i8 Y w(i0) (1— (|e)+o((|e)2))} .
k>M+1 2
This formula permits us to compute the expansion of the bagndf the stability region
& (0) near the origin for the two Adams predictor-corrector methof present interest. We
first consider general AB-AM p methods, which have ordex

Theorem 4.1 Predictor-corrector ABp-AMp methods have nonzero 1SB’s only for orders
p=12 56, 910,....

Proof Our general proof will requir@ > 3. Forp =1, we can find that the series expansion
for the combination of forward Euler predictor and backwgrder correction i€ =i6 —
: (i6)?+---. Because this has a positive first real term, AB1-AM1 alsozhasnzero ISB.
For p= 2, we have already established that AB2-AM2 has a nonzeroiSE30); also see
Figure 2(b).

We letM = min (34) and substitute (4), using= m+ 1 to find

0= (cm(ie)m+2+dm(ie)m+3+-~-) <l+g+vm(i9+---))

_ie 5 W(ie)k(l—g(iepr...) (35)

k>m+1

_(ie)zym Z W(ie)k (1_g(ig)+...> NI

k>m-1
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where we have kept only the terms that are needed to find thendatierms in this expres-
sion. Examining the coefficients of tt@'e@)“”z and(i@)m+3 terms in (35) gives:

Cm = Y1 (36)

and
m-—1 1
dm= sz—mlT+Vme1—Cm <§+Vm) . (37)

From Lemma (2.1), we know that, < 0 for m > 1. Simplifying (37) using (36) and (10)
gives
m
Om = Y2 — EVranJr Vo

From (24), we know thayn*1+2 - %‘Wnﬂ > 0 form> 2, so we hav@, > 0 form> 2. Thus
Cm < 0 anddy > 0 for m > 2 wherep = m+ 1. After examining the sign of the first real
term in (4) for this case, we conclude that p\M p methods have nonzero ISB’s only for
ordersp=1,2, 5,6, 9,10,..., aresult identical to AN methods. ad

Figure 3 shows the stability domains of AB-1)-AMp and ABp-AM p methods near
the origin.

(a) Stability domains (b) Detail from subplot (a)
- e 15— - T - -

AB2-AM3 :

25F j

AB3-AM4

Im(€)
Im(€)

051

ol— ‘ ‘ ‘
-0.2 -0.1 0 01 0.2
Reg)

Fig. 3 (a) Shown are the relevant portions of the boundaries of theilgy regions for AR p—1)-AMp
methods; the stability domain consists of the interior of eagtve. (b) The detail splot shows that AB2-AM3
and AB3-AM4 are the only methods shown with nonzero ISB. WHile s$tability domain for AB4-AM5
does include part of the first quadrant, the boundary ihjtialvings into the second quadrant, reflecting a
zero ISB.

We now examine general AB¢1)-AM p methods, which also have ordee= m+- 1.
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Theorem 4.2 Predictor-corrector AB(p—1)-AMp methods have nonzero 1SB’s only for or-
dersp=3,4,7,8,....

Proof Our general proof will requirgp > 3. For p = 2, we have already established that
AB1-AM2 has a zero ISB via (29); also see Figure 2(a).

We now proceed with the general casefior 3. We letM = m— 1 in (34) and substitute
(4), usingp = m+1 to find

0= (Cm(ie)m+2+dm(i9)m+3+...) <1+§+Vm(i9+'”))

-6y ;/k*(ie)k(l—k;zz(ie)+--~> (38)

k>m+-1

k
. A2 . Ak .
—(i0) wnkzmyk(le) (1—§(|9)+~-> +--,
where we have kept only the terms that are needed to find thendatierms in this expres-
sion. Examining the coefficients of tfie8)™ "2 and(i6)™" terms in (38) gives

Cm= Vr;JrlJrVrzn (39)
and . L
Om = ¥mni2— <m%) Ymi1 T Y (le—gym) —Cm <§+Vm) . (40)

We claim thatc, < 0 anddy, > 0 form > 2. From (39), (40), and Table 1, we compute
C = 22 andd, = — 22> From Lemma 2.1, we havg, > & for m > 3. Applying this,

(12), and (11) to (39) and simplifying gives

Cm > Vi +E S
m 1 me—m(

m(m+1)! /:(mSJF Ds(s+1)(s+2)...(s+m—1)ds>0

for m> 3 because the integrand is positive.
We now consider the expression fdy, in (40). We substitute focy, from (39), apply
(9) and results from Lemma 2.1, and simplify to find
1-m

Om = W*n+2—n§1yﬁw+1+ (T) Vo~ Von

m 1-m\ w
< %2*§%+1+ (T) ﬁm

o
= 2m(m+2)!

for m> 3, where we have used (12) and (11) in the last step. Bac(a}sm—Zmz) and
(Zs—mz—z) are both negative for & s< 1 andm > 3, the integrand is negative and
thusdm, < 0 for m > 3 for ABp-AM p methods. Thusy, > 0 anddy, < 0 for m > 3 where

p = m+ 1. After examining the sign of the first real term in (4), we clode that AR p—1)-
AM p methods have nonzero ISB’s only for ordgrs- 3,4, 7,8,..., a result identical to
AB p methods. ad

/Ols(s+ 1)...(s+m—1) [(2+m—2nP) + ms(2s— m —2)] ds

Figure 4 show the stability domains of AB—1)-AMp and ABp-AM p methods near
the origin. Our results are summarized along with othewvegleresults from [4] in Table 2.
In Section 5, we present a test that both confirms our resudtshows the practical signifi-
cance of our results when solving wave equations.
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(a) Stability domains (b) Detail from subplot (a)

Im(g)
Im(€)

-02-01 0 0.1 0.2
ReE)

Fig. 4 (a) Shown are relevant portions of the boundaries of thelgyaegions for ABp-AM p methods; the
stability domain consists of the interior of each curve. (lB1AAM1 and AB2-AM2 are the only methods
shown which have nonzero ISB. While the stability domain for3A8M3 does include part of the first
quadrant, the boundary initially swings into the seconddgant, reflecting a zero I1SB; the enlarged figure
(b) does not have enough resolution to see this but furtHargements do.

[ Method [[ Orders | Formula (wherk € ZT) |
AB 34 78, .. T4k— 14K}
AM 12586, {4k—3,4k— 2}
Staggered AB || 2,3,4,7,8,... | {2}U{4k—1,4k}
ABp-AMp 12 5.86,... {Ak—2,4k—1}
AB(p—1)-AMp || 3.4, 7.8,... {4k—1, 4K}

Table 2 Summary of results of orders for which various methods haveerorstability ordinates

5 lllustration via application to the 1D wave equation

In this section, we perform analysis that both confirms osults and shows their practical
significance when solving wave equations.

Dahlquist’s equivalence theorem [9, pp. 24-25] tells thatudtistep method is conver-
gent if and only if the method is of ordgr> 1 and the generating polynomia(r) of the
method obeys the root condition, that is if all rootsogf) satisfy|r| < 1 and all roots with
Ir| = 1 are simple. For a fixed number of ODEs, this assures that meehgolutions will
converge to analytic solutions as the time stepapproaches 0; this is true for all of the
relevant methods that we have consideredpABM p, AB p-AM p, and AB({p—1)-AMp.

Consider next the one-dimensional wave equation

U+ Ux =0, (41)
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which has a purely imaginary spectrum. If we advance (41herperiodic interval-mm <
x < mfromt =0 tot = 10m, the analytic solutionu(x,t) = u(x—t,0) completes five full
periods. As is typical when time-stepping a wave equatian|et/the mesh aspect ratﬁ
stay constant as we refine in botlandt.

LetN be the number of equispaced node points irktd@ection. The key difference be-
tween solving (41) and solving an ODE (or a system of ODEd)as wwhen we refine in the
t-direction with the raticg® held fixed, the number of ODB$ will simultaneously increase,
making the root condition no longer applicable for estdtitig convergence. Thus, we will
consider an alternative analysis which is designed totithis the convergence properties of
the methods of present interest.

An arbitrary initial conditionu(x,0) can be decomposed into Fourier mo@é¥, with
—A—"x <w< A—”X. WhenN is increased, more and more Fourier modes can be represented
in the x-direction. Analytically, each mode should remain of unuped amplitude as time
increases; instability presents itself when there is neeuppund on how large a mode can
become even after a finite time. LB{w, N, %) be the ratio of the amplitude of a given
mode of frequencyw at timet = 107 to its amplitude at = 0.

Figure 5 shows maxR(w, N, %), i.e., the amplitude change factor for the fastest grow-
ing mode out of all present Fourier modes for the first six pBB{1)-AM p methods, which
was implemented in MATLAB. Ideally, the surfaces should leefgctly flat at value 0 (as
this is a log-log graph), reflecting no growth. We see this ecthie case for AB2-AM3,
AB3-AM4, and AB6-AM7 whenever the ratig%( is below certain constants, as expected.
However, no non-zero value for the ra@ can salvage AB1-AM2, AB4-AM5, or AB5-
AMG6 from disastrous spurious growth in the solution unddémnemment. The surfaces are
truncated at the level ma&= 10'®; this level was chosen because even modes that are the-
oretically absent (but are actually present at a leveO§10~6) due to machine precision)
will then have grown to siz&(1).

Further simulations show similar behavior for the first si8 gp\AM p methods: con-
vergence for AB1-AM1, AB2-AM2, AB5-AM5, and AB6-AM6 wheney the ratio% is
below certain constants, and disastrous growth for AB3-Aivid AB4-AM4 for all values
of the ratio%, thus confirming our observations in Figure 4.

6 Conclusions

We have considered the question of when Adams methods ofajenwderp have nonzero
stability ordinates (ISB’s). By applying the backward diftnce formulation of the AB and
AM methods [8], we have proven that ABAM p methods have nonzero stability ordinates
only forp=1,2, 5,6, 9,10,..., which matches ANb methods. We have also shown that
AB(p—1)-AM p methods have nonzero stability ordinates onlyget 3,4, 7,8, 11,12 ..,
which matches AR methods. Discovering intuitive heuristic motivations foese patterns
remains an open challenge. While a method having nonzerovi8bus zero ISB does not
affect convergence for a system of a fixed number of ODEs, we Hastrated that this
makes the difference between stability and disastrouabiiiy when applied to wave-type
PDEs.

These results are immediately relevant to the non-stifblems that arise for many im-
portant wave equations such as Maxwell's equations, aicofgsy., ultrasound) modeling,
and elastic (e.g., seismic exploration) modeling. For ime=lr PDES, linearized stability is
normally required, and the present results are therefamagpplicable.



Stabilty Ordinates of Adams Predictor-Corrector Methods 15

AB1-AM2 AB2-AM3

24 @
% 10 = %
£ W £
# o Qs §
RN B ¢ el 8
6
2 2 0.6
log, N 0 % . log, N 0 Qfax .
AB4-AMS

Ioglo(max R)
Ioglo(max R)

i

)

Ioglo(max R)
Ioglo(max R)

o

XSOXKN

Fig. 5 Shown are the largest amplitude growth factors of any Founiede in the test problem (41) when
advancing front = 0 tot = 10rr using the first six ABp—1)-AM p methods, as a function &f (the number
of nodes in thex-direction across$—rt, i) and the mesh aspect ratf};.. The surfaces are truncated at the
level maxR = 106,
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