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Abstract

A numerical method is proposed to approximate the inverse of a general bi-Lipschitz nonlinear dimensionality

reduction mapping, where the forward and consequently the inverse mappings are only explicitly defined

on a discrete dataset. A radial basis function (RBF) interpolant is used to independently interpolate

each component of the high-dimensional representation of the data as a function of its low-dimensional

representation. The scale-free cubic RBF kernel is shown to perform better than the Gaussian kernel,

as it does not require the difficult-to-choose scale parameter as an input, and does not suffer from ill-

conditioning. The proposed numerical inverse is shown to be mathematically similar to the eigenvector

interpolation known as the Nyström method, a commonly used numerical method for rapid approximation

of eigenvectors of a dense weight matrix. Based on this observation, a critique of the Nyström method is

provided, with suggestions for improvement.

Keywords: nonlinear dimensionality reduction, graph Laplacian, radial basis function, interpolation,

Nyström method

1. Introduction

Generation of low dimensional representations of data in high dimension has recently become an area of

intense research. Many nonlinear methods are available such as kernel Principle Component Analysis [1],

Laplacian Eigenmaps [2], and Local Linear Embedding [3], among many others. A significant limitation of

many nonlinear dimensionality reduction methods is that they are only defined on a discrete set of data. As

a result, the inverse mapping is also only defined on the data. There are well known strategies to extend

the forward map to a new point—for example the Nyström extension. However, the problem of extending

the inverse map has received little attention so far (but see [4, 5, 6]).
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We present a method to numerically invert a general smooth bi-Lipschitz nonlinear dimensionality reduc-

tion algorithm such as Laplacian Eigenmaps over all points in the image of the forward map. The method

relies on interpolation via radial basis functions in high dimension, modeling a smooth manifold in high

dimension as a function of the data embedded in a lower dimensional space. A scale-free alternative to

the commonly used Gaussian radial basis function kernel is demonstrated to provide computationally stable

results.

The proposed numerical inverse is shown to be mathematically similar to the eigenvector interpolation of

the Nyström method, a commonly used numerical method for rapid approximation of eigenvectors of a dense

weight matrix. Based on this observation, a critique of the Nyström method is provided, with suggestions

for improvement.

There are two notable contributions of this paper. The first is the introduction of a numerically-stable

scale-free approach to the problem of interpolation of data in high-dimension as a function of its low-

dimensional representation. The second is the unambiguous interpretation of the Nyström method as a

radial basis function interpolant, and the subsequent observations about the stability of the method.

2. Inverse Mapping

The problem is posed as follows: {x(1), . . . ,x(n)} ⊂ RD, lie on a bounded low-dimensional smooth

manifoldM⊂ RD. The data are embedded in Rd via a nonlinear mapping

Φn : RD → Rd,x(i) 7→ Φn(x(i)) for i = 1, . . . , n. (1)

We assume the existence of an underlying continuous operator, Φ :M→ Φ(M), that provides an extension

to Φn. In the specific case of Laplacian Eigenmaps, for example, the Graph Laplacian converges pointwise

to the Laplace Beltrami operator on the manifold, and one can show the convergence of the associated

eigenvectors: lim
n→∞

Φn(x) = Φ(x), for all x ∈M [7].

Like Laplacian Eigenmaps, most common nonlinear dimension reduction algorithms only provide an

explicit mapping for a discrete dataset. Therefore, the inverse mapping Φ−1
n is also only defined on the

data. The goal of the present work is to generate a numerical extension of Φ−1
n to all of Φ(M) ⊂ Rd,

the image of the corresponding continuous operator. To simplify the problem, we assume the mapping

provided by our dimension reduction algorithm coincides with the limiting continuous operator on the data,

i.e. Φn(x(i)) = Φ(x(i)) for i = 1, . . . , n. This notation allows us to discard the notation Φn to denote

the data-specific mapping. Instead, we use the notation Φ to simultaneously denote both the discrete and

continuous mapping. With this notation, we propose a method to construct an approximate inverse

Φ† : Φ(M)→ RD, (2)

such that lim
n→∞

Φ†(y) = Φ−1(y) for all y ∈ Φ(M).
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Owing to the connections between the method proposed below and the Nyström extension, we use

notation specifically suggestive of a dimension reduction method involving a spectral decomposition of the

weight matrix of the data in RD, which is used for instance in Laplacian Eigenmaps, LLE, ISOMAP, etc.

However, the numerical extension method has much broader application, and may be applied to numerically

invert any smooth bi-Lipschitz embedding of a dataset in Rd.

We denote the weight matrixW , whereWij = k(x(i),x(j)) is a measure of the affinity between data points

x(i) and x(j) ∈ RD. A typical measure is the Gaussian: k(x(i),x(j)) = exp(−ε2‖x(i) − x(j)‖2). As noted

above, we are specifically interested in dimension reduction methods that involve a spectral decomposition

of W . Thus we consider the eigenvalue problem

Wφl = λlφl, (3)

where φl and λl are the eigenvectors and corresponding eigenvalues of W for i = 1, . . . , n. For Λ =

diag(λ1, . . . , λn) and Φ = [φ1, . . . ,φn] ∈ Rn×n, we consider the full eigenvector decomposition of the weight

matrix W :

W = ΦΛΦT . (4)

We define the mapping φl : RD → R as follows: φl(x(i)) = φil, where φil is the i, l entry of the eigenvector

matrix Φ ∈ Rn×n. Using this notation,

φl = [φl(x
(1)), . . . , φl(x

(n))]T , (5)

and we naturally choose to denote the spectral embedding of x(i) ∈M ⊂ RD as

Φ(x(i)) = [φ1(x(i)), . . . ,φd(x
(i))] ∈ Φ(M) ⊂ Rd. (6)

(note: typically d << n, and dimension reduction is achieved using a partial eigenvector decomposition).

Restating the problem: we would like to generate an approximate inverse Φ† : Φ(M) → RD that will

converge to the true inverse Φ−1 : Φ(M) → M in the limit at n → ∞. For notational simplicity, we will

introduce the following notation for the data embedded in Rd:

y = Φ(x) and y(i) = Φ(x(i)). (7)

We do not consider how the new point y ∈ Φ(M) is generated, but simply assume that there exists an

x ∈ M ⊂ RD such that Φ(x) = y. Methods exist for approximating a new point y in the image of Φ

(e.g. the Nyström extension [8]). However, in the present work we focus our attention on the problem of

approximating the inverse map, and thus, we assume that we can accurately generate a point y in the range

of Φ.
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2.1. Linear Inverse Mapping

One method proposed for this type of inverse mapping was proposed by [6]. The authors in [6] approxi-

mate x = Φ−1(y) with Φ†(y), defined by linearly interpolating the existing coordinates:

Φ†(y) =
∑

j:y(j)∈Ny

cjx
(j), (8)

where each x(j) is an original point that is mapped to a neighbor y(j) = Φ(x(j)) of y. Here, Ny denotes

the set of neighbors of y in Rd. The interpolation coefficients are calculated as follows,

cj =
exp(−‖y − y(j)‖2/σ)∑

i:y(i)∈Ny
exp(−‖y − y(i)‖2/σ)

, (9)

where σ is chosen to be the distance between y and its nearest neighbor. The algorithm is justified by the

assumption that the interpolation weights should be similar between the two spaces RD and Rd. In fact,

if we consider each point x(j) ∈ RD to be a function of its coordinates y(j) ∈ Rd, we observe that this

algorithm is more commonly known at Shepard’s method [9], a moving least squares approximation method.

This method is optimal in the following way: at any location y, the function Φ−1(y) is approximated by the

constant function that minimizes the sum of squared errors within a neighborhood Ny, weighted according

to their proximity to y. In [6], the Gaussian is used as the weight function for Shepard’s method.

The first observation is that, despite the similar appearance to a radial basis function (RBF) interpolant

(see e.g. Eq (10)), the algorithm does not produce an RBF interpolant. Instead, the algorithm uses a set

of linear weights that may not even reproduce the new point y as a linear combination of its neighbors in

Rd. Another key observation about this inverse mapping method is that the weights cj are all positive and∑
cj = 1. As a result, the interpolation is restricted to within the convex hull of the neighbors.

The limitations of Shepard’s method [6] are illustrated in figure 1. Here the performance of Shepard’s

method is compared to the algorithm discussed in this paper. For illustrative purposes, the data are scattered

on the unit circle in RD = R2, and mapped to Rd = R2 via Laplacian Eigenmaps. Shepard’s method, as well

as our algorithm, are tested on a known point. We observe that restricting interpolation to within the convex

hull of the neighbors limits the algorithm’s ability to account for curvature. Shepard’s method is tested for

varying neighborhood sizes (20, 10, or 5 nearest neighbors), and is found to perform better with fewer

nearest neighbors, as the convex hull of the neighbors become more-localized near the true point. However,

the method still fails to honor the curvature of the manifold. Our approach performs well, matching the

curvature of the manifold.

Provided sufficient data to characterize a curved manifold are available, we believe that a good ap-

proximate inverse should be capable of reproducing curvature. A natural way to approach the problem

of extending the inverse map, while accounting for curvature, is via interpolation. To accomplish this, we
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Figure 1: Comparison of Shepard’s method [6] with cubic RBF method, for 20 points randomly scattered on the unit circle in

R2. Shepard’s method can only interpolate within the convex hull of the neighbors, thus the algorithm fails to match curvature.

Shepard’s method is tested for 20, 10, and 5 nearest neighbors (NN).

consider x ∈ RD to be a multivariate function of y ∈ Rd, subject to the constraints x(i) = Φ−1(y(i)),

for i = 1, . . . , n. Most interpolation strategies are directly applicable to univariate functions. Thus, we

independently interpolate each coordinate in RD as a function of all of the coordinates in Rd. To simplify

the present analysis, we assume the data are free of noise. The approximation problem is not considered

here, and will be the subject of future work. We only mention that the proposed interpolation algorithm

is easily generalized to provide an approximation strategy that can accommodate a noisy representation of

a manifold. Interpolation with RBFs has the advantages of being algorithmically straightforward in any

dimension, and can easily account for curvature. To this end, we begin the next section with a basic intro-

duction to radial basis function interpolation. Abundant literature exists on the topic for the curious reader

(e.g. [9, 10, 11] provide surveys at varying levels of detail).

The remainder of the paper is organized as follows. Section 3 introduces the RBF inverse mapping

algorithm. Section 4 considers convergence of Gaussian RBF interpolants, followed by section 5 which makes

observations about problems arising from ill-conditioning of the interpolation matrix. Section 6 introduces,

motivates, and discusses convergence of an alternative scale-free cubic RBF kernel. Section 7 demonstrates

performance of the inverse mapping algorithm on several example problems. Section 8 contains a discussion

and novel interpretation of the Nyström extension, followed by a final summary in section 9.

3. Radial Basis Function Inverse Mapping

Before introducing our inverse mapping algorithm, we define a basic RBF interpolant. For the RBF kernel

k : Rd×Rd → R, and the node set {z(1), . . . ,z(n)} with corresponding function values {f(z(1)), . . . , f(z(n))},

the RBF interpolant takes the form
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s(z) =

n∑
j=1

α(j)k(z, z(j)). (10)

The weights, {α(1), . . . , α(n)}, are determined by solving the following system of equations:


k(z(1), z(1)) · · · k(z(1), z(n))

...
. . .

...

k(z(n), z(1)) · · · k(z(n), z(n))



α(1)

...

α(n)

 =


f(z(1))

...

f(z(n))

 (11)

which enforces the condition s(z(i)) = f(z(i)), for i = 1, . . . , n.

We propose a method to compute the inverse mapping, which better honors the curvature of the underly-

ing manifold by interpolating using RBFs. Similar methods have been explored in [4, 5, 12] to interpolate data

on a low-dimensional manifold. In our case, we generate a D-dimensional RBF interpolant: Φ† : Rd → RD.

To accomplish this, we simultaneously generate D independent RBF interpolants to each coordinate in RD.

Let K denote the RBF kernel matrix for the data embedded in Rd: Kij = k(y(i),y(j)). In [6], the authors

assume that K ≈W by using the same kernel in Rd and RD. In fact, this assumption is not needed in this

work, and we may consider various RBF interpolation kernels, not only the Gaussian (which is typically

used to generate the weight matrix in RD). In order to generate the radial basis function interpolant, we

begin by solving the system

KA = X, (12)

where the i-th row of X ∈ Rn×D are the D coordinates of x(i) ∈ RD. The j-th column of A ∈ Rn×D are

the interpolation coefficients for the RBF interpolant of the j-th dimension in RD. In detail,


k(y(1),y(1)) · · · k(y(1),y(n))

...
. . .

...

k(y(n),y(1)) · · · k(y(n),y(n))



α

(1)
1 α

(1)
D

... · · ·
...

α
(n)
1 α

(n)
D

 =


x

(1)
1 x

(1)
D

... · · ·
...

x
(n)
1 x

(n)
D

 (13)

where α(i)
j for i = 1, . . . , n are the RBF interpolation coefficients for the j-th dimension in RD. The new

point x = Φ−1(y) is interpolated using (10), which can be written in matrix form as

Φ†(y)T = k(y, ·)TA = k(y, ·)TK−1X, (14)

where k(y, ·) = [k(y,y(1)), . . . , k(y,y(n))]T .

For non-coincident interpolation nodes {y(1), . . . ,y(n)} ∈ Rd, and a Gaussian kernel k we are guaranteed

K is non-singular [9]. For large data sets, the interpolation need not depend on all the data, as the RBF

interpolant is only sensitive to points in the neighborhood of interest. The interpolation algorithm may be

implemented locally, providing immense savings in computation time.
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4. Convergence of the Interpolant

As we consider interpolation of the data using RBFs, three questions must be addressed: 1) Given a

set of interpolation nodes, is the interpolation matrix necessarily non-singular? 2) What types of functions

can be approximated? 3) What convergence rate can we expect as we populate the domain with additional

nodes?

Convergence criteria for RBF interpolants have been studied extensively in the literature. For a detailed

treatment, see [9, 11]. In this section we briefly introduce the necessary concepts to understand convergence

of Gaussian RBF interpolants. Before considering the questions posed above, we first study the expected

smoothness of the embedding Φ and its inverse.

4.1. Properties of the Inverse of the Graph Laplacian

The data {x(1), . . . ,x(n)} are a discrete representation of a bounded smooth manifold M ⊂ RD. We

model the manifoldM as a function of the eigenvectors of the graph Laplacian: Φ(x) = [φ1(x), . . . , φd(x)]T .

Thus, the inverse mapping Φ−1 : Φ(M)→ RD will inherit properties from the forward mapping Φ :M→

Rd. We recall that φl is an eigenvector of the graph Laplacian matrix, which is a discrete approximation

of the Laplace Beltrami operator on the manifold M. Thus, in the continuous setting the mapping Φ :

M → Φ(M) ⊂ Rd must be infinitely differentiable, implying that Φ−1 : Φ(M) → RD is also infinitely

differentiable. By assumption,M is a bounded subset of RD. Provided that Φ is bi-Lipschitz, then Φ(M)

is a bounded subset of Rd. As a result, the components of Φ−1 are in C∞(Φ(M)).

4.2. Properties of Gaussian RBF Interpolants

To consider the questions posed at the beginning of this section, we must first introduce several definitions.

We begin with the definition of a positive definite kernel.

Definition 1. A real-valued continuous function k : Rd × Rd → R is called positive definite on Rd if

n∑
i=1

n∑
j=1

αiαjk(z(i), z(j)) ≥ 0, (15)

for n distinct points {z(1), . . . ,z(n)} ⊂ Rd, and α = [α1, . . . , αn]T ∈ Rn. If in addition, the quadratic form

(15) is equal to zero if and only if α = 0, then k is called strictly positive definite on Rd [9].

Among others, a commonly used strictly positive definite kernel is the Gaussian [9]. We note that this

property of the Gaussian implies unique solvability of (13).

We now consider the second question: what types of functions can we approximate to arbitrary precision?

As we might expect, an RBF interpolant will converge to functions contained in the closure of the span of

all translates of the kernel k, known as the native space:
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Definition 2. Given a strictly positive definite reproducing kernel k : Ω × Ω → R on a Hilbert space,

the native space Nk(Ω) is defined as the completion of the space of linear combinations of the kernel:

Hk(Ω) = span{k(·, z) : z ∈ Ω}. This completion is with respect to the k-norm, which is induced by the

inner-product given by the reproducing kernel k on the pre-Hilbert space Hk(Ω) [9].

For Ω = Rd, the native space for the Gaussian RBF is

Nk(Rd) = {f ∈ L2(Rd)
⋂
C(Rd) :

f̂√
k̂
∈ L2(Rd)}, (16)

where f̂ and k̂ are the Fourier transforms of f and k, respectively [9]. We observe that the native space for

Gaussians is not large, and is restricted to functions whose Fourier transform decays at least as fast as the

Gaussian [9].

To answer the third question, we must be able to consistently quantify the density of interpolation nodes.

The commonly used measure is the fill distance, the maximum distance from an interpolation node:

Definition 3. For the domain Ω ⊂ Rd and a set of interpolation nodes Z = {z(1), . . . ,z(n)} ⊂ Ω the fill

distance, hZ,Ω, is defined by

hZ,Ω := sup
z∈Ω

min
z(j)∈Z

‖z − z(j)‖. (17)

Theorem 15.1 in [9] establishes exponential L∞ convergence of a Gaussian RBF interpolant to functions in

the native space (with respect to decreasing fill distance).

With a basic understanding of the convergence properties of Gaussian RBF interpolants, we may now

consider whether the components of Φ−1 can be approximated to arbitrary precision. Despite the regularity

of Φ−1 over the domain Ω = Φ(M), it appears that there may not be a consistent extension of the function

to all of Rd such that its components are members of the (very restricted) native space of the Gaussian. For

example, any extension to a compactly supported function will exhibit a slowly decaying Fourier transform

relative to the Gaussian. Any extension with Gaussian decay is the sum of a Gaussian and a compactly

supported function, again with slowly decaying Fourier transform. As a result, we are likely restricted to

approximate approximation when using the Gaussian RBF. However, these issues are ultimately irrelevant,

as numerical issues will prevent convergence of Gaussian RBF interpolants, even within the native space.

5. Ill-Conditioning

In this section we discuss ill-conditioning of Gaussian kernel matrices. The condition number is closely

related to the choice of scale parameter ε. We use the scale parameter convention common to the RBF

community: k(z,w) = exp(−ε2‖z − w‖2). This scale parameter corresponds to the inverse of σ, the

commonly used scale parameter within the machine learning community. With the RBF convention, a small
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scale parameter corresponds to wide and flat basis functions, while a larger scale parameter corresponds to

narrow and localized Gaussians.

In the previous section, it was observed that a Gaussian RBF interpolant will converge exponentially to

a function in the native space with respect to fill distance. However, the error bounds are theoretical and

do not consider interpolation error resulting from numerical ill-conditioning. It is a well known that if the

same scale parameter is used as fill distance is reduced, a Gaussian kernel matrix W will rapidly become

ill-conditioned, and the resulting interpolant will exhibit numerical saturation error. This issue is common

among many RBF interpolants. As shown in [13], the eigenvalues of W follow patterns in the powers of

ε that increase with successive eigenvalues, which leads to rapid ill-conditioning of W with increasing n.

These patterns depend on a number of factors including dimension as well as the geometry of the nodes.

The nature of this behavior is not the focus of this paper, and the interested reader is referred to [13] for

additional details.

In [14], the authors show that the numerical rank (the number of eigenvalues larger than a certain

threshold) of a Gaussian kernel matrix is independent of the number of data points inside a box in RD, but

instead only depends on the scale parameter. As a result, as additional points are added, the additional

eigenvalues added are small and rapidly increase the condition number of the matrix.

The relationship between the condition number of W and the spacing of interpolation nodes is explored

in figure 2. Owing to the difficulty in precisely establishing the boundary of the domain Ω ⊂ Rd given a

discrete set of randomly sampled data, we note that estimating the fill distance hZ,Ω is somewhat difficult.

Additionally, the fill distance is a measure of the “worst case”, and may not be representative of the “typical”

spacing between nodes. Thus, we consider a proxy for fill distance which depends only on mutual distances

between the data points. We use the term local fill distance, h̄local, to denote the average distance to a

nearest neighbor:

h̄local :=
1

n

n∑
i=1

min
j 6=i
‖z(i) − z(j)‖. (18)

The local fill distance is less sensitive to slightly irregular node spacing resulting from random sampling in

the domain, and thus more representative of the “typical” spacing of interpolation nodes. Nonetheless, given

a regular sampling scheme, the local fill distance should provide a good proxy for fill distance. We note that

several authors have recently proposed a similar notion of local fill distance which can be used to derive

more accurate pointwise error estimates [15, 16]. In figure 2, we observe rapid ill-conditioning of the weight

matrix with respect to decreasing local fill distance.

Conversely, if the fill distance remains constant while the Gaussian kernel scale parameter is reduced,

the resulting interpolant improves until ill-conditioning of the W matrix leads to propagation of numerical

errors. Figure 3, demonstrates the rapid increase in condition number of W with decreasing values of ε.

When interpolating with the Gaussian kernel, choice of the scale parameter ε is difficult. On one hand,
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Figure 2: Condition number of the Gaussian kernel matrix W for points randomly scattered on the first quadrant of the unit

sphere in various dimensions with scale parameter ε = 10−2, for varying local fill distance (18). Note: the same range of n was

used in each dimension (10 to 1000). In high dimension, it takes a large number of points to reduce fill distance. However, the

condition number of W still grows rapidly for increasing n.

smaller values of ε likely lead to a better interpolant. For example: in 1-d, a Gaussian RBF interpolant

will converge to the Lagrange interpolating polynomial in the limit as ε → 0 [17]. On the other hand, the

interpolation matrix becomes rapidly ill-conditioned for decreasing ε. Figure 4 shows the interpolation error

versus ε for a function in 1-d.

One solution is to generate the RBF interpolant using a stable algorithm. The first such algorithm was

the Contour-Pade algorithm [18]. This algorithm relies on contour integration in the complex-ε plane to

avoid the ill-conditioned region, while calculating the interpolant in the ε → 0 limit. The RBF-QR [19,

20] and RBF-GA [21] algorithms rely on generating a better basis for the same space spanned by the

Gaussian RBFs, which allows stable evaluation of the interpolant for small ε. All of the stable algorithms

are more computationally intensive and algorithmically complex than the RBF-Direct method, making them

undesirable for the inverse-mapping interpolation task. In the following section we propose a method that

avoids the numerical issues associated with Gaussian RBF interpolation by using a numerically stable,

scale-free interpolation kernel.

6. Cubic RBF Interpolation

Saturation error can be avoided by using the scale-free RBF kernel g(z,w) = ‖z − w‖3, one instance

from the set of RBF kernels known as the radial powers:

g(z,w) = ‖z −w‖β for β = 1, 3, 5, . . . . (19)

Together with the thin plate splines:

g(z,w) = ‖z −w‖β log‖z −w‖ for β = 2, 4, 6, . . . , (20)
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Figure 3: Condition number of the Gaussian kernel matrix W for n = 200 points randomly scattered on the first quadrant of

the unit sphere in various dimensions, for varying ε.

they form the family of RBFs known as the polyharmonic splines.

For RBF interpolation, the cubic kernel is less intuitive than the Gaussian, as it is a monotonically

increasing function. To motivate the use of this kernel, we begin by considering the one dimensional case,

in which the cubic RBF generates a cubic spline interpolant.

6.1. Cubic RBF and Cubic Splines

For interpolations nodes {z(1), . . . , z(n)} ⊂ R, the cubic RBF interpolant is of the form

s(z) =

n∑
i=1

α(i)|z − z(i)|3. (21)

Each term in the sum is piecewise cubic, with continuous first and second derivatives. Thus, s(z) inherits

the same properties, and is observed to be a cubic spline. The cubic RBF kernel has a discontinuous

third derivative at the origin, which translates into discontinuities in ds3/dz3 at the interpolation nodes

(corresponding to the typical formulation of a cubic spline). In general, the requirements of a cubic spline

leaves two additional degrees of freedom that may be chosen to provide additional regularity.

The cubic RBF interpolant automatically makes arbitrary endpoint choices for the additional degrees

of freedom. We briefly investigate the endpoint behavior. See [22] for a more detailed treatment. For

simplicity, we consider interpolation on the interval [−1, 1]: −1 = z(1) < z(2) < . . . < z(n) = 1. All terms in

the cubic RBF interpolant change sign between z(1) and z(n):

s(z) =


∑n
i=1 α

(i)(z − z(i))3 for z ≥ 1∑n
i=1−α(i)(z − z(i))3 for z ≤ −1.

(22)
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Figure 4: Maximum error versus ε (left) for a Gaussian RBF interpolant, and example interpolants for several representative

values of ε (right). The function f(x) = 1/(1 + 16x2) is interpolated using the Chebyshev nodes on the interval [−1, 1] to avoid

the Runge phenomenon. For large ε, the basis function become too localized, and provide a poor interpolant. For small ε,

ill-conditioning of the interpolation matrix destroys the interpolant.

A system of equations can be set up and solved to show the following endpoint conditions on the second

derivative [22]:

s′′(1) = 2s′(1)− s′(−1)− 3
2 (s(1) + s(−1))

s′′(−1) = s′(1)− 2s′(−1)− 3
2 (s(1) + s(−1)).

(23)

One common set of additional conditions are those of the natural spline, which enforce the conditions

s′′(1) = s′′(−1) = 0. These conditions are achieved by adding constant and linear polynomial terms to the

cubic RBF interpolant,

s(z) = β0 + β1z +

n∑
i=1

α(i)|z − z(i)|3, (24)

subject to the additional constraints
∑n
i=1 α

(i) =
∑n
i=1 α

(i)z(i) = 0. Then, for z ≥ 1,

s(z) = β0 + β1z +

n∑
i=1

α(i)(z − z(i))3, (25)

and we find that

s′′(z) = 6z

n∑
i=1

α(i) − 6

n∑
i=1

α(i)z(i) = 0. (26)

By an identical argument it is shown that s′′(z) = 0 for z ≤ −1. Figures 5 and 6 demonstrate the improved

behavior of the cubic RBF interpolants near boundaries when constant and linear polynomial terms are

included.
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function f(z) = 1 + sin(2πz) + cos(2z).
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Color plots represent absolute interpolation error: 0 (white) to 7 × 10−4 (black).

6.2. Multivariate Cubic RBF Interpolation

As we consider multivariate interpolation using the cubic RBF, we must again address the following three

questions: 1) Given a set of interpolation nodes, is the interpolation matrix non-singular? 2) What types of

functions can be approximated? 3) What convergence rate can we expect as we populate the domain with

additional nodes?

In order to address the question of solvability, we must introduce some additional definitions. We begin

with the definition of a conditionally positive definite kernel, a generalization of positive definite.

Definition 4. A real-valued continuous function k : Rd × Rd → R is called conditionally positive definite

of order m on Rd if
n∑
i=1

n∑
j=1

αiαjk(z(i), z(j)) ≥ 0, (27)

13



for n distinct points {z(1), . . . ,z(n)} ⊂ Rd, and α = [α1, . . . , αn]T ∈ Rn, subject to

n∑
i=1

αip(z
(i)) = 0, (28)

where p(z) is any real-valued polynomial of degree at most m− 1. If in addition, the quadratic form (27) is

equal to zero if and only if α = 0, then k is called strictly conditionally positive definite on Rd [9].

The cubic RBF is conditionally positive definite of order 2 on Rd [9]. The attentive reader may note

that the augmentation of the cubic RBF basis with the constant and linear polynomials will help to provide

unique solvability of the interpolation system, given this property of the cubic kernel. Unique solvability

will also require a mild condition on the node locations. For this, we define the concept of m-unisolvency:

Definition 5. The set of nodes {z(1), . . . ,z(n)} ⊂ Rd is called m-unisolvent if the unique polynomial of

total degree at most m interpolating zero data on {z(1), . . . ,z(n)} is the zero polynomial.

Given the properties of the cubic RBF kernel, we require that {z(1), . . . ,z(n)} form a 1-unisolvent set in

Rd. For a simple example from [9], 3 collinear points in R2 do not form a 1-unisolvent set, because different

rotations of the zero-plane can interpolate zero data over these nodes. However, 3 non-collinear points in R2

form a 1-unisolvent set. The requirement of a 1-unisolvent set in Rd is equivalent to the following condition:

span{(z(i) − z(j)) for i, j = 1, . . . , n} = Rd. (29)

With the definition of m-unisolvent, and the property of strictly conditionally positive definite, we may now

employ the following theorem to guarantee non-singularity of the interpolation matrix:

Theorem 1 (7.2 from [9]). If the real-valued even function γ : Rd → R is strictly conditionally positive

definite of order m and the points {z(1), . . . ,z(n)} form an (m− 1)-unisolvent set, then the following system

of linear equations is uniquely solvable:

 G P

PT 0

 α

β

 =

 f

0

 , (30)

where Gij = γ(‖z(i) − z(j)‖) for i, j = 1, . . . , n; f = [f(z(1)), . . . , f(z(n))]T ; Pkl = pl(z
(k)) for k = 1, . . . , n

and l = 1, . . . ,M , and the polynomials pl(z) for l = 1, . . . ,M form a basis for the linear space of all

polynomials up to degree (m− 1).

The proof of the theorem demonstrates the need for the technical conditions on the interpolation nodes

as well as the augmentation of the cubic RBF basis with the constant and linear polynomials to guarantee

a unique interpolant.
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Proof 1. Following the proof in [9], we assume [α,β]T is in the null space of the interpolation matrix in

(30), i.e. we let f = 0. If we consider the top block, and left multiply by αT we have

αTGα+αTPβ = 0. (31)

We observe that αTP = 0T , since PTα = 0 from the lower block of (30). This leaves

αTGα = 0. (32)

We observe that the quadratic form αTGα = 0 if and only if α = 0, since γ is strictly conditionally positive

definite of order m. Revisiting the top block of (30), we now see that

Pβ = 0. (33)

The (m− 1)-unisolvency of {z(1), . . . ,z(n)} enforces that β = 0. �

In our case (m = 2), we use the constant and linear polynomials: p1(z) = 1 and pl(z) = zl−1 for

l = 2, . . . , d + 1 (zl denotes the l-th coordinate of z in Rd). Then, given that {z(1), . . . ,z(n)} forms a

1-unisolvent set of interpolation nodes in Rd, we are guaranteed the existence of a unique interpolant

s : Rd → R of the form:

s(z) =

n∑
i=1

α(i)‖z − z(i)‖3 + β0 +

d∑
j=1

βjzj . (34)

We must now concern ourselves with the types of target functions to which a cubic RBF interpolant will

converge. In particular, we hope to approximate the components of Φ−1 with arbitrary precision. In order

to characterize the native space of the cubic RBF, we begin with the definition of the Beppo Levi space:

Definition 6. For l > d/2, the linear space

BLl(Rd) := {f ∈ C(Rd) : Dαf ∈ L2(Rd),∀|α| = l}, (35)

equipped with the inner product

〈f, g〉BLl(Rd) =
∑
|α|=l

l!

α!
〈Dαf,Dαg〉L2(Rd), (36)

is called the Beppo Levi space on Rd of order l, where Dα denotes the weak derivative of (multi-index) order

α ∈ Nd on Rd.

When the dimension, d, is odd, the native space of the cubic RBF is the Beppo Levi space on Rd of order

l = d+3
2 [11]. For even dimension, the Beppo Levi space on Rd of order l = d+2

2 corresponds to the native

space of the thin plate spline g(z,w) = ‖z−w‖2 log‖z−w‖ [11]. The details of the proof are technical, and
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the interested reader is referred to Theorem 10.43 in [11]. We lack a characterization of the native space for

the cubic RBF in even dimension.

At this point it is natural to briefly discuss the optimality of polyharmonic spline interpolants. It is a

well-known result that the natural cubic spline minimizes the integral of the squared second derivative over

the space of interpolants in one-dimension. Likewise, in two-dimensions the thin-plate spline interpolant to

scattered data minimizes the so called “bending energy” (hence the term thin-plate spline, or surface spline).

These optimality results were generalized to any dimension and order of the iterated Laplacian in [23]. An

excellent summary of the results of the variational approach can be found in [24]. The generalized results

for the iterated Laplacian have some interesting and initially surprising implications. For example, in three-

dimensions the optimal interpolant in terms of minimizing the second-order (generalized) derivatives is the

linear radial function [25]. In higher dimension, the family of polyharmonic splines no longer provides an

optimal interpolant for minimizing the analog to the two-dimensional bending energy. Instead, appropriate

choices from the family of polyharmonic splines (thin plate splines in even dimension and radial powers in

odd dimension) are optimal relative to higher orders of the iterated Laplacian. An important observation

is that the physical interpretation of bending energy and thus the motivation for optimality with respect to

the second order derivatives disappears beyond two-dimensions.

All of our numerical experiments have demonstrated equal or better performance of the cubic RBF

relative to the thin plate spline regardless of whether we work in even or odd dimension. Similar results

have been observed in [26]. Thus, to promote algorithmic simplicity for practical applications, we have

chosen to work solely with the cubic RBF.

For completeness, we will show that the functions we wish to approximate are members of the native

space of the cubic RBF provided that we work in odd dimension. We first observe that, C∞(Rd)
⋂
Cc(Rd) ⊂

BLl(Rd), for any l, where Cc(Rd) is the linear space of compactly supported functions on Rd. The compo-

nents of Φ−1, φ−1
k : Φ(M)→ R for k = 1, . . . , D can be extended to functions in C∞(Rd)

⋂
Cc(Rd). Thus,

the components of Φ−1 are members of the native space of the cubic RBF, provided that d is odd.

The remaining question is the rate of convergence for a cubic RBF interpolant. Theorem 11.16 in [11]

establishes algebraic convergence of at least O(h
3/2
Z,Ω) of the cubic RBF interpolant to functions in the native

space (we again leave out the technical details here). In practice, we have experienced much higher rates

of algebraic convergence, as will be seen in the experimental section. Theorems exist that improve upon

the order 3/2 bound for convergence of the cubic RBF, given additional conditions on the smoothness and

boundary conditions of the target function, for example in [27, 28, 29]. Any order of algebraic convergence

is still slower than the exponential convergence of the Gaussian RBF. Nonetheless, our opinion is that in

many applications the benefit gained by the simplicity and numerical stability of the scale-free cubic RBF

kernel will offset the reduced convergence rate relative to the Gaussian.
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6.3. Far Field Behavior of the Cubic RBF Interpolant

Understanding the behavior of the cubic RBF interpolant near boundaries of the data is more challenging

in the multivariate case. Nonetheless, we will observe that inclusion of constant and linear polynomial terms

in the interpolant will improve the far field behavior of the interpolant, in addition to providing for unique

solvability. To begin the analysis, we translate to spherical coordinates in Rd (generalizing the argument

of [22] from 2 to d-dimensions):

z1 = r cos θ1 = rγ1

z2 = r sin θ1 cos θ2 = rγ2

...

zd = r sin θ1 . . . sin θd−1 cos θd = rγd.

(37)

We proceed to consider the interpolant

s(z) =

n∑
i=1

α(i)‖z − z(i)‖3 + β0 +

d∑
j=1

βjzj (38)

=

n∑
i=1

α(i)((z1 − z(i)
1 )2 + . . .+ (zd − z(i)

d )2)3/2 + β0 +

d∑
j=1

βjzj (39)

=

n∑
i=1

α(i)((rγ1 − z(i)
1 )2 + . . .+ (rγd − z(i)

d )2)3/2 + β0 + r

d∑
j=1

βjγj (40)

=

n∑
i=1

α(i)(r2(γ2
1 + . . .+ γ2

d)− 2r(γ1z
(i)
1 + . . .+ γdz

(i)
d ) + ((z

(i)
1 )2 + . . .+ (z

(i)
d )2))3/2 +

β0 + r

d∑
j=1

βjγj (41)

= r3
n∑
i=1

α(i)(1− 1

r
2(γ1z

(i)
1 + . . .+ γdz

(i)
d ) +

1

r2
((z

(i)
1 )2 + . . .+ (z

(i)
d )2))3/2 + β0 + r

d∑
j=1

βjγj .(42)

If we Taylor expand the first sum around 1
r = 0 (r =∞), we find

s(z) = r3

{
n∑
i=1

α(i)

}
+ r2

{
−3

d∑
l=1

γl

n∑
i=1

α(i)z
(i)
l

}
+ r {. . .}+ {. . .}+

1

r
{. . .}+ . . . (43)

= r {. . .}+ {. . .}+
1

r
{. . .}+ . . . , (44)

where the first two terms are zero as we enforced the constraints
∑n
i=1 α

(i) =
∑n
i=1 α

(i)z
(i)
l = 0 for l =

1, . . . , d. Thus, we observe that for large r, the cubic RBF with inclusion of constant and linear polynomial

terms, behaves linearly in the radial direction. Alternatively, we observe that ∂2s/∂r2 = O(1/r3) for large

r. By only adding up to linear polynomials, we maintain algorithmic simplicity, and regularize the far field
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behavior of the interpolant. The practical consequence of this observation is that we should expect at most

linear divergence of the interpolant if we extrapolate outside the convex hull of the data. In particular, we

should not experience divergence with r3 as we might naturally expect based on the form of the interpolant.

7. Experiments

Convergence of RBF interpolants is typically addressed in terms of the L∞-norm as a function of fill

distance. Both of these are measures of the “worst-case” scenarios, and may not represent typical performance

over the domain. Additionally, estimation of both of these quantities is difficult, particularly near the

boundaries of a discretely sampled domain. For these reasons, we have chosen to measure node spacing

and error in a more natural manner. In the first two examples, we synthetically sample a manifold. In

order to assess relative performance of the inverse mapping algorithms, we measure error as a function of

local fill distance, h̄local, from (18). Local fill distance is chosen to provide an appropriate measurement of

node spacing under randomized sampling schemes. The relationship between local approximation error and

variable local node density has been investigated by [15, 16]. Although we do not address variable node

density in the present work, we note that the notion of local fill distance is easily generalized to accommodate

this issue which is likely to arise in many applications.

Similarly, error will be quantified with average l2 error. Given a dataset {x(1), . . . ,x(n)} ⊂ RD with a

corresponding low-dimensional representation {y(1), . . . ,y(n)} ⊂ Rd, some random subset {x(j1), . . . ,x(jm)}

will be selected for testing of the inverse mapping algorithms. For each of these points, x(ji) = Φ−1(y(ji)),

we will compute the approximate inverse Φ†(y(ji)). The average l2 error, Eavg, is calculated as

Eavg =
1

m

m∑
i=1

‖x(ji) −Φ†(y(ji))‖. (45)

We can think of the average l2 error as an approximation of the L1-norm of the Euclidean error over the

domain. This measure will appropriately assess the typical performance of the algorithms over the entire

dataset.

The following examples demonstrate the rapid convergence of the cubic RBF inverse mapping method.

We observe convergence rates substantially faster than the O(h
3/2
Z,Ω) bound [11]. We expect increased orders

of algebraic convergence provided additional regularity of the target function beyond the minimum require-

ments of the native space (see theorems in [27, 28, 29]). We begin with a very simple example and proceed

to evaluate the performance of the algorithm on problems with increasing complexity.

7.1. Unit Circle

In this example, n points {x(1), . . . ,x(n)} are evenly distributed on the unit sphere S1 (the unit circle in

R2 = RD). Each point is separated from its two nearest neighbors by a distance of exactly 2 sin( πN ). One
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Figure 7: Performance of cubic RBF (left), Gaussian RBF (center), and Shepard’s method [6] (right) inverse mapping algorithm

on unit circle in R2. Node spacing is measured by local fill distance, h̄local (18). Error is average l2 error, Eavg (45). Note

difference in range of y-axis.

additional point x is placed on the unit circle half-way between x(1) and x(2). The data are mapped to

{y(1), . . . ,y(n),y} ⊂ Rd = R2 using the first two non-trivial eigenvectors of the graph Laplacian. The inverse

mapping algorithms attempt to accurately re-generate the point x ∈ RD from y ∈ Rd, by interpolation of

the data {x(1), . . . ,x(n)} ⊂ RD as a function of their coordinates {y(1), . . . ,y(n)} ⊂ Rd.

The performance of the numerical inverse mapping methods versus local fill distance is shown in figure 7.

The convergence of cubic RBF inverse mapping is rapid, and appears to scale approximately with O(h̄5
local).

Interpolation error decreases with fill distance to approximately 10−15 when machine precision prevents

further improvement in the interpolation. The algorithm captures curvature extremely well, even with

sparse data: with only 10 interpolation nodes on the unit circle (the largest fill distance shown in figure 7)

the interpolation error is approximately 10−3.

For comparison, the same results are shown also in figure 7 for the Gaussian RBF inverse mapping al-

gorithm as well as Shepard’s method [6]. The Gaussian RBF interpolant initially shows rapid convergence,

down to the range of 10−6 to 10−9 depending on choice of ε, before ill-conditioning of the interpolation

matrix leads to propagation of errors. Shepard’s method [6] converges more slowly, and appears to scale

approximately with O(h̄2
local). In all cases, the inverse mapping method was implemented locally, with

the number of nearest neighbors used in the mapping set to either 40 or the total number of data points,

whichever is fewer. Shepard’s method [6] shows clear evidence of the transition from a global to a local im-

plementation of the algorithm (only demonstrating convergence following the transition to the local regime).

The convergence of the cubic RBF algorithm shows no such evidence, suggesting that the local and global

implementations are equally effective.
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Figure 8: Performance of cubic RBF (left), Gaussian RBF (center), and Shepard’s method [6] (right) inverse mapping algorithm

on S4 embedded in R10. Node spacing is measured by local fill distance, h̄local (18). Error is average l2 error, Eavg (45). Note

difference in range of y-axis.

7.2. Unit Sphere in RD

In this example, n points {x(1), . . . ,x(n)} are randomly distributed on the unit sphere S4, then em-

bedded in R10 via a random unitary transformation. The data are mapped to {y(1), . . . ,y(n)} ⊂ Rd =

R5 using the first five non-trivial eigenvectors of the graph Laplacian. The inverse mapping algorithms

attempt to accurately re-generate one point x(j) ∈ RD from y(j) ∈ Rd, by interpolation of the data

{x(1), . . . ,x(j−1),x(j+1), . . . ,x(n)} ⊂ RD as a function of their coordinates {y(1), . . . ,y(j−1),y(j+1), . . . ,y(n)} ⊂

Rd. The performance of the cubic RBF, Gaussian RBF, and Shepard’s method [6] versus local fill distance

is shown in figure 8.

The minimum of the total number of neighbors, and 100 neighbors was used to provide better local

coverage in higher dimension. Also, at each fill level, the inverse mapping was repeated on a random subset

of the nodes and the errors were averaged to provide a better estimate of average inverse mapping error.

In figure 8 we observe that the convergence of cubic inverse mapping is the fastest, and appears to scale

approximately with O(h̄5
local). Shepard’s method [6] again only convergences in the local regime.

7.3. Handwritten Zeros Dataset

In addition to the previous “artificial” test examples, performance of the inverse mapping algorithm was

assessed on a “naturally occurring” high-dimensional data set: a set of digital images of handwritten zeros.

The data set consisting of 1000 handwritten zeros was derived from the MNIST database [30]. The images

were centered and size-normalized in a fixed size image. Each image in the database is a 28× 28 gray scale

image. These images were resized to 14×14 pixels, reshaped into a vector, and normalized to have Euclidean

norm 1, providing a dataset of 1000 points in R196.
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Figure 9: Top row: original image to be reconstructed from the low-dimensional embedding (left), and reconstruction by cubic

RBF (right). Bottom row: reconstruction by Gaussian RBF (left), and Shepard’s method [6] (right).

A 10-dimensional representation of the 1000 handwritten zeros was generated via Laplacian Eigenmaps.

Then the inverse mapping techniques were tested on all images in the set, and compared to the original.

Figure 9 shows a representative reconstruction via the various inverse mapping techniques. Figure 10 shows

the histogram of errors for the three methods. Shepard’s method [6] performs the most poorly, typically

generating a very blurry reconstruction of the image, as a simple linear combination of its neighbors. The

Gaussian RBF method reduces reconstruction error relative to Shepard’s method, but tends to inaccurately

reproduce certain pixel values. The cubic RBF performs the best, producing a crisp reconstruction of the

image, with the lowest reconstruction error.

8. Discussion

In the previous section we demonstrated excellent performance of a numerical inverse mapping technique

involving interpolation using the cubic RBF. We now provide a novel interpretation of the Nyström Method,

a scheme commonly used to interpolate the eigenvectors of the weight matrixW . As we will see, the Nyström
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Figure 10: Histogram of reconstruction error for all inverse mapping algorithms on the handwritten zeros dataset. Error is l2,

treating images as vectors in R196.

Method directly generates an RBF interpolant of the eigenvectors of the weight matrix. This interpretation

provides new insight into the limitations and potential pitfalls of the Nyström Method.

8.1. Revisiting Nyström

The Nyström method was developed as a technique for numerical approximation of integral eigenfunction

problems of the form [8]

∫ b

a

k(x, y)φl(y)dy = λlφl(x). (46)

If we sample the function at a set of evenly-spaced sample points x(i) for i = 1, . . . , n, we can approximate

the integral with a simple quadrature rule,

b− a
n

n∑
j=1

k(x(i), x(j))φl(x
(j)) = λlφl(x

(i)). (47)

This is equivalent to the matrix eigenvalue problem (absorbing the constant into λl),

Wφl = λlφl, (48)

where Wij = k(x(i),x(j)) and φl and λl are the eigenvectors and corresponding eigenvalues of W for

i = 1, . . . , n. Here we generalize the problem to x(i) ∈ RD. For Λ = diag(λ1, . . . , λn) and Φ = [φ1, . . . ,φn] ∈

Rn×n, we consider the full eigenvector decomposition of the weight matrix W :

W = ΦΛΦT . (49)

In the Nyström context, we again define the mapping φl : RD → R as follows: φl(x(i)) = φil, where φil is

the i, l entry of the eigenvector matrix Φ ∈ Rn×n.
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Provided that λl 6= 0, the Nyström Extension provides a technique to extend the eigenvector φl, defined

over a set of sample points, to an arbitrary new point x as [31]

φl(x) =
1

λl

n∑
j=1

k(x,x(j))φl(x
(j)). (50)

Perhaps the most common choice for the kernel function k is the Gaussian: k(x(i),x(j)) = exp(−ε2‖x(i) −

x(j)‖2). In this case, the affinity matrix W is guaranteed non-singular under only the simple condition of

non-coincident nodes in RD [9] (thus, λl 6= 0 for l = 1, . . . , n). Additionally, since W is a real symmetric

matrix, when normalized, {φl}nl=1 form an orthonormal basis for Rn (i.e. ΦTΦ = In, the identity matrix on

Rn).

We now proceed by re-writing φl(x) from (50), using the notation k(x, ·) = [k(x,x(1)), . . . , k(x,x(n))]T ,

φl(x) = λ−1
l k(x, ·)Tφl

= k(x, ·)TΦ[0 . . . λ−1
l . . . 0]T

= k(x, ·)TΦΛ−1[0 . . . 1 . . . 0]T

= k(x, ·)TΦΛ−1ΦTφl

= k(x, ·)TW−1φl.

(51)

If we compare the last line to (14), we observe that in the case of a Gaussian kernel matrix W , the Nyström

extension generates a radial basis function interpolation of the eigenvectors of W . This interpretation

provides insight into some potential pitfalls of the Nyström Method.

The first important observation about the Nyström interpolation scheme, is the sensitivity to the scale

parameter in the case of the typical Gaussian kernel weight matrix. If the scale parameter ε is too large,

the basis functions will be too localized and provide a poor interpolant. On the other hand, if the scale

parameter is too small, the weight matrix W will be very poorly conditioned, and numerical errors may

distort the interpolant. A great deal of research has focused on methods to select an appropriate scale

parameter (e.g. [14, 32]).

The second observation involves the dangers of sparsifying the weight matrix. In many nonlinear di-

mensionality reduction applications, it is typical to sparsify the kernel matrix by setting many entries in

the weight matrix to zero. Two strategies are typical: thresholding the matrix, and the k-nearest neighbor

approach. Thresholding is carried out as follows,

Wij =

 exp(−ε2‖x(i) − x(j)‖2) if ‖x(i) − x(j)‖ < δ,

0 otherwise.
(52)

The k-nearest neighbor approach is as follows,
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Figure 11: Example RBF interpolation using a truncated Gaussian as basis function.

Wij =

 exp(−ε2‖x(i) − x(j)‖2) if x(j) ∈ Nx(i) ,

0 otherwise,
(53)

where Nx(i) denotes the set of k-nearest neighbors of x(i).

If the Nyström extension is applied to a thresholded Gaussian kernel matrix, then the result is an RBF

interpolation of the eigenvectors of the submatrix, where the basis function are truncated Gaussians. This

is clearly problematic, and will likely generate a very poor (discontinuous) interpolant, as demonstrated in

figure 11. In the k-nearest neighbor approach, the Nyström method cannot be interpreted as a consistent

RBF interpolant, as the truncation distance varies from node to node. As a result, this method is also likely

to perform poorly.

A better alternative to Nyström would simply involve a more intelligent interpolation scheme to extend

the eigenvectors to new points in the space. The eigenvectors may be calculated using a (possibly truncated)

Gaussian weight matrix over a subset of the nodes. However, these eigenvectors should be extended using a

consistent interpolation scheme such as a true (non-truncated) Gaussian RBF, or a cubic RBF interpolant

which provides better results as indicated in this paper. Local instead of global implementation of the

interpolation algorithm may provide significant computational savings in certain scenarios.

9. Summary and Further Work

A numerical method is proposed to approximate the inverse of a general bi-Lipschitz nonlinear dimen-

sionality reduction mapping, where the forward and consequently the inverse mappings are only explicitly

defined on a discrete dataset. An RBF interpolant is used to independently interpolate each component of

the high-dimensional representation of the data as a function of its low-dimensional representation. The
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scale-free cubic RBF kernel is shown to perform better than the Gaussian kernel, as it does not require

the difficult-to-choose scale parameter as an input, and does not suffer from ill-conditioning. Inclusion of

additional constant and linear polynomial terms in the cubic RBF basis improves behavior of the interpolant

near boundaries, and guarantees non-singularity of the interpolation matrix.

Following exploration of the RBF inverse interpolation scheme, an interpretation of Nyström as an RBF

interpolant suggests that this method should not be directly used as an extension scheme when affinities

are measured using a truncated Gaussian. Such a scheme will generate a poor (discontinuous) eigenvector

interpolation. The present results suggest that reliability of the Nyström method could be improved by

using cubic RBF interpolation of eigenvectors instead of the current method which generates the RBF

interpolation using the kernel used to build the weight matrix (typically the Gaussian).

The present algorithm generates an exact interpolant to the data. Performance in applications with

noisy data will be improved by an approximate interpolation technique. This can be achieved in various

ways: for example by using fewer RBF kernel locations than data points, and finding the “best” solution

(least squares for example), or by a regularized approach which puts a penalty on the fitting coefficients

(e.g. Kernel Ridge Regression). Application of such strategies will be the subject of future work.
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