
Noname manuscript No.
(will be inserted by the editor)

A Computational Exploration of the Second Painlevé
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Abstract The pole field solver developed recently by the authors (J. Comp. Phys.,
230 (2011), 5957–5973) is used to survey the space of solutions of the second
Painlevé equation that are real on the real axis. This includes well-known so-
lutions such as the Hastings-McLeod and Ablowitz-Segur type of solutions, as
well as some novel solutions. The speed and robustness of this pole field solver
enable the exploration of pole dynamics in the complex plane as the param-
eter and initial conditions of the differential equation are varied. Theoretical
connection formulas are also verified numerically.
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1 Introduction

The six Painlevé equations were introduced a little over a century ago [28,
29]. They define transcendental functions that have become firmly established
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in mathematical physics especially over the last few decades. The first two of
these are defined by

PI :
d2u

dz2
= 6u2 + z, (1)

and

PII :
d2u

dz2
= 2u3 + z u+ α, (2)

where u(z) is a meromorphic function of z and α is a constant. Where it is
necessary to make explicit the dependence of the solution of PII on α, we shall
write u = u(α; z).

For definitions of the remaining four equations in the Painlevé family see [8,
10,13,16], where lists of various applications can also be found. These include
nonlinear wave motion (where PII arises as a reduction of the Korteweg-de
Vries equation for water waves [1,25,31]), combinatorics, random matrices
and statistical physics (where PII appears in the well-known Tracy-Widom
distribution [33]), and electrostatic theory [21,22]. Short summaries of the
history of the Painlevé equations are given in the introductions of [13] and
[16].

The pole distribution of the Painlevé transcendents is an active research
area. Not only do the poles carry physical significance in some applications,
but the location of the poles in the complex plane also provides information
about the solution characteristics (oscillations, decay) on the real line. A lot is
known about the distribution of poles as |z| → ∞, based on various asymptotic
approaches to the problem [4,13,23]. Much less is known for finite |z|, where
numerical computation seems to be the only recourse.

Until recently, the presence of vast pole fields in the complex plane was
perceived to be a numerical challenge. The methodology presented in [14]
overcomes this issue. It exploits in two key ways the fact that the solutions
are meromorphic: (i) the absence of branch-points allows for a flexible and
effective path selection strategy even through large and dense pole fields, and
(ii) a “pole-friendly” Padé-based ODE stepping scheme [35] along these paths
maintains high accuracy both when integrating near to as well as right up
to poles of low order. When this new technique was applied to PI , numerical
solutions reported in [14] yielded errors on the order of 10−10 after integrating
over distances as long as 104 through dense pole fields with average spacing
on the order of 1.

Having established an effective numerical procedure, we are in a position
to apply it to other Painlevé equations to look for solution features and for
pole field patterns that have not been observed before. Here we focus on PII ,
for the case α real and with u restricted to be real-valued on the real axis. In
particular, Hastings-McLeod solutions (smooth and nonoscillatory along the
real axis), Ablowitz-Segur solutions (oscillatory and bounded), and tronquée-
type solutions (featuring pole free sectors in the complex plane) are of special
interest. A similar investigation for PIV (with both its parameters zero) is
reported in [30].
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The body of literature for numerical results of PII is not as extensive as it is
for analytical aspects, but it is growing. Solutions on the real axis are presented
in [9,10,21,22,27], and some pole fields in the complex plane, in the special
case α = 0, are shown in [4,26]. The key difference between the present paper
and earlier numerical studies is that we investigate here how these pole fields
evolve with α. For such investigations the methodology of [14] offers speed
and flexibility, which facilitate experimentation and create the possibility of
numerical animations. A selection of these will be made available on the web
page [34].

The outline of the paper is as follows: After a brief overview of some gen-
eral relations and explicit solutions in Section 2, we focus in Section 3 on pole
counting diagrams and the use of our pole field solver as the main tools for
surveying the 3-parameter PII solution space (the parameter α and two initial
conditions for the ODE). During this process, we come across all previously
identified solution types, and also find some generalizations of these. These
generalizations include what we call secondary Hastings-McLeod solutions,
studied in Section 3, and in the section following that also quasi-Hastings-
McLeod and quasi-Ablowitz-Segur solutions. In Section 4 we also develop ef-
fective approaches for calculating what we have named “k = 0 solutions” and
for numerically verifying connection formulas for arbitrary α. We conclude
with some additional solution illustrations in Section 5 and final remarks in
Section 6.

2 General Relations and Explicit Solutions

Although the solutions to PII cannot, in general, be expressed in terms of
classical special functions, a few special cases are known. They are briefly
summarized in this section, in order to place the new computed solutions in
the context of existing knowledge. In addition, several series expansions are
available. We start this section, however, by listing a few transformations that
enable the construction of new solutions from known ones.

2.1 Some useful relations

It is readily seen that solutions for ±α are connected via the symmetry trans-
formation

u(α; z) = −u(−α; z). (3)

This makes it sufficient to consider only α ≥ 0, which we assume throughout
this paper.

The Bäcklund transformation is

u(α+ 1; z) = −u(α; z)− 2α+ 1

2u′(α; z) + 2u(α; z)2 + z
, (4)
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which defines a useful recurrence relation for generating solutions; see [10,
Sect. 32.7],[15], [16, Sect. 19]. The prime denotes differentiation with respect
to z. (A similar relation is available for u(α− 1; z) in terms of u(α; z); see [10,
Sect. 32.7].) Solutions corresponding to α = 0 and 1

2 are connected via

u( 1
2 ; z) = 2−1/3

u′(0;−2−1/3z)

u(0;−2−1/3z)
, (5)

a relation that will be discussed in Section 5.2. In principle it is therefore only
necessary to consider 0 ≤ α < 1

2 , as solutions for arbitrary α can then be
reconstructed from (3) and (4) (or (5)). We shall not limit our investigations
to this fundamental interval in parameter space, however, as it is not straight-
forward to see how pole locations and other solution features of u(α; z) and
u(α+ 1; z) are connected by (4).

Near a pole, say at z = z0, the Laurent expansion of PII solutions follows
immediately from substitution into (2), namely

u(z) =
c−1
z − z0

+c0+c1(z−z0)+c2(z−z0)2+c3(z−z0)3+c4(z−z0)4+O((z−z0)5),

where

c−1 = ±1, c0 = 0, c1 = ∓z0
6
, c2 =

∓1− α
4

, c3 = γ, c4 =
z0
72

(±1+3α);

see [2, Sect. 3.6] and [16, Sect. 17]. The only free parameters (in the infinite
expansion) are the pole location z0, the sign choice in c−1 and the coefficient
γ (first appearing in c3). All poles are therefore of first order, with residues of
either +1 or −1. This is in contrast to the situation for PI where all poles are
of second order, with strength of 1 and residue 0.

In the figures below, poles with residues +1 or −1 are denoted by dark
(blue) and light (yellow) circles, respectively. Where zeros are shown, a smaller
(red) square is used.

2.2 Rational solutions

There exists one rational solution for each α = n, n = 1, 2, 3, . . ., which will be
denoted by un(z) [8,10,16]. (Because of (3), there is a corresponding rational
solution for each α = −n.) One way to generate them is to start with u0 = 0
and then apply the recursion (4). This yields the sequence

u1(z) = −1

z
, u2(z) =

4− 2z3

4z + z4
, u3(z) =

3z2
(
160 + 8 z3 + z6

)
320− 24 z6 − z9

, (6)

etc., with some further members listed explicitly in [8] and [16, Sect. 20].
Figure 1 shows pole and zero locations of these solutions; similar plots were
displayed previously in [8,11]. These rational solutions are the only solutions
of PII to have finitely many poles in the complex plane [16, Sect. 20]. The vast
pole-free (tronquée) regions in Figure 1 are therefore rather special and are in
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Fig. 1 Poles and zeros of the first six rational solutions of PII , in the complex plane
z = x + iy. The dark (blue) and light (yellow) circles represent poles with residues +1 or
−1, respectively. Zeros are represented by the smaller (red) squares.

fact completely destroyed by perturbations in the data (for example, changes
in α or changes in the values of u(0), u′(0)).

Note in Figure 1 how the zeros of the rational solutions interlace the poles.
The same thing is observed in Figure 2 of the next section. To avoid clutter,
we shall therefore cease to plot zeros along with the poles from there on.

2.3 Airy solutions

There is a one-parameter family of Airy solutions when α = n + 1
2 , which

will be denoted by un+ 1
2
(z) [8,10,16]. To define them, let φ be the solution to

φ′′ = − 1
2zφ, i.e.,

φ(z) = c1 Ai

(
−z
21/3

)
+ c2 Bi

(
−z
21/3

)
,

with c1 and c2 arbitrary constants. Now define Φ(z) = φ′(z)/φ(z) and combine
c1 and c2, by setting

c1 = cos
θ

2
, c2 = sin

θ

2
, 0 ≤ θ ≤ 2π, (7)
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Fig. 2 Poles and zeros of the first three Airy solutions of PII in the case θ = 0. For typical
variation with θ, see Figure 3.

making Φ(z) 2π-periodic in the parameter θ.
The Airy solution corresponding to α = 1

2 is then given by

u 1
2
(z) = −Φ, (8)

and the others follow from (4) together with the relation Φ′(z) = − 1
2z−Φ(z)2.

The next two are

u 3
2
(z) =

2Φ3 + z Φ− 1

2Φ2 + z
(9)

and

u 5
2
(z) =

4 zΦ4 + 6Φ3 + 4 z2Φ2 + 3 z Φ+ z3 − 1

(4Φ3 + 2 z Φ− 1) (2Φ2 + z)
, (10)

with some further members listed in [8] and [16, Sect. 21]. Because of the free
parameter θ, the Airy solutions define a much bigger family of solutions than
the rational solutions.

Figure 2 shows locations of poles and zeros of the solutions (8)–(10), corre-
sponding to the case θ = 0. These follow single lines aligned with the real axis
when α = 1

2 , triple lines when α = 3
2 , etc. Figure 3 shows similar pole fields

but with θ ranging over its 2π-cycle, in the case α = 5
2 . Notice how five curves

of poles enter from −∞, meet up with another group of poles aligned along
the positive real axis, and then carry with them five poles from this group
back to −∞. For the general Airy solution with α = n + 1

2 , a total of 2n + 1
poles are transferred in this manner.

The pole fields displayed in Figures 1–3 were computed from explicit solu-
tion formulas. In the sequel, such formulas are unavailable and all pole fields
shown were computed with the pole field solver of [14]. The first of these is
displayed in Figure 4, which shows pole dynamics as α is varied across [ 52 ,

7
2 ],

for the special case u(0) = u′(0) = 0. This sequence starts and ends with
Airy solutions, with a rational solution halfway between. During the transi-
tion the central group of nine poles remains relatively intact as curves of poles
alternately enter from infinity, and recede back to infinity.
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Fig. 3 Poles of the Airy family of solutions of PII (α = 5
2

). Note in the θ = 1
3
π and 5

3
π cases

the exact symmetries, and also in these cases the resemblance of the central pole groups to
the rational solutions for α = 2 and α = 3, respectively. (Other cases, such as θ = 2

3
π and

4
3
π, are similar to the θ = π case in terms of lacking the 3-fold symmetry. For θ = 2π, the

solution has returned to the θ = 0 case.)

The class of solutions of PII that satisfy u(0) = u′(0) = 0 for α 6= 0 was
analyzed in [23], where asymptotic formulas are given in the limits x → ±∞
(here, and below, we use x in place of z to indicate that the variable is real).
Also noted in [23] is the fact that u(3n; z) give rational solutions for n =
1, 2, 3, . . ., while both u(3n − 1

2 ; z) and u(3n + 1
2 ; z) give Airy solutions. The

first, middle and last subplots of Figure 4 represent the n = 1 case. Similar
results hold when α is varied and the origin is a pole of either residue ±1.

Figures 3 and 4 also illustrate a type of pole behavior that is often seen
near tronquée solutions of PII . As the parameter (α or θ, for example) is
varied through its critical value, curves of poles move out to infinity (leaving
behind the tronquée solution), and then move back in. At infinity, there can
be a vertical shift in alignment of the poles, which affects solution features
on either side of the tronquée case. In Figure 4, there is a tronquée solution
right in the middle (α = 3). Note the change in alignment of the poles in
the curves in the right half-plane as they move out to +∞ and back in as
α is varied through the critical value 3 (cf. the middle row of subplots in
Figure 4). Similar behavior is seen in Figure 3, where the first subplot (θ = 0)
is a tronquée case. Note the alignment shift in the poles in the curves in the
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Fig. 4 Poles of PII in the case u(0) = u′(0) = 0 as α is varied (in nonuniform increments)
across [ 5

2
, 7
2

]. The first and last subplots show Airy solutions, namely u 5
2

(z) (θ = 5
3
π) and

u 7
2

(z) (θ = 1
3
π). The middle subplot shows the rational solution u3(z).

left half-plane as θ is varied through the critical value 0 (cf. the sixth subplot,
which is the same as θ = −10−5, followed by the first subplot and then the
second).

3 Pole Counting Diagrams

The rational and the Airy solutions discussed in Section 2 are the only known
explicit (or classical) solutions of PII . There are furthermore solutions asso-
ciated with the names of Ablowitz, Boutroux, Hastings, McLeod, Segur, and
others. No expressions for these solutions in terms of known special functions
are available, however.
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In the remainder of this paper we shall explore these and other solutions
for α ≥ 0. Following [14,30], we base the discussion on pole counting diagrams.
These diagrams display the number of poles on the positive and negative real
axes (denoted by R+ and R−, respectively) as the initial data (u(0), u′(0)) are
varied. This type of display covers for each α all possible solutions and it is
therefore particularly effective in identifying and relating solutions of different
types, such as those referred to in the paragraph above.

A sequence of pole counting diagrams is shown in Figure 5. Initial val-
ues that generate a finite number of poles along R+ define curves in the
(u(0), u′(0))-plane. These are labeled n+, where n is the pole count. When
similarly counting poles along R−, both curves (zero width) and regions (fi-
nite width) are possible. As we shall see in Section 5.1, the count n− within
a region need not agree with the count along its edges. All unmarked (white)
regions feature an infinity of poles along both R+ and R−.

In each diagram in Figure 5, there is a single curve marked 0+ that runs
diagonally between top left and bottom right, roughly. These 0+ curves rep-
resent solutions that are pole free on R+. On either side of the 0+ curves
there are two curves running top to bottom, labeled 1+. These denote solu-
tions with a single pole on R+. The adjacent pair of curves farther out denote
solutions with two poles on R+, etc. (although we suppressed their labels to
avoid clutter). The pole count increases by 1 from the inside out.

With regard to R−, there is a central curve marked 0− that runs diagonally
between top right and bottom left, with an accompanying 0− region that
remains visible in the first five subplots in Figure 5 (but which does not vanish
entirely until α = 3

2 ). These curves/regions represent solutions that are pole
free on R−. Within regions marked 0−, 1−, etc., the indicated number of poles
is generally followed by oscillations in u(x) as x→ −∞ (examples can be seen
in Figures 12, 13, 18 and 19); the rational solutions are exceptional in that the
oscillation amplitudes vanish.

In the sections below, we shall see that many of the special solutions (and
further generalizations of these) can be identified with intersections of curves
or of curves with regions in these diagrams. For example, the intersection of
the 0+ curves with either the 0− curves or the 0− regions, represent solutions
that are pole free on the entire real axis. Before looking at this in more detail,
we describe how the diagrams in Figure 5 were created.

Using the pole field solver of [14], we integrated PII as an initial-value
problem, first along the interval [0, L] using a large number of initial values
(u(0), u′(0)). For each set of initial values we recorded the number of poles on
[0, L]. To obtain these counts, a strategy based on the residue theorem was
used. This was checked with a strategy based on computing zeros of Padé
denominators. The value of L � 1 was adjusted until we reached confidence
that the pole count thus obtained is accurate for R+. The process was then
repeated for R−.
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Fig. 5 Pole counting diagrams in the (u(0), u′(0))-plane. Curves labeled n+ denote initial
conditions that generate solutions with n poles on R+. Curves and regions labeled n−

represent n poles on R−.

3.1 Re-visiting the rational and Airy solutions

We begin the survey of the PII solution space by noting where the explicit
solutions of Section 2 fit into the pole counting diagrams. For example, the
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Fig. 6 Extended pole counting diagrams that show (in dash-dot line type) the location
at infinity of the u1(z) and u2(z) rational solutions defined in (6). For clarity, only pole
counting details for R+ are included here.

rational solution u3(z) defined in (6) is generated by initial data (u(0), u′(0)) =
(0, 0). Looking at the α = 3 diagram in Figure 5, we note that the origin is
located on a 1+ curve and inside a 2− region. The one pole on R+ and two
poles on R− can be seen in the third subplot of Figure 1.

The rational solutions u1(z) and u2(z), by contrast, have poles at the origin
and thus (u(0), u′(0)) are both infinite. To represent such solutions, the pole
counting diagrams have to be extended to infinity. Consider, for example,
the rational solution u1(z) = −1/z, with u′1(z) = 1/z2. If this solution is
perturbed so that this pole crosses the origin in the direction of R+, the initial
data (u(0), u′(0)) switch from (−∞,+∞) to (+∞,+∞) and the pole count on
R+ increases from 0 to 1. This means that the 0+ and 1+ curves are connected
at infinity, as indicated by the dash-dot line segment in the first subplot of
Figure 6. Likewise, when the pole at z = 0 of u2(z) = (4 − 2z3)/(4z + z4) ∼
1/z, z → 0, crosses the origin from left to right, the initial data switch from
(+∞,−∞) to (−∞,−∞) while the pole count on R+ increases from 0 to 1.
The corresponding connection is shown in the second subplot of Figure 6.

In general, if a pole of residue ±1 crosses the origin in this manner, then
u′ ∼ ∓u2 shows that the connecting curve will be at u′(0) = ∓∞ in the
diagram. The relationship u′ ∼ ∓u2 also confirms the parabolic nature of the
curves where |u′(0)| � 1. In Section 5.1, similar arguments will be applied to
pole counts on R−.

Next, we consider the Airy solutions. Because they are one-parameter fam-
ilies of solutions, they define not single points but curves in the pole counting
diagrams when the parameter θ defined in (7) is varied across its 2π-cycle.
Figure 7 shows two such Airy curves, superimposed on the corresponding di-
agrams from Figure 5. Observe how the Airy solution curves trace out edges
that exist in the pole counting diagrams. In the case α = 1

2 , this curve is the
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Fig. 8 Curves of initial conditions of Airy solutions as the parameter θ in (7) is varied over
its 2π-cycle.

parabola u′(0) = u(0)2. Four additional Airy-curves, without pole counting
diagrams, are shown in Figure 8.

There is one detail in Figure 7 that deserves pointing out. In the α = 1
2

diagram (first subplot) there is a small but visible gap between the intersection
point of the 0+ and 0− curves and the Airy initial conditions corresponding
to θ = 0. This gap seems to have disappeared in the α = 3

2 diagram (second
subplot), but it still exists. This can be seen in the magnified version of the
diagram shown in the third subplot of Figure 7. (The gap gets smaller still for
α = 5

2 ,
7
2 , etc.) We postpone an examination of solution features associated

with the third subplot of Figure 7 until Section 5.3.
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Fig. 9 Pole counting diagrams on [−2, 2]× [−2, 2] showing the location of Hastings-McLeod
initial conditions as dots.

3.2 Hastings-McLeod solutions

Figure 9 shows four pole counting diagrams, three of which were displayed on
a larger domain in Figure 5. Only the 0+ curves and 0− curves/regions are
now shown, because our present interest is in solutions that are pole free on
the entire real axis.

When α = 0, the 0+ curve is seen to intersect the 0− region along a curve
segment that connects the two points

(u(0), u′(0)) ≈ (±0.3670615515480784,∓0.2953721054475501).

The corresponding two solutions (which, by (3), only differ in sign), are there-
fore pole free and nonoscillatory on the real axis, i.e., this corresponds to the
well-known Hastings-McLeod solution [17]. When α increases from 0 the sym-
metry is broken and the two dots in Figure 9 move closer together, coalescing
when α = 1

2 . This implies that if 0 < α < 1
2 , then there are two (nonsymmet-

ric) solutions that are pole free and nonoscillatory on the entire real axis. Only
one of these has been described in any detail in the literature, as a generalized
Hastings-McLeod solution [3,7,13].

To distinguish between these two solutions, consider for α > 0 the asymp-
totic boundary conditions [7,10,13,17,18]

u(x) ∼

{
±
√
− 1

2x, x→ −∞;

−α/x, x→ +∞.
(11)

These are obtained as asymptotic balances between the right-hand side terms
in (2) when solutions are smooth and the second derivative becomes negligible,
giving

2u3 + xu+ α = 0. (12)

(In the case α = 0, this argument needs refinement; see (13) and the discussion
that follows it.)

The plus and minus signs in (11) are identified with the lower and upper
dots in Figure 9, respectively. Corresponding solutions in the case α = 0.495
are shown in the middle subplot of the first column of Figure 10. The lower



14 Bengt Fornberg, J.A.C. Weideman

−10 0 10

−2

−1

0

1

2

α
=

0

u(0) = -0.367
u
′(0) = 0.295

u(0) = 0.367
u
′(0) = -0.295

−10 −5 0 5 10
−10

−5

0

5

10
Primary (lower) solution

−10 −5 0 5 10
−10

−5

0

5

10
Secondary (upper) solution

−10 0 10

−2

−1

0

1

2

α
=

0
.4
9
5

u(0) = -0.637
u
′(0) = 0.239

u(0) = -0.612
u
′(0) = 0.201

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

−10 0 10

−2

−1

0

1

2

α
=

1

u(0) = -0.795
u
′(0) = 0.203

−10 −5 0 5 10
−10

−5

0

5

10

Fig. 10 Hastings-McLeod solutions and their corresponding pole fields. The thinner curves
in the first column are the branches of the cubic equation (12) that defines the asymptotic
boundary conditions (11). (One of these is completely obscured behind the thick solution
curves, but is better visible in Figures 12, 13 and 18 below.)

solution (minus sign in (11)), is pole free, nonoscillatory, and monotone, and
is the solution described in [3,7,13]. The upper solution (plus sign in (11))
is likewise pole free and nonoscillatory but not monotone. These features of
the upper solution have not been noted in the literature as far as we know,
although its asymptotic properties are recorded in [13, Thm. 11.7]. We refer to
these two solutions as the primary and secondary Hastings-McLeod solutions,
respectively.

As α increases from 0, the primary solution changes slowly as can be seen
in Figure 10. By contrast, the secondary solution develops a steep gradient
on the negative real axis, which moves out to −∞ as α → 1

2 . When α = 1
2 ,

u ∼ −
√
− 1

2x as x→ −∞, and the two solutions coalesce pointwise.

The pole fields shown in the second and third columns of Figure 10 clarify
the process. They were obtained using the values of (u(0), u′(0)) for which
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Fig. 11 Pole counting diagrams showing the location of Ablowitz-Segur initial conditions
as the thicker curve sections that connect the Hastings-McLeod points. The shaded region
is the 0− region in Fig. 5 and the curve is the 0+ curve. The values of k that correspond to
the Hastings-McLeod points are also shown; cf. (21).

approximations are given in the left column of the figure. (Similar pole fields
for the case α = 0 have previously been displayed in [26].)

In the second column, we note that the poles for the primary Hastings-
McLeod solutions are located in two wedge-like regions, well separated from
the real axis. As α is increased, these wedges move slowly to the right and away
from the real axis, thereby preserving the smoothness of the primary solution.
(We look at this in more detail in Section 4.3.) By contrast, the third column
shows that, as α increases, the leftmost curve of poles dislodges from the two
pole wedges. A conjugate pair of these poles approaches the real axis as α→ 1

2 ,
which causes the steepening of the gradient of the secondary solution already
noted.

3.3 Ablowitz-Segur solutions for α = 0

This class of solutions was first described in [1]. Like the Hastings-McLeod
solutions the Ablowitz-Segur solutions are pole free on the entire real axis,
but in addition they are bounded on all of R [2, Sect. 3.7].

In the pole counting diagrams, initial conditions corresponding to the
Ablowitz-Segur solutions lie on 0+ curves that connect the two Hastings-
McLeod points. This can be seen in Figure 11, which displays two pole count-
ing diagrams, once again showing only 0+ and 0− detail. We examine the case
α > 0 in Section 4, and focus on α = 0 for now.

The Ablowitz-Segur solutions decay to zero as x→ +∞. To leading order
eq. (2), with α = 0, then reduces to the linear Airy equation, i.e., it will hold
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that
u(x) ∼ kAi(x), x→ +∞, (13)

where k is a free parameter.
The question addressed and solved in [1,3,12,13,17,24,25,31,32] and else-

where, is to find the asymptotic behavior as x → −∞ of the solution that
satisfies (13) as x → +∞. The answer depends on k and one needs to distin-
guish between |k| < 1, |k| = 1 and |k| > 1.

In the case |k| < 1, the asymptotic behavior on the negative real axis is

u(x) ∼ d(−x)1/4 sin
(2

3
(−x)3/2 − 3

4
d2 log(−x)− θ0

)
, x→ −∞, (14)

where d and θ0 are constants. The connection formulas

d2 = −π−1 log(1− k2) (15)

and

θ0 =
3

2
d2 log 2 + argΓ

(
1− 1

2
id2
)

+
1

4
π
(

1− 2 sgn k
)

(16)

hold when the two parts of the solution, (13) and (14), are connected smoothly.
As k → ±1 it was proven in [17] that the oscillatory behavior of (14)

turns into the square root behavior u ∼ ±
√
− 1

2x. (This defines the Hastings-

McLeod solution, which means the second boundary condition in (11) should
be modified to u(x) ∼ ±Ai(x), x → +∞ in the case α = 0.) When |k| >
1, poles appear on the negative real axis. (The physical significance of the
value |k| = 1, in the water wave application, is that it distinguishes between
nonlinearity dominating dispersion and vice versa [25,31].)

Figure 12 shows solutions for values of k near the critical value 1, i.e., near
the secondary Hastings-McLeod solution. (By (3), there exist similar solutions
near the primary Hastings-McLeod solution, k = −1.) When k is slightly less
than the critical value we observe an Ablowitz-Segur solution, with oscillatory
tail described by (14). (In fact, when graphs of (13) and (14) are superimposed
on the graph shown here, no discrepancy can be seen in the regions x > 0 and
x < −3, respectively. Similar agreements were previously shown in [25,31].)
When k slightly exceeds the critical value, the solution features an infinity of
poles on R−.

Similar solutions (along the real axis) were displayed previously in [8,10,
21,22]; in fact, the values k = 1±0.001 were chosen so that the solution curves
in Figure 12 match the curves in [10, Fig. 32.3.6]. The corresponding pole fields
are displayed in the right column of Figure 12.

The pole fields consist of the wedge-like sectors already observed in Fig-
ure 10, supplemented by a separate field farther into the left half-plane. When
k is slightly less than 1 some of these poles are located just off the real axis,
which causes the oscillatory features of the solution seen in the first subplot
of Figure 12 and described asymptotically by (14). As k increases this field
moves to the left, and at the critical k = 1 it reaches z = −∞, leaving only
the two wedges. As k increases further, the poles enter again from z = −∞,
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Fig. 12 Solutions of PII (α = 0) corresponding to two values of k in the asymptotic
boundary condition u(x) ∼ kAi(x), x → +∞; cf. (17). The solution in the first subplot is
an Ablowitz-Segur solution. (The in-between case, k = 1, is one of the Hastings-McLeod
solutions shown in the first subplot of Fig. 10.) The figures on the right are the pole fields
of the solutions on the left.

but this time vertically aligned such that there are poles along the real axis.
This is the familiar behavior near a tronquée solution, already noted at the
end of Section 2.3.

4 Generalizations to α > 0

In addition to the primary and secondary Hastings-McLeod solutions defined
in Section 3.2, we describe below a class of solutions for the case α > 1

2 ,
which has the same asymptotic properties as the secondary Hastings-McLeod
solution, but with a finite number of poles on R. These will be referred to
as quasi-Hastings-McLeod solutions. To keep the discussion uncluttered, we
introduce here the abbreviations pHM, sHM, and qHM for primary, secondary,
and quasi-Hastings-McLeod solutions, respectively. Similarly, we abbreviate
the regular and quasi-Ablowitz-Segur solutions by AS and qAS, respectively.
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4.1 Refinements of the boundary condition for x→ +∞

Here we derive higher order expansions for the boundary conditions (11) and
(13) that will be necessary for our numerical work. We first note that any
solution u(α;x) that is smooth for x→ +∞ can be written as

u(α;x) = B(α;x) + e(α, k;x), (17)

where B(α;x) satisfies an asymptotic series of the form

B(α;x) ∼ −α
x

∞∑
n=0

bn
x3n

, (18)

and e(α, k;x) ∼ kAi(x) is independent of α to leading order and contains only
exponentially small terms in x [5,6]. (The expansions (17)–(18) hold, in fact,
in the sector arg x ∈ (− 1

3π,
1
3π). This is a result due to Boutroux, who also

considered similar expansions in larger sectors but which are not real on the
real axis, and therefore outside the scope of the present paper.)

In (18), b0 = 1 and a recurrence formula for the other bn is given in [8,15].
It transpires that each bn is a polynomial of degree 2n in even powers of α.

Besides this dependence on α, the function B(α;x) contains no free param-
eters, while e(α, k;x) contains the additional parameter k. In the case α = 0,
the function B(α;x) vanishes and (17) matches (13) in the limit x → +∞.
When α = 1, 2, 3, . . ., the series (18) converges and reproduces the rational
solutions described in Section 2.2 [9]. In this case (17) matches the type of
boundary condition considered in [2,9].

The function e(α, k;x) can likewise be expanded in the limit x→ +∞ as

e(α, k;x) ∼ k

2
√
π

e−(2/3)x
3/2

x1/4

∞∑
n=0

cn
x3n/2

+

(
k

2
√
π

)2
e−(4/3)x

3/2

x4/4

∞∑
n=0

dn
x3n/2

+O
(
k3
e−(6/3)x

3/2

x7/4

)
, (19)

with coefficients

c0 = 1, c1 =
1

48

(
− 5 + 96α2

)
, c2 =

1

4608

(
385− 7872α2 + 9216α4

)
, etc.,

and

d0 = 0, d1 = −2α, d2 =
1

12

(
77α− 96α3

)
, etc.

These (as well as the bn) are readily generated by substituting (17) (expanded
according to (18) and (19)) into (2) and equating coefficients.
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4.2 Connection formulas

Connection formulas analogous to (14)–(16) for arbitrary α were derived in
[20,24]. We do not reproduce these formulas here, except to note that (15)
should be modified to

d2 = −π−1 log
(

cos2(πα)− k2
)
. (20)

(For the meaning of d we refer to [24].) The critical values of k that define
pHM and sHM solutions are therefore

kp = − cosπα, ks = cosπα. (21)

The main challenge in verifying this theory numerically is to compute the
k = 0 function B(α;x). When α is not an integer, the series (18) diverges
violently and neither truncation at the optimal point nor sequence accelera-
tion can be used to compute B(α;x) accurately. This is not surprising since
(18) alone, even with all the bn known, does not define B(α;x) uniquely. The
expansion (19), however, allows this ambiguity to be bypassed, also leading
to an effective computational procedure to obtain a unique B(α;x) (for any
α > 0), which we will call the k = 0 solution.

Based on the two critical choices for k defined in (21), it follows from (17)
that

up(α;x) = B(α;x) + e(α, kp;x), us(α;x) = B(α;x) + e(α, ks;x), (22)

where up(α;x) and us(α;x) are the pHM and sHM solutions. Because up(α;x)
is unique and pole free along the entire real axis for every α, it is computed
without difficulty as the solution to an ODE boundary-value problem. The
expansion (19) provides accurate values of e(α, kp;x) and e(α, ks;x) and their
x-derivatives at sufficiently large x = X. Using, for example, c0, c1, . . . , c12
and d0, d1, . . . , d8, near machine accuracy is achieved with X = 8. Because
(22) implies

us(α;x) = up(α;x) + e(α, ks;x)− e(α, kp;x) (23)

the sHM solution can now be obtained by initiating the pole field solver with
the now known values for the right-hand side of (23), i.e., for us(α;X) and
u′s(α;X). A similar procedure is used for computing B(α;x), based on the
first equation in (22). (We remark that in the case 0 ≤ α < 1

2 an alternative
procedure for computing us(α;x) is to solve it as a boundary-value problem, for
it too is then a pole free solution albeit not as smooth as up(α;x); cf. Figure 10.
Being able to compute us(α;x) in two distinct ways offers a useful numerical
check.)

Before we have a closer look at the solutions us(α;x) and B(α;x), let us
return briefly to the pole counting diagram for α = 1

3 shown in the second
subplot of Figure 11. The objective here is to verify the validity of the critical
k formula (21), which turns into kp = − 1

2 and ks = 1
2 in the α = 1

3 case. The
expansion (19) was used to compute e( 1

3 , k;x) for four values near k = ± 1
2
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Fig. 13 Solutions of PII (α = 1
3

) corresponding to four values of k in the asymptotic

boundary condition u( 1
3

;x) ∼ B( 1
3

;x)+kAi(x), x→ +∞; cf. (17). Values |k| < 1
2

correspond

to the smooth, oscillatory solutions (Ablowitz-Segur) and values |k| > 1
2

correspond to the

solutions with poles on R−.

and the corresponding solutions were computed as described in the previous
paragraph.

Figure 13 shows two AS solutions corresponding to k = ±0.4999, both
oscillatory on R−. It also shows two solutions, corresponding to k = ±0.5001,
which exhibit a string of poles on R−.

The HM solutions for k = ± 1
2 are not shown in Figure 13, but they con-

tinue to follow the shown asymptotic curves ±
√
−x/2 as x→ −∞. The corre-

sponding pole fields are not shown either, but they are similar to the pole fields
shown in Figure 12. When |k| is just less than the critical value 1

2 , the poles
are located just off the real axis, leading to the oscillations in u(x) on R−. At
the critical |k| = 1

2 these poles have cleared to −∞, to reappear precisely on
the real axis when |k| just exceeds 1

2 .

4.3 Quasi-Hastings-McLeod and Quasi-Ablowitz-Segur solutions

Consider again the pole counting diagrams displayed in Figure 11 and the first
three subplots of Figure 9. These are typical diagrams for the case 0 ≤ α < 1

2 ,
with the two HM points located on two opposite edges of the 0− region, and
the connecting curve representing the AS solutions. As α increases from 0
to 1

2 , the secondary point moves closer to the primary one. They are both
located on the 0+ curve, at opposite edges of the 0− region. The two points
coalesce at α = 1

2 , at which time the 0− region has shrunk to zero width in
that neighborhood.

When α is increased beyond 1
2 , the sHM point passes through the primary

one, while continuing along the 0+ curve but now entering a 1− region. (Vi-
sualize the morphing of the third subplot into the fourth in Figure 5.) The
first subplot in Figure 14 shows a typical case. Here α = 2

3 , with kp = 1
2 and
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Fig. 14 The curves represent initial conditions that correspond to the quasi-Ablowitz-Segur
solutions. The endpoints of the curves represent the primary Hastings-McLeod solution,
marked kp, and the secondary, quasi-Hastings-McLeod solution, marked ks; cf. (21). The
curve labels n− and n+ denote, respectively, n poles on R− and n poles on R+, same as in
Fig. 5.

ks = − 1
2 , and the corresponding HM points are located on opposite edges of

the 1− region. Where the pHM point is located, the 1− region is bounded by a
0− curve, so the pHM solution remains pole free. The sHM solution has picked
up a solitary pole on R−, however. Aside from the existence of this pole, the
solution has the same asymptotic properties as the regular sHM solution (as
defined by (11), with the plus sign choice). To emphasize the existence of at
least one pole on R, we call these qHM solutions. Before showing graphs of
such solutions, let us consider in Figure 14 what happens as α is increased
further.

At approximately α = 0.77 (not shown) the qHM point approaches (u(0), u′(0)) =
(−∞,+∞) in the pole counting diagram. Similar to the situation described
in Figure 6, this means a pole of residue −1 will be passing through the ori-
gin and will enter the (u(0), u′(0))-plane from the direction (+∞,+∞), this
time on a 1+ curve. The second subplot in Figure 14 shows a typical case,
corresponding to α = 1. The third and fourth subplots in Figure 14 follow
similar patterns, but more poles appear on R. These diagrams suggest that if
1
2 < α < 3

2 then the qHM solution has one pole on R, if 3
2 < α < 5

2 then it
has two poles, etc. At the half-integer α values the pHM and qHM solutions
coincide, so no poles. Our pole field solver enables us to find the locations and
residues of these poles, and the results are displayed in Figure 15.

A few qHM solutions and their pole fields are shown in Figure 16, which
is an extension of Figure 10. As these figures illustrate, increasing α causes
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Fig. 15 Pole locations on R for the quasi-Hastings-McLeod solutions for various α. The
dash-dot and solid curves represent residues −1 and +1, respectively. The horizontal lines
represent half-integer values of α.

the pHM pole field wedges to move smoothly to the right and away from
the real axis. The pole fields for the sHM solution agree with these when
α = 1

2 ,
3
2 ,

5
2 , etc., but Figures 14–16 indicate a fundamentally different process

at intermediate α values. An example of this is seen in Figure 17, where α is
increased from 5

2 to 7
2 . A band made up of five curves of poles enters from

the left, and joins the pole wedges. As α approaches 7
2 , seven curves of poles

dislodge from the wedges on the left sides, and exit together towards minus
infinity (to be compared to the dislodging of the single curve of poles seen in
one of the subplots of Figure 10). During this process, the HM wedges have
actually moved slightly towards the real axis and to the left, but the end result
gives the opposite impression, because its two leftmost rows of poles has got
separated off and transported out to minus infinity. Throughout this process,
the pole configuration along the real axis remains reminiscent of the one for
the rational solution at α = 3, sliding in from the left and then returning out
to the left again.

As noted by [19], the characteristics of the qHM solutions can be partially
explained by the Bäcklund transformation (4). Consider the second boundary
condition in (11): if u(α;x) ∼ −α/x, x → +∞, is substituted into the right-
hand side of (4) one gets u(α+1;x) ∼ −(α+1)/x, i.e., this boundary condition
is preserved by the transformation. The first boundary condition in (11), ex-
tended by one term, reads u(α;x) ∼ ±

√
−x/2 +α/(2x) + . . ., x→ −∞. Then

(4) produces u(α+1;x) ∼ ∓
√
−x/2, i.e., this boundary condition is preserved

but for a sign change. That is, the upper solution u(α;x) maps to the lower
solution u(α + 1;x) and vice versa. Next, check the sign of the denominator
in (4), say v = 2u′ + 2u2 + x, in the limits x → ±∞. When the plus sign is
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Fig. 16 Same as Fig. 10, but now including the quasi-Hastings-McLeod solutions. These
solutions have the same asymptotics as the regular Hastings-McLeod solutions as x→ ±∞,
but they have one or more poles on R.

considered in (11), v is negative in both x limits but when the negative sign
is considered v has opposite signs. This sign change in the denominator of (4)
makes it plausible that the secondary HM solution picks up an additional pole
on the real axis when the value of α is increased by one. A proof that one and
only one pole is added in this manner will require a deeper analysis, however.

The curves in Figure 14 represent values of k between kp and ks, and are
associated with solutions similar to the regular AS solutions (oscillatory as
x → −∞, smoothly decaying as x → +∞), except for the existence of poles
in between. We refer to these as qAS solutions (previously noted in [2] in the
special case of integer α). They coincide with the pHM solution when α is
half-integer. Otherwise, like the qHM solutions they have [α + 1

2 ] poles along
R (where [ · ] denotes the integer part).

In the α = 1 case in Figure 14, the k = 0 point is located at (±∞,+∞) in
the diagram, as indicated by the dash-dot line segment. This is the rational
solution u1(z), defined in (6) and displayed in a pole counting diagram in
Figure 6. Similarly, in the α = 2 subplot, the rational solution u2(z) is located



24 Bengt Fornberg, J.A.C. Weideman

−8

−4

0

4

8

α = 2.5 α = 2.501 α = 3

−8 −4 0 4 8

−8

−4

0

4

8

α = 3.499

−8 −4 0 4 8

α = 3.5

Fig. 17 Pole dynamics of secondary, quasi-Hastings-McLeod solutions as α is varied across
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at (±∞,−∞), again shown as a dash-dot line segment. In the α = 3 subplot,
the point k = 0 corresponds to the rational solution u3(z).

Figure 18 shows some of the qAS solutions in the special case of α = 2
3

(cf. the first subplot of Figure 14). In this case, the two HM solutions are
obtained for k = ± 1

2 , with the qAS solutions arising for the in-between values
of k. Subplots 3–7 of Figure 18 show qAS solutions, all decaying on R+, os-
cillating on R−, and featuring a single pole on R−. The central subplot shows
the k = 0 solution. Subplots 2 and 8 correspond to the sHM and pHM cases,
respectively, with associated pole fields similar to those shown in the top row
of Figure 16 (for α = 1 rather than for α = 2

3 ). The main feature of the pole
dynamics between these two HM cases is that a pole field enters from the left,
and then exits again to the left, bringing with it the pole that was originally
located on the real axis.

4.4 k = 0 solutions

The k = 0 solutions include as special cases the rational solutions when α is
an integer and the HM solutions when α is a half-integer. A sequence of these
solutions with α varying across [0, 2] is displayed in Figure 19, the rightmost
column of which shows the rational and HM solutions. The α = 0 case corre-
sponds to the trivial u = 0 solution (not shown). Because these k = 0 solutions



A Computational Exploration of the Second Painlevé Equation 25
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Fig. 18 Solutions of PII (α = 2
3

) corresponding to nine values of k in the asymptotic

boundary condition u(x) ∼ B(x) + kAi(x), x→ +∞; cf. (17). Values |k| < 1
2

correspond to

quasi-Ablowitz-Segur solutions, k = 1
2

corresponds to the regular Hastings-McLeod solution,

and k = − 1
2

to a quasi-Hastings-McLeod solution. Values |k| > 1
2

feature an infinity of poles

on R−. (All solutions are displayed on [−8, 8]× [−10, 10].)

are special cases of qAS solutions, they show the familiar pattern of oscilla-
tions on R−, decay on R+, and [α+ 1

2 ] poles along R. (The exceptions are the
α integer cases, where the oscillations are not present, and the α half-integer
cases, where neither oscillations nor poles are present.)

We continue our display of k = 0 solutions in Figure 20, but now showing
pole fields instead as α varies across [2, 3]. All these solutions are pole free in
large sectors of the right half-plane, and therefore of tronquée-type. Observe
also how the group of four poles associated with the rational solution u2(z)
move along the negative real axis as α is increased, and disappears to −∞
as α → 5

2 . As α is increased further, the group of nine poles associated with
the rational solution u3(z) enters from the left, and settles in a symmetric
configuration around the origin as α→ 3.
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α = 0.1 α = 0.25 α = 0.33333 α = 0.49 α = 0.5

α = 0.51 α = 0.66667 α = 0.75 α = 0.9 α = 1

α = 1.1 α = 1.25 α = 1.3333 α = 1.49 α = 1.5

α = 1.51 α = 1.6667 α = 1.75 α = 1.9 α = 2

Fig. 19 k = 0 solutions as α is varied (in nonuniform increments) across [0, 2]. In the
rightmost column these solutions reduce to the rational solutions in the case α integer, and
to the Hastings-McLeod solutions in the case α half-integer. (All solutions are displayed on
[−10, 6]× [−4, 4].)

5 Additional Solution Illustrations

5.1 Pole counting diagrams: domain edges and poles crossing the origin

When we follow a family of solutions for which a pole passes the origin, we
noted in Section 3.1 (cf. Figure 6) how the corresponding initial conditions
at z = 0 would be affected. These were seen to follow trajectories in the
(u(0), u′(0))-plane, which connect at either u′(0) = +∞ or u′(0) = −∞ ac-
cording to if the pole passing the origin has residue −1 or +1. If finite, both
the counts n+ and n− change by one. When counting poles on R+, the regions
with finite count n+ always form curves (of zero width) in the pole counting
diagrams.

Turning to similar counts on R−, Figure 5 showed that finite counts n− can
occur also within entire regions, not only along curves. Additionally, the counts
along the edges of these regions need not agree with counts for within the
regions. As an example, the left subplot of Figure 21 shows all these different
counts for R− and the associated connection lines in the case of α = 3. The
right subplot of that figure shows corresponding pole counts on R+.
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Fig. 20 Pole dynamics for the k = 0 solutions as α is varied across [2, 3].

The α half-integer cases reveal still an additional feature in that some of
the n− regions join each other side-to-side, whereas others lose their width and
turn into n− curves. Figure 22 gives the different n− counts and connection
lines in such a case (α = 3

2 ; cf. also the last two subplots in Figure 7).
In all cases, there is (at least) one 0− curve between bottom left and top

right in the pole counting diagrams (either as a domain boundary or, in the
half-integer cases, partly a domain boundary) and also a single 0+ curve be-
tween bottom right and top left. As discussed in more detail already, this
ensures the existence of Hastings-McLeod solution(s) for all α.

5.2 Relating u(0; z) and u( 1
2 ; z) solutions

Here we consider the connection between α = 0 and α = 1
2 solutions as

described by (5). It follows from that representation that both poles and zeros
of u(0; z) can generate poles of u( 1

2 ; z).
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Fig. 21 Pole counting diagrams in the case α = 3, which show (in the dash-dot connections)
how pole counts increase/decrease when a pole crosses the origin. The left subplot refers to
R−, and illustrates how pole counts on edges of the n− domains are related to pole counts
in the interior. The right subplot refers to R+. (For clarity, the aspect ratio of the diagrams
here is not the same as in Fig. 5.)

For example, if z → z0 with z0 the location of a pole, then

u(0; z) ∼ ±1

z − z0
=⇒ u′(0; z)

u(0; z)
∼ −1

z − z0
=⇒ u( 1

2 ; z) ∼ 1

z − (−21/3z0)
.

On the other hand, if z0 is a zero of single multiplicity (as all zeros of PII with
α = 0 are) then for some nonzero constant c

u(0; z) ∼ c(z−z0) =⇒ u′(0; z)

u(0; z)
∼ 1

z − z0
=⇒ u( 1

2 ; z) ∼ −1

z − (−21/3z0)
.

Therefore, a pole or a zero of u(0; z) at z = z0 generates a pole at z = −21/3z0
of u( 1

2 ; z). When generated by a pole (of either residue) of u(0; z), the pole
of u( 1

2 ; z) has a residue +1, while if generated by a zero of u(0; z) the pole of
u( 1

2 ; z) has residue −1.
To see where these solutions fit into the pole counting diagrams, define for

simplicity (u(0; 0), u′(0; 0)) = (v0, v1) and (u( 1
2 ; 0), u′( 1

2 ; 0)) = (w0, w1). Then
it follows from (5) that

w0 = (2−1/3)
v1
v0
, w1 = (2−2/3)

v21 − 2 v40
v20

, (24)
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Fig. 22 Equivalent illustration to Fig. 21 but for α = 3
2

.

with inverse formula

v0 = ±(2−1/6)
√
w2

0 − w1, v1 = ±(21/6)w0

√
w2

0 − w1. (25)

One such relationship between a specific pair of u(0;x) and u( 1
2 ;x) solu-

tions is shown in Figure 23. To plot these solutions, we chose initial conditions
for the u( 1

2 ;x) solution where the 3+ curve in the pole counting diagram inter-
sects the horizontal axis. This point has coordinates approximately (w0, w1) =
(1.670027, 0), as indicated by the point marked (a) in the second subplot in
Figure 24. Using the mapping (25), the initial conditions for the u(0;x) solution
are then computed to be approximately (v0, v1) = (1.487825, 3.130535), or the
negatives of these values. These points, marked (a) in the first pole counting
diagram of Figure 24, are located on 1− edges of the 1− region. These results
are consistent with the fact that the u(0;x) and u( 1

2 ;x) solutions shown in
Figure 23 have one pole on R− and three poles on R+, respectively.

Some additional points of interest, including Hastings-McLeod points, are
also marked in Figure 24.

Another insight that can be gained from (5) relates to the fact that, for α
half-integer, the different n− regions inside the Airy boundaries (cf. Figures 7
and 8) feature no in-between gaps, and outside these they have collapsed to
curves (of zero width). We focus on the α = 1

2 case, seen in Figures 5 and 24
(right subplot). According to (24) and (25), the exterior of the Airy parabola
in the α = 1

2 diagram (i.e., w1 < w2
0) maps to the entire (v0, v1) plane in the



30 Bengt Fornberg, J.A.C. Weideman

0 2 4 6 8 10
−10

−5

0

5

10
α =

1

2

x

−10 −8 −6 −4 −2 0
−10

−5

0

5

10
α = 0

x

u

Fig. 23 The two zeros and one pole of u(0;x) on R− (left subplot) generate two poles of
residue +1 and one pole of residue −1 of u( 1

2
;x) on R+ (right subplot).

Fig. 24 The points in the left and right subplots are connected via the mappings (24)
and (25). The points marked (a) define the initial conditions for the two solutions shown
in Figure 23. The points marked (b) correspond to Hastings-McLeod solutions. The points
marked (c) show a 1+ solution of u(0;x) that generates a 1− solution of u( 1

2
;x).

α = 0 diagram. The collapsed n− regions are consistent with the fact that
the α = 0 diagram has no n+ regions (i.e., there are n+ curves only). The
interior of the Airy parabola in the α = 1

2 diagram, on the other hand, will
map to the entire (v0, v1) plane of the imaginary (or modified) PII equation,
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u′′ = −2u3 + zu, which is obtained from (2) by z → iz. The absence of gaps
is consistent with Theorem 3.1 in [9], which asserts that the imaginary PII

equation lacks poles on R and has at most a finite number of zeros along R+.

5.3 Re-visiting the u( 3
2 ; z) solution

We return to the pole counting diagrams for the case α = 3
2 shown in Fig-

ure 7, and the fact that the HM and Airy (θ = 0) points are located in close
proximity of each other. To examine the solution features in this region, con-
sider the points marked (a)–(f) in the third subplot of that figure. Pole fields
corresponding to these six points are displayed in Figure 25, showing the rich
diversity of pole dynamics that can arise already from a tiny region in parame-
ter space. Although these six pole fields superficially might look similar, there
are several significant differences. In particular, we can note:

– Between subplots (a), (b), and between (d), (e), the leftmost, the top
right and bottom right pole fields exit simultaneously and then return
with changed alignment, featuring at one instant the Airy-type solution.

– Between subplots (a), (d), and again (b), (e) and (c), (f), both the far
leftmost pole field and the central triple band exit and then return from
minus infinity. However, only the triple band undergoes a change in vertical
alignment (similar to what was seen in subplots 4–6 of Figure 20 when
varying α for k = 0 solutions).

– Changes in the pole field to the right occur between subplots (b), (c) and
also between (e), (f) (with no other significant changes).

We have described in Section 2.3 how the poles move when we follow the Airy
curve through its period, including for when θ passes zero. When following
the curve marked 0+ through the point marked HM in the third subplot of
Figure 7, the upper and lower HM pole wedges remain in place, the rightmost
pole field remains at plus infinity, and the leftmost pole field as well as the
triple pole band exits to and then returns from minus infinity.

6 Conclusions

With the aid of the pole field solver of [14] and pole counting diagrams, we
have surveyed the solution space of the PII equation (α ≥ 0; u(z) real for z
real). Previously described solution types have been revisited and extended
throughout the complex plane.

New solutions (or at least solutions that have not been identified in any
detail in the literature) have been described. These include what we call the
secondary Hastings-McLeod solutions, which are nonoscillatory and pole free
on the entire real axis when 0 ≤ α < 1

2 , but not monotone like the primary
Hastings-McLeod solutions. The solutions corresponding to k = 0 in (17) have
likewise not been computed before.
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Fig. 25 Pole fields of PII (α = 3
2

) generated by the initial conditions labeled (a)–(f) in the
third subplot of Fig. 7.

In addition to the discussions and illustrations in the present work, ani-
mations of solutions (as the parameter and ODE initial conditions are varied)
can be found on the web site [34].
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