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Abstract How far the stability domain of a numerical method for approximating solutions
to differential equations extends along the imaginary axisindicates how useful the method
is for approximating solutions to wave equations; this maximum extent is termed the imag-
inary stability boundary, also known as the stability ordinate. It has previously been shown
that exactly half of Adams-Bashforth (AB), Adams-Moulton (AM), and staggered Adams-
Bashforth methods have nonzero stability ordinates. In this paper, we consider two cate-
gories of Adams predictor-corrector methods and prove thatthey follow a similar pattern.
In particular, if p is the order of the method, ABp-AM p methods have nonzero stability or-
dinate only forp = 1,2, 5,6, 9,10, . . ., and AB(p−1)-AMp methods have nonzero stability
ordinates only forp = 3,4, 7,8, 11,12, . . ..

Keywords Adams methods· Predictor-corrector· Imaginary stability boundary· Linear
multistep methods· Finite difference methods· Stability region· Stability ordinate
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1 Introduction

When wave equations are posed as first-order systems and discretized in space to yield a
system of ordinary differential equations (ODEs), a purelyimaginary spectrum will corre-
spond to the fact that only propagation takes place. Many classical numerical methods for
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ODEs have stability regions that include an interval of the form [−iSI , iSI ] on the imaginary
axis. We call the largest such value ofSI theimaginary stability boundary (ISB) of the ODE
integrator, which is also known as the stability ordinate. In the context of solving semidis-
crete wave equations, one desires to use a method with a largeISB, which allows larger
stable time steps; methods with zero ISB’s (i.e., no imaginary axis coverage in the stability
domain) will be unconditionally unstable. In this paper, weexplore the question of which
Adams methods have nonzero ISB’s.

Adams-Bashforth (AB), Adams-Moulton (AM), and Adams predictor-corrector meth-
ods are widely used multistep methods for approximating solutions to first-order differential
equations. In general, these methods maintain reasonably good accuracy and stability prop-
erties and have lower computational costs than equivalent-order Runge–Kutta methods; AB
and AM methods require only one new function evaluation per time step, while predictor-
corrector methods require two function evaluations [1],[6],[7],[9].

A standardm-step Adams method for approximating solutions tody
dt = f (t,y) has the

form

y j+1 = y j +
∫ t j+1

t j

q(t)dt, (1)

wheret j = t0+ jh, h is the stepsize, andy0 = y(t0). Here,q(t) is the polynomial interpolating
the points(tk,yk) for j−m+1≤ k≤ j (AB methods) orj−m+1≤ k≤ j+1 (AM methods).
We will henceforth usej = 0 to simplify the notation. AB methods have orderp = m while
AM methods have orderp = m+1.

For staggered AB methods,q(t) in (1) interpolates at
(

tk+1/2,yk+1/2
)

for j −m+1 ≤
k ≤ j; like AB methods, these methods have orderp = m. For a given order of accuracy,
staggered multistep methods have about ten times less localtruncation error and stability
domains that extend approximately 2-8 times as far on the imaginary axis when compared to
their nonstaggered counterparts [4]. This improved accuracy and stability with no additional
computational or storage cost makes such methods ideal whenthey can be applied; their
main use is in approximating solutions to linear wave equations, which can be formulated
with a grid which is staggered in space and/or time. For broader studies of staggered methods
(to include more general multistep and Runge–Kutta methods), see [4], [5].

In [2, Table G.3-1], it was observed (without proof) that AB methods of orderp (ABp)
have nonzero ISB’s only for ordersp= 3,4, 7,8, 11,12, . . . and AMp methods have nonzero
ISB’s only for ordersp = 1,2, 5,6, 9,10, . . .. These results can be deduced from [10] and
were independently shown in [3] and [4]. While [10] is not applicable to staggered methods,
[3] and [4] proved that staggered AB methods of orderp have nonzero ISB’s only forp =
2,3,4, 7,8, 11,12, . . ., ; none of the aforementioned articles addressed Adams predictor-
corrector methods. Henceforth, we will only consider nonstaggered methods.

This study revisits our previous results from [4] with a new formulation and then extends
our results to Adams predictor-corrector methods. In particular, we examine the most com-
monly used Adams predictor-corrector methods ABp-AM p and AB(p−1)-AMp, both of
which have orderp. We are unaware of any other studies addressing the ISB’s of such meth-
ods for general orderp. In [2, Table G.3-1], it was claimed that for such methods, ‘most’ had
nonzero ISB’s while ‘some’ had zero ISB’s. We now proceed with proving that such meth-
ods follow very similar patterns to those of AB and AM methods, with ABp-AM p methods
following the same pattern as AMp methods and AB(p−1)-AMp methods following the
same pattern as ABp methods. We then offer an application illustrating the significance of
these results.
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2 Preliminary Results

When solving Dahlquist’s linear test problem

dy
dt

= λy, (2)

the edge of a stability domain is described by the rootξ = λh of ρ(r)−ξ σ(r) = 0 whenr
travels around the unit circler = eiθ . Here,ρ(r) andσ(r) are the generating polynomials of
the method (see, e.g., [9, p. 27]).

To consider whether or not a stability domain has imaginary axis coverage, we wish to
describe the behavior of the stability domain boundary nearξ = 0. For an exact method, we
haveξ (θ) = lnr (see, e.g., [9, Theorem 2.1], usingξ = ρ(r)

σ(r) .) Thus the stability boundary
of an exact method satisfies

ξ = lnr = ln
(

eiθ
)

= iθ (3)

nearξ = 0. A numerical scheme of orderp will instead lead to

ξ (θ) = iθ + cp(iθ)p+1+dp(iθ)p+2+O
(

(iθ)p+3
)

(4)

for some constantscp anddp. The sign of the firstreal term in the expansion (4) will dictate
whether the stability domain boundary near the origin swings to the right or to the left of the
imaginary axis.

For example, AB2 has the expansionξ (θ) = iθ + 5
12(iθ)

3− 1
4(iθ)

4+ . . .; because the
sign of the first real term in this expansion is negative, the ISB of AB2 is zero. AB3 has the
expansionξ (θ) = iθ + 3

8(iθ)
4+ . . .; because the sign of the first real term in this expansion

is positive, the ISB of AB2 is positive. See Figure 1 for an illustration comparing the stability
domains of AB2 (which has a zero ISB) and AB3 (which has an ISB of 12

5
√

11
≈ 0.724.)

−0.2 −0.1 0 0.1 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re(ξ )

Im
(ξ

 )

−0.2 −0.1 0 0.1 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re(ξ )

Im
(ξ

 )

(a) (b)

Fig. 1 Shown are portions of the boundaries of the stability regions for (a) AB2 and (b) AB3. The solid line
marks the presently relevant section of the stability domain boundary near the origin; the stability regions
consist of the regions to the left of the boundary. Both graphs show thatξ ≈ iθ nearξ = 0. When the first
real term in (4) is negative, the ISB is 0. (b) When the first realterm in (4) is positive, the ISB is nonzero. The
intercepts of AB2 and AB3 on the negative real axis are−1 and− 6

11, respectively.
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2.1 Backward difference forms of AB and AM methods

In [8, pp. 191-195], Henrici gave a backward difference representation of (1) for AB and
AM methods. When applied to (2), anm-step AB method can be represented by

y1 = y0+hλ
m−1

∑
k=0

γk ∇ky0, (5)

where

γk = (−1)k
∫ 1

0

(

−s
k

)

ds. (6)

Similarly, anm-step AM method can be represented by

y1 = y0+hλ
m

∑
k=0

γ∗k ∇ky1, (7)

where

γ∗k = (−1)k
∫ 1

0

(

−s+1
k

)

ds. (8)

Henrici [8, p. 195] also established that

k

∑
j=0

γ∗j = γk, (9)

from which
γ∗k = γk − γk−1. (10)

Lemma 2.1 For all integers k ≥ 1, γ∗k < 0. For all integers k ≥ 0, γk > 0. For all integers
k ≥ 3, γk >

1
k .

Proof Evaluating (8) directly givesγ∗0 = 1 andγ∗1 = − 1
2 . For the general case whenk ≥ 1,

we rewrite (8) to find

γ∗k =
1
k!

∫ 1

0
(s−1)s(s+1)(s+2) . . .(s+ k−2)ds. (11)

The integrand is negative for 0< s < 1, soγ∗k < 0 for k ≥ 1.
We next note that an alternate way to express (6) is

γk =
1
k!

∫ 1

0
s(s+1)(s+2) . . .(s+ k−1) ds. (12)

Direct evaluation of (12) givesγ0 = 1, γ1 =
1
2 , γ2 =

5
12, andγ3 =

3
8 > 1

3 . We now prove the
last part of the lemma via induction. We assume thatγ j >

1
j for some j ≥ 3 and seek to

establish thatγ j+1 >
1

j+1 . From (12),

γ j+1 =
∫ 1

0

s(s+1)(s+2) . . .(s+ j−1)
j!

(

s+ j
j+1

)

ds >

(

j
j+1

)

γ j >

(

j
j+1

)

1
j
=

1
j+1

.

Thusγk >
1
k by induction for all integersk ≥ 3, andγk > 0 for all integersk ≥ 0.

⊓⊔
Table 1 gives the first six values ofγk andγ∗k .
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m 0 1 2 3 4 5

γm 1 1
2

5
12

3
8

251
720

95
288

γ∗m 1 − 1
2 − 1

12 − 1
24 − 19

720 − 3
160

Table 1 First six values ofγk andγ∗k from (12) and (11). These results match Tables 5.2 and 5.4 of [8].

2.2 Exact solution

Usingξ = λh, the exact solution to (2) isy(t)= eλ t = eξ t/h where, without loss of generality,
we have chosent0 = 0 andy(t0) = 1. For an exact method,ξ = iθ nearξ = 0 from (3), so

yn = y(nh) = einθ . (13)

An alternate way to view (13) is that we are seeking the exact solution to the relevant differ-
ence equation when following the rootr that hasr = eiθ , which givesyn = rn =

(

eiθ )n
= einθ .

We now give a lemma that will help in finding the expansion (4) for general order Adams
methods.

Lemma 2.2 For integers k ≥ 1, when yn = einθ

∇ky0 = (iθ)k
[

1− k
2
(iθ)+O

(

(iθ)2
)

]

, (14)

and

∇ky1 = (iθ)k
[

1+
2− k

2
(iθ)+O

(

(iθ)2
)

]

. (15)

For integers M ≥ 1, when yn = einθ ,

M

∑
k=0

γk ∇ky0 = 1+
1
2
(iθ)+O

(

(iθ)2
)

(16)

and
M

∑
k=0

γ∗k ∇ky1 = 1+
1
2
(iθ)+O

(

(iθ)2
)

. (17)

Proof For yn = einθ , ∇y0 =
(

1− e−iθ ) and∇ky0 =
(

1− e−iθ)k
so that

∇ky0 =

[

1−
(

1+(−iθ)+
1
2!

(−iθ)2+O
(

(iθ)3
)

)]k

= (iθ)k
[

1− k
2
(iθ)+O

(

(iθ)2
)

]

,

establishing (14). Foryn = einθ , ∇ky1 = eiθ ∇ky0. Multiplying (14) byeiθ = 1+ iθ + . . . gives
(15).
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Using (14), we find

M

∑
k=0

γk ∇ky0 =
M

∑
k=0

γk (iθ)k
[

1− k
2
(iθ)+O

(

(iθ)2
)

]

= γ0

[

1+O
(

(iθ)2
)]

+ γ1 (iθ) [1+O(iθ)]+O
(

(iθ)2
)

= 1+
1
2

iθ +O
(

(iθ)2
)

,

where we have usedγ0 = 1 andγ1 = 1
2 in the last step. This establishes (16). A similar

expansion using (15),γ∗0 = 1, andγ∗1 =− 1
2 gives (17). ⊓⊔

In the next section, we apply these results to obtain the expansion (4) for general ABp
and AMp methods. In Section 4, we apply these results to obtain the expansion (4) for
general ABp-AM p methods and AB(p−1)-AMp methods.

3 Revisiting stability ordinates for AB and AM methods

We now apply the backward difference forms of the Adams methods to consider the ISB’s
of general AB and AM methods, thereby giving an alternate proof to [4].

Theorem 3.1 AB methods have nonzero ISB’s only for orders p = 3,4, 7,8, . . ..

Proof We first note that it is well known that the ISB for AB1 (Euler’smethod) is zero (see,
for example [2]). One can also check the expansion; AB1 has anexpansion ofξ = eiθ −1=
iθ + 1

2 (iθ)
2+ . . . , which has a negative first real term, confirming that the ISB for AB1 is

zero. We now proceed with the general case forp ≥ 2.
For AB methods, we will show thatcp > 0 anddp < 0 for all ordersp ≥ 2, wherecp

anddp are defined by (4). The pattern for which methods have nonzeroISB’s then follows
from the powers of the imaginary unit in (4). For example, forp = 3, the first real term
in the expansion (4) isc3(iθ)4 = c3θ 4 > 0. Thus the boundary of the stability domain of
AB3 swings to the right of the imaginary axis near the origin,and we have a nonzero ISB
for this method, as seen in Figure 1b. Forp = 6, the first real term in the expansion (4) is
d6(iθ)8 = d6(θ)8 < 0; thus the stability domain boundary of AB6 swings to the left of the
imaginary axis near the origin, and the ISB of this method is zero.

We seek to find the values ofcp anddp in the case of a general ABp method. We apply
(13) to (5), usingξ = λh to find

eiθ = 1+ξ
m−1

∑
k=0

γk ∇ky0. (18)

As m → ∞, the AB method (5) reproduces the exact solution. Thus, using (3), we find

eiθ = 1+ iθ
∞

∑
k=0

γk ∇ky0. (19)

Combining (19) and (18) gives

(ξ − iθ)
m−1

∑
k=0

γk ∇ky0 = iθ ∑
k≥m

γk∇ky0.
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We now substitute forξ using (4), where the orderp = m for AB. Using (14) and (16),
we find
[

cm (iθ)m+1+dm (iθ)m+2+O
(

(iθ)m+3
)]

[

1+
1
2
(iθ)+O

(

(iθ)2
)

]

= γm (iθ)m+1
[

1− m
2
(iθ)+O

(

(iθ)2
)]

+ γm+1 (iθ)m+2 [1+O(iθ)]+O
(

(iθ)m+3
)

.

Collecting like powers ofiθ , we find thatcm = γm and

1
2

cm +dm = γm

(

−m
2

)

+ γm+1

so that

dm = γm+1−
m
2

γm − 1
2

cm = γm+1−
(

m+1
2

)

γm. (20)

From Lemma 2.1, we havecm = γm > 0 for integersm ≥ 0. Using this result and (12) in (20)
gives

dm = γm+1−
(

m+1
2

)

γm

=
1

2(m+1)!

∫ 1

0
s(s+1)(s+2) · · ·(s+m−1)

[

2(s+m)− (m+1)2]ds

= − 1
2(m+1)!

∫ 1

0
s(s+1)(s+2) · · ·(s+m−1)

[

m2+1−2s
]

ds.

Becausem2+1−2s > 0 for m ≥ 2 and 0≤ s ≤ 1, the integrand is positive so thatdm < 0
for m ≥ 2. Noting thatp = m for AB methods, examining the sign of the first real term
in (4) establishes our result that AB methods have nonzero ISB’s only for ordersp =
3,4, 7,8, 11,12, . . .. ⊓⊔

Theorem 3.2 AM methods have nonzero ISB’s only for orders p = 1,2, 5,6, 9,10, . . ..

Proof We first note thatp = 1 (Backward Euler) andp = 2 (AM2) are well-known A-stable
methods and thus have nonzero ISB’s; one can also check theirexpansions. AM1 has an
expansion ofξ = 1−e−iθ = iθ − 1

2 (iθ)
2+ . . . , which has a positive first real term, indicating

that AM1 has a nonzero ISB. The expansion for AM2 contains only purely imaginary terms;
this is to be expected since the stability domain boundary for AM2 consists of the entire
imaginary axis.

We now prove the general result forp ≥ 3. We seek to find the values ofcp anddp in (4)
for a general AMp method. We apply (13) to (7), usingξ = λh to find

eiθ = 1+ξ
m

∑
k=0

γ∗k ∇ky1. (21)

As m → ∞, the AM method (7) reproduces the exact solution. Thus, using (3), we find

eiθ = 1+ iθ
∞

∑
k=0

γ∗k ∇ky1. (22)

Combining (22) and (21) gives

(ξ − iθ)
m

∑
k=0

γ∗k ∇ky1 = iθ ∑
k≥m+1

γ∗k ∇ky1.
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We now substitute forξ using (4), where the orderp = m+1 for AM. Using (15) and
(17), we find
[

cm (iθ)m+2+dm (iθ)m+3+O
(

(iθ)m+4
)]

[

1+
1
2
(iθ)+O

(

(iθ)2
)

]

= γ∗m+1 (iθ)
m+2

[

1+
1−m

2
(iθ)+O

(

(iθ)2
)

]

+ γ∗m+2 (iθ)
m+3 [1+O(iθ)]+O

(

(iθ)m+4
)

.

Collecting like powers ofiθ , we find thatcm = γ∗m+1 and

1
2

cm +dm = γ∗m+2− γ∗m+1

(

m−1
2

)

. (23)

From Lemma 2.1, we havecm = γ∗m+1 < 0 for m ≥ 1. Using this result and (11) in (23)
and simplifying gives

dm = γ∗m+2−
(m

2

)

γ∗m+1 (24)

=
1

2(m+2)!

∫ 1

0
(s−1)s(s+1)(s+2) · · ·(s+m−1)

(

2s−m2)ds.

Because(s− 1) and (2s−m2) are both negative for 0< s < 1 andm ≥ 2, the integrand
is positive form ≥ 2. Thereforedm > 0 andcm < 0 for AM methods, exactly opposite the
result for AB methods. After examining the sign of the first real term in (4) and noting that
p = m+1 for AM methods, we conclude that Adams-Moulton methods have nonzero ISB’s
only for ordersp = 1,2, 5,6, 9,10, . . .. ⊓⊔

4 Stability ordinates of Adams predictor-corrector methods

We now examine two different categories of Adams predictor-corrector methods: ABp-
AM p methods and AB(p−1)-AMp methods.

4.1 Two examples

We first consider two examples, AB1-AM2 and AB2-AM2. The predictor AB1 is given by

yP
1 = y0+h f (t0,y0) , (25)

and the predictor AB2 is given by

yP
1 = y0+

h
2
(3 f (t0,y0)− f (t−1,y−1)) . (26)

In both cases, the corrector AM2 is given by

y1 = y0+
h
2

(

f
(

t1,y
P
1

)

+ f (t0,y0)
)

. (27)

We first consider AB1-AM2. Using (25), substitutingf (t,y) = λy = ξ
h y, and letting

yk = rk to solve the resulting difference equation, we find that (27)becomes

r = 1+
1
2

ξ (1+ξ )+
1
2

ξ . (28)
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To find the boundary of the stability domain, we follow the root ξ in (28) nearξ = 0 where
|r|= 1. The stability domain of this method is shown in Figure 2(a). We can also letr = eiθ

and do a Taylor expansion forξ (θ) in (28) to find that

ξ = iθ +
1
6
(iθ)3− 1

8
(iθ)4+ . . . . (29)

Because the first real term in this expansion is negative, AB1-AM2 has a zero ISB.
We next consider AB2-AM2. Using (26) and (27), we find that theanalogous equation

to (28) is

r2 = r+
1
2

ξ
(

r+
ξ
2
(3r−1)

)

+
1
2

ξ r,

which leads to the expansion

ξ = iθ − 1
12

(iθ)3+
1
4
(iθ)4+ . . . . (30)

Since the first real term in this expansion is positive, AB2-AM2 has a nonzero ISB (approx-
imately 1.29). The stability domain of this method is shown in Figure 2(b).
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(a) (b)

Fig. 2 Shown are the boundaries of the stability regions for (a) AB1-AM2 and (b) AB2-AM2. The stability
regions consist of the inside of these curves. For (b), the ISB is approximately 1.29. The intercept on the
negative real axis is−2 for both methods.

4.2 General order predictor-corrector methods

In general, from (5), our AB predictor will take the form

yP
1 = y0+ξ

M

∑
k=0

γk ∇ky0 (31)

whereM = m−1 for AB(p−1)-AMp methods andM = m for ABp-AM p methods; both
methods have orderp = m+1. The general form of the AM corrector method is given by
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(7), where we replace all instances ofy1 on the right-hand side byyP
1 after the backward

difference operations are done. This leads to

y1 = y0+ξ
m

∑
j=0

γ∗k ∇ky1+ξ (γ∗0 + γ∗1 + · · ·γ∗m)
(

yP
1 − y1

)

(32)

= y0+ξ
m

∑
j=0

γ∗k ∇ky1+ξ γm
(

yP
1 − y1

)

,

where we have used (9) in the last step.
We use (31) to substitute foryP

1 in (32) and then use the exact solution (13) to find

eiθ = 1+ξ
m

∑
j=0

γ∗k ∇ky1+ξ γm

(

1− eiθ +ξ
M

∑
k=0

γk ∇ky0

)

. (33)

We now use the exact AM and AB expressions (22) and (19) to substitute for the two in-
stances ofeiθ in (33) respectively. Simplifying gives

0 = (ξ − iθ)

(

m

∑
k=0

γ∗k ∇ky1

)

− iθ ∑
k≥m+1

γ∗k ∇ky1

+ ξ γm

[

(ξ − iθ)

(

M

∑
k=0

γk ∇ky0

)

− iθ ∑
k≥M+1

γk ∇ky0

]

,

whereM = m−1 for AB(p−1)-AMp methods andM = m for ABp-AM p methods.
Applying Lemma 2.2 gives

0 = (ξ − iθ)
(

1+
iθ
2
+O

(

(iθ)2
)

)

− iθ ∑
k≥m+1

γ∗k

[

(iθ)k
(

1+
2− k

2
(iθ)+ · · ·

)]

(34)

+ξ γm

[

(ξ − iθ)(1+O(iθ))− iθ ∑
k≥M+1

γk (iθ)k
(

1− k
2
(iθ)+O

(

(iθ)2
)

)

]

.

This formula permits us to compute the expansion of the boundary of the stability region
ξ (θ) near the origin for the two Adams predictor-corrector methods of present interest. We
first consider general ABp-AM p methods, which have orderp.

Theorem 4.1 Predictor-corrector ABp-AMp methods have nonzero ISB’s only for orders
p = 1,2, 5,6, 9,10, . . ..

Proof Our general proof will requirep ≥ 3. Forp = 1, we can find that the series expansion
for the combination of forward Euler predictor and backwardEuler correction isξ = iθ −
1
2 (iθ)

2+ · · · . Because this has a positive first real term, AB1-AM1 also hasa nonzero ISB.
For p = 2, we have already established that AB2-AM2 has a nonzero ISBvia (30); also see
Figure 2(b).

We letM = m in (34) and substitute (4), usingp = m+1 to find

0 =
(

cm (iθ)m+2+dm (iθ)m+3+ · · ·
)

(

1+
iθ
2
+ γm (iθ + · · ·)

)

−iθ ∑
k≥m+1

γ∗k (iθ)
k
(

1− k−2
2

(iθ)+ · · ·
)

(35)

−(iθ)2 γm ∑
k≥m+1

γk (iθ)k
(

1− k
2
(iθ)+ · · ·

)

+ · · · ,
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where we have kept only the terms that are needed to find the dominant terms in this expres-
sion. Examining the coefficients of the(iθ)m+2 and(iθ)m+3 terms in (35) gives:

cm = γ∗m+1 (36)

and

dm = γ∗m+2− γ∗m+1
m−1

2
+ γmγm+1− cm

(

1
2
+ γm

)

. (37)

From Lemma (2.1), we know thatcm < 0 for m ≥ 1. Simplifying (37) using (36) and (10)
gives

dm = γ∗m+2−
m
2

γ∗m+1+ γ2
m.

From (24), we know thatγ∗m+2− m
2 γ∗m+1 > 0 for m ≥ 2, so we havedm > 0 for m ≥ 2. Thus

cm < 0 anddm > 0 for m ≥ 2 wherep = m+1. After examining the sign of the first real
term in (4) for this case, we conclude that ABp-AM p methods have nonzero ISB’s only for
ordersp = 1,2, 5,6, 9,10, . . ., a result identical to AMp methods. ⊓⊔

Figure 3 shows the stability domains of AB(p−1)-AMp and ABp-AM p methods near
the origin.
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−0.5

0

0.5

1

1.5

2

2.5
(a) Stability domains

Re(ξ)

Im
(ξ

)

AB1−AM2

AB2−AM3

AB3−AM4

AB4−AM5

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5
(b) Detail from subplot (a)

Re(ξ)

Im
(ξ

)

AB1−AM2

AB2−AM3

AB3−AM4

AB4−AM5

Fig. 3 (a) Shown are the relevant portions of the boundaries of the stability regions for AB(p−1)-AMp
methods; the stability domain consists of the interior of eachcurve. (b) The detail splot shows that AB2-AM3
and AB3-AM4 are the only methods shown with nonzero ISB. While the stability domain for AB4-AM5
does include part of the first quadrant, the boundary initially swings into the second quadrant, reflecting a
zero ISB.

We now examine general AB(p−1)-AMp methods, which also have orderp = m+1.
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Theorem 4.2 Predictor-corrector AB(p−1)-AMp methods have nonzero ISB’s only for or-
ders p = 3,4, 7,8, . . ..

Proof Our general proof will requirep ≥ 3. For p = 2, we have already established that
AB1-AM2 has a zero ISB via (29); also see Figure 2(a).

We now proceed with the general case forp ≥ 3. We letM = m−1 in (34) and substitute
(4), usingp = m+1 to find

0 =
(

cm (iθ)m+2+dm (iθ)m+3+ · · ·
)

(

1+
iθ
2
+ γm (iθ + · · ·)

)

−iθ ∑
k≥m+1

γ∗k (iθ)
k
(

1− k−2
2

(iθ)+ · · ·
)

(38)

−(iθ)2 γm ∑
k≥m

γk (iθ)k
(

1− k
2
(iθ)+ · · ·

)

+ · · · ,

where we have kept only the terms that are needed to find the dominant terms in this expres-
sion. Examining the coefficients of the(iθ)m+2 and(iθ)m+3 terms in (38) gives

cm = γ∗m+1+ γ2
m (39)

and

dm = γ∗m+2−
(

m−1
2

)

γ∗m+1+ γm

(

γm+1−
m
2

γm

)

− cm

(

1
2
+ γm

)

. (40)

We claim thatcm < 0 anddm > 0 for m ≥ 2. From (39), (40), and Table 1, we compute
c2 = 329

2880 andd2 = − 265
1536. From Lemma 2.1, we haveγm > 1

m for m ≥ 3. Applying this,
(12), and (11) to (39) and simplifying gives

cm > γ∗m+1+
1
m

γm =
1

m(m+1)!

∫ 1

0
(ms+1)s(s+1)(s+2) . . .(s+m−1)ds > 0

for m ≥ 3 because the integrand is positive.
We now consider the expression fordm in (40). We substitute forcm from (39), apply

(9) and results from Lemma 2.1, and simplify to find

dm = γ∗m+2−
m
2

γ∗m+1+

(

1−m
2

)

γ2
m − γ3

m

< γ∗m+2−
m
2

γ∗m+1+

(

1−m
2

)

γm

m

=
1

2m(m+2)!

∫ 1

0
s(s+1) . . .(s+m−1)

[(

2+m−2m2)+ms
(

2s−m2−2
)]

ds

for m ≥ 3, where we have used (12) and (11) in the last step. Bacause
(

2+m−2m2
)

and
(

2s−m2−2
)

are both negative for 0< s < 1 andm ≥ 3, the integrand is negative and
thusdm < 0 for m ≥ 3 for ABp-AM p methods. Thuscm > 0 anddm < 0 for m ≥ 3 where
p = m+1. After examining the sign of the first real term in (4), we conclude that AB(p−1)-
AM p methods have nonzero ISB’s only for ordersp = 3,4, 7,8, . . ., a result identical to
ABp methods. ⊓⊔

Figure 4 show the stability domains of AB(p−1)-AMp and ABp-AM p methods near
the origin. Our results are summarized along with other relevant results from [4] in Table 2.
In Section 5, we present a test that both confirms our results and shows the practical signifi-
cance of our results when solving wave equations.
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Fig. 4 (a) Shown are relevant portions of the boundaries of the stability regions for ABp-AM p methods; the
stability domain consists of the interior of each curve. (b) AB1-AM1 and AB2-AM2 are the only methods
shown which have nonzero ISB. While the stability domain for AB3-AM3 does include part of the first
quadrant, the boundary initially swings into the second quadrant, reflecting a zero ISB; the enlarged figure
(b) does not have enough resolution to see this but further enlargements do.

Method Orders Formula (wherek ∈ Z
+)

AB 3,4, 7,8, . . . {4k−1,4k}
AM 1,2, 5,6, . . . {4k−3,4k−2}

Staggered AB 2,3,4, 7,8, . . . {2}⋃{4k−1,4k}
ABp-AM p 1,2, 5,6, . . . {4k−2,4k−1}

AB(p−1)-AMp 3,4, 7,8, . . . {4k−1,4k}

Table 2 Summary of results of orders for which various methods have nonzero stability ordinates

5 Illustration via application to the 1D wave equation

In this section, we perform analysis that both confirms our results and shows their practical
significance when solving wave equations.

Dahlquist’s equivalence theorem [9, pp. 24-25] tells that amultistep method is conver-
gent if and only if the method is of orderp ≥ 1 and the generating polynomialρ(r) of the
method obeys the root condition, that is if all roots ofρ(r) satisfy|r| ≤ 1 and all roots with
|r| = 1 are simple. For a fixed number of ODEs, this assures that numerical solutions will
converge to analytic solutions as the time step∆ t approaches 0; this is true for all of the
relevant methods that we have considered: ABp, AM p, ABp-AM p, and AB(p−1)-AMp.

Consider next the one-dimensional wave equation

ut +ux = 0, (41)
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which has a purely imaginary spectrum. If we advance (41) on the periodic interval−π ≤
x ≤ π from t = 0 to t = 10π, the analytic solutionu(x, t) = u(x− t,0) completes five full
periods. As is typical when time-stepping a wave equation, we let the mesh aspect ratio∆ t

∆x
stay constant as we refine in bothx andt.

Let N be the number of equispaced node points in thex-direction. The key difference be-
tween solving (41) and solving an ODE (or a system of ODEs) is that, when we refine in the
t-direction with the ratio∆ t

∆x held fixed, the number of ODEsN will simultaneously increase,
making the root condition no longer applicable for establishing convergence. Thus, we will
consider an alternative analysis which is designed to illustrate the convergence properties of
the methods of present interest.

An arbitrary initial conditionu(x,0) can be decomposed into Fourier modeseiωx, with
− π

∆x ≤ ω ≤ π
∆x . WhenN is increased, more and more Fourier modes can be represented

in thex-direction. Analytically, each mode should remain of unchanged amplitude as time
increases; instability presents itself when there is no upper bound on how large a mode can
become even after a finite time. LetR(ω,N, ∆ t

∆x ) be the ratio of the amplitude of a given
mode of frequencyω at timet = 10π to its amplitude att = 0.

Figure 5 shows maxω R(ω,N, ∆ t
∆x ), i.e., the amplitude change factor for the fastest grow-

ing mode out of all present Fourier modes for the first six AB(p−1)-AMp methods, which
was implemented in MATLAB. Ideally, the surfaces should be perfectly flat at value 0 (as
this is a log-log graph), reflecting no growth. We see this to be the case for AB2-AM3,
AB3-AM4, and AB6-AM7 whenever the ratio∆ t

∆x is below certain constants, as expected.
However, no non-zero value for the ratio∆ t

∆x can salvage AB1-AM2, AB4-AM5, or AB5-
AM6 from disastrous spurious growth in the solution under refinement. The surfaces are
truncated at the level maxR = 1016; this level was chosen because even modes that are the-
oretically absent (but are actually present at a level ofO(10−16) due to machine precision)
will then have grown to sizeO(1).

Further simulations show similar behavior for the first six ABp-AM p methods: con-
vergence for AB1-AM1, AB2-AM2, AB5-AM5, and AB6-AM6 whenever the ratio∆ t

∆x is
below certain constants, and disastrous growth for AB3-AM3and AB4-AM4 for all values
of the ratio ∆ t

∆x , thus confirming our observations in Figure 4.

6 Conclusions

We have considered the question of when Adams methods of general orderp have nonzero
stability ordinates (ISB’s). By applying the backward difference formulation of the AB and
AM methods [8], we have proven that ABp-AM p methods have nonzero stability ordinates
only for p = 1,2, 5,6, 9,10, . . ., which matches AMp methods. We have also shown that
AB(p−1)-AMp methods have nonzero stability ordinates only forp = 3,4, 7,8, 11,12, . . .,
which matches ABp methods. Discovering intuitive heuristic motivations forthese patterns
remains an open challenge. While a method having nonzero ISMversus zero ISB does not
affect convergence for a system of a fixed number of ODEs, we have illustrated that this
makes the difference between stability and disastrous instability when applied to wave-type
PDEs.

These results are immediately relevant to the non-stiff problems that arise for many im-
portant wave equations such as Maxwell’s equations, acoustic (e.g., ultrasound) modeling,
and elastic (e.g., seismic exploration) modeling. For nonlinear PDEs, linearized stability is
normally required, and the present results are therefore again applicable.
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Fig. 5 Shown are the largest amplitude growth factors of any Fouriermode in the test problem (41) when
advancing fromt = 0 to t = 10π using the first six AB(p−1)-AMp methods, as a function ofN (the number
of nodes in thex-direction across[−π,π]) and the mesh aspect ratio∆ t

∆x . The surfaces are truncated at the
level maxR = 1016.
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