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Abstract It has been suggested in the literature that different quasi-uniform node
sets on a sphere lead to quadrature formulas of highly variable quality. We ana-
lyze here the nature of these variations, and describe an easy-to-implement least-
squares remedy for previously problematic cases. Quadrature accuracies are then
compared for different node sets ranging from fully random to those based on
Gaussian quadrature concepts.

1 Introduction

Numerous applications require computations over spherical surfaces. Often, such
calculations need to be supplemented by evaluations of various globally integrated
quantities, such as total energy, average temperature, etc., necessitating the sup-
plementary step of numerical quadrature. In case the computation is carried out in
the space of spherical harmonics (SPH), the global surface integral is immediately
available as the coefficient of the constant zeroth mode (since all other SPH modes
are orthogonal to this one, and thus integrate to zero). However, scattered nodes
together with radial basis function (RBF) based discretizations have recently been
found to be highly effective for solving PDEs in this geometry (Fornberg and Piret,
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2 Bengt Fornberg, Jordan M. Martel

2008; Fornberg and Lehto, 2011), especially in the context of geophysical flows as
surveyed in Flyer and Fornberg (2011) and Flyer et al. (2012, 2014), renewing
the question of finding good quadrature weights for semi-uniform node sets over
spherical surfaces.

The only instances of fully uniform node sets on a sphere are given by the N

vertices of the five Platonic bodies, with N = 4, 6, 8, 12, and 20, respectively. In
these cases, the optimal quadrature weights are all the same; for the unit sphere
wi = 4π/N, i = 1, . . . , N. In most applications, very much higher resolution is
needed than what can be provided by N = 20 nodes. Quadrature weights have
therefore been tabulated for some types of near-uniform node distributions, ex-
tending to much higher values for N (Womersley and Sloan, 2001, 2003). In analogy
to how weights in 1-D often are determined by requiring exact results for polyno-
mials of high degrees, weights for the sphere were there obtained by requiring exact
quadrature results for as high order spherical harmonics (SPH) as possible. It was
then found that certain near-uniform node configurations work much better than
others. In particular, Minimal Energy (ME) nodes – corresponding to equilibria of
mutually repelling particles – were found to lead to very inaccurate quadrature ap-
proximations. Therefore, Maximal Determinant (MD) node sets were constructed
by instead optimizing the conditioning of SPH interpolation. Quadrature based on
SPH interpolation was consequently described as a “sometimes dangerous strat-
egy” in Hesse et al. (2010). The present work is motivated by our observation that
this “danger” is avoidable, and that excellent quadrature weights can be reliably
computed also for ME node sets.

After noting in Section 2 that the key issue with regard to calculating quadra-
ture weights via SPH expansions is to avoid rank deficiency, we describe in Section
3 a least squares approach that overcomes this by means of slightly reducing the
order of SPH that are considered. To put the MD vs. ME quadrature results in
a somewhat wider context, the test results in Section 4 include also very irregu-
lar node sets (Random and Halton) and a highly regular one – a Gaussian-type
quadrature method for the sphere developed by Ahrens and Beylkin (2009).

2 Conceptual flaw with immediate SPH-based interpolation

We summarize in this section the relation between SPH and quadrature weights,
and note why an immediate SPH interpolation is likely to give quadrature weights
of erratic quality.

2.1 Connection between SPH and numerical quadrature

As alluded to in the Introduction, the most direct strategy for finding quadrature
weights wi at nodes xi, i = 1, 2 . . . , N = (m+ 1)2 on the unit sphere is to require

that
∑N
i=1 wifi evaluates to the correct surface integral whenever the node data

fi is any combination
∑N
i=1 λiψi(x) of the N first SPH basis functions {ψi(x), i =
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On spherical harmonics based numerical quadrature over the surface of a sphere 3

1, 2, . . . , N}, i.e.

P︷ ︸︸ ︷
ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x1) ψ2(x2) · · · ψN (x2)

...
...

. . .
...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )



λ1
λ2
...
λN

 =


f1
f2
...
fN

 , (1)

or briefer, Pλ = f , implying λ = P−1f (for P invertible). A common way to

represent the N = (m + 1)2 first SPH basis functions ψi(x) is as Y νµ (x), where
x = [x, y, z] with ||x||2 = 1, degree µ = 0, 1, . . . ,m and order ν = −µ, . . . , 0, . . . ,+µ
(advancing by degrees, i.e. starting with ψ1(x) = Y 0

0 (x)). They can be expressed
as associated Legendre functions in z and trigonometric functions (either real or
complex valued) angularly around the z-axis. Since they are scaled to become
orthonormal, it will hold that∫

sphere surface

Y νµ (x) dS =

{
1 , µ = ν = 0
0 otherwise

. (2)

It now follows from (1), (2) that we can read off the SPH-generated quadrature
weights wi as the entries in the first row of P−1.

2.2 A general observation about the use of node independent basis functions

Following a classical argument (Mairhuber, 1956; Curtis, 1959), we consider a
scattered node set {xi, i = 1, 2, . . . , N} in Rd with associated data values {f i, i =
1, 2, . . . , N}, and an equally large set of basis functions {ψi(x), i = 1, 2, . . . , N}
(now no longer necessarily the SPH set). The condition for

s(x) =
N∑
i=1

λiψi(x) (3)

to interpolate the data becomes again Pλ = f . If any two node locations xi and
xj are moved in such way that they become interchanged, the two corresponding
rows of the interpolation matrix P in (1) also become interchanged, i.e. det(P )
has changed sign. By continuity, P must therefore have been singular somewhere
along the way. In 1-D, such node interchanges are impossible if node locations
are assumed to remain distinct, but there is no such limitation in higher dimen-
sions. In particular, when interpolating using SPH, there will be vast numbers of
visually plausible but nevertheless singular node distributions. As Figure 1 illus-
trates, MD node sets succeed (by their construction) to keep far away from these
singular cases. Although ME node sets feature very uniform node distributions,
their construction offers no protection against the ill-conditioning. Already tiny
perturbations of node locations can in fact cause singularities. Figure 2 displays
in a different way the near-singularity of a ME node set with regard to SPH in-
terpolation, illustrating that it actually causes major in-between node oscillations
in ME cases.
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4 Bengt Fornberg, Jordan M. Martel

Fig. 1 Top row of subplots: Examples of N = 400 MD and ME node sets, also illustrating
the idea of interchanging two adjacent nodes by a rotation around their midpoint. Bottom
row of subplots: The condition number when 100 randomly selected such pairs of the nodes
(separately) are rotated in this way, shown as function of the rotation angle θ.

To explore further the impact of node set details, we consider next five of the
node sets shown in Figure 3 (delaying the discussion of the Gaussian quadrature
GQ set until Section 4.3). The Halton (Halton, 1960) and random node sets are
obtained from their counterparts in a (ti, zi) ∈ [−1, 1]× [−1, 1] square region case
by the mapping 

xi =
√

1− z2i cos(tiπ)

yi =
√

1− z2i sin(tiπ)
zi = zi.

Figure 4 displays the singular values for the corresponding SPH interpolation ma-
trices. The severe ‘mismatch’ between SPH representations and Latitude-Longitude
grids is well known (Boyd, 2000). With regard to the difference between MD and
ME node sets, we see that this affects only the very last singular values. This
observation suggests our present approach for calculating quadrature weights, de-
scribed in Section 3.

Node sets of ’cubed sphere’ type have received quite extensive attention; see, for
example, Flyer et al. (2012) for examples and computational comparisons. The
cubed sphere idea is to radially project node sets from an inscribed cube to the
sphere surface. Each cube face can for example be discretized in Gauss-Lobatto
style, or partitioned into smaller squares, which then are discretized in this way.
Figure 5, parts (a) and (b) show two such discretizations (when looking straight
down on one of the cube faces), both when N = 1352 nodes. Part (c) shows that
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On spherical harmonics based numerical quadrature over the surface of a sphere 5

Fig. 2 A ‘cosine bell’ defined at N = 1849 MD and ME node points (small circular markers)
with the SPH interpolants shown (as dots) at these as well as at numerous additional locations.
Function values are represented by radial distances from the origin. With a sphere of unit
radius, the bell has a height of 1 and at its base a radius of 1/3.

this leads to singular value distributions more reminiscent of Lat-Long node sets
than of, say, MD and ME.

3 Calculation of quadrature weights based on omitting highest SPH

degree(s)

In view of Figures 4 and 5, we will not consider Lat-Long grids or cubed spheres any
further. With regard to the ME, Halton and Random node layouts, it is only the
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6 Bengt Fornberg, Jordan M. Martel

MD ME GQ

Lat−Long Halton Random

Fig. 3 Illustrations of six different node point distributions on the unit sphere (with N = 1296
nodes in all cases, apart from N = 1332 for the GQ case). The barely visible differences between
the MD, ME and GQ cases are noteworthy, as they greatly affect the accuracy of immediate
SPH interpolation and quadrature.
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Fig. 4 The 1296 singular values for the SPH interpolation matrices in case of the fiveN = 1296
node point distributions shown in Figure 3. The dotted vertical line segments at the bottom
of the figure indicate the number SPH modes present up through the successive SPH orders
0, 1 2, . . . , 35.

last few singular values that are small. This suggests that direct SPH interpolation,
as described in Section 2.1, may be improved by not interpolating with all SPH
basis functions up through the maximal possible degree m (in case of N = (m+1)2

nodes), but rather use least squares approximation based on lower degrees. The
required change in the MATLAB code is minimal, with only one line of code
affected. Instead of calling inv(P), we can call pinv(P(:,1:k*k)) to evaluate the
pseudoinverse of the leading k2 columns of the square (m+ 1)2 × (m+ 1)2 matrix
P , with k = 1, 2, . . . ,m + 1. Just as before, the quadrature weights can then be
read off from the first row of the resulting matrix. We will next see that k = m
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On spherical harmonics based numerical quadrature over the surface of a sphere 7

Fig. 5 Top row: Two examples of cubed sphere node sets, both with N = 1352 nodes, (a)
degree 15 discretization over each of the Nsq = 6 faces of the cube, (b) each cube face is
here divided in a 3×3 pattern of equal squares (with Nsq = 54 squares in all), using degree 5
discretization on each square, (c) the corresponding 1352 singular values in the two cases. A
dashed vertical line marks the final SVD index 1352.

and k = m − 1 are very good choices in the case of ME nodes. The idea of using
fewer SPH modes than node points has previously been considered in somewhat
different quadrature contexts, c.f. Mhaskar et al. (2001) and Manuel et al. (2009).

4 Numerical test results

4.1 Test functions

Figure 6 illustrates three of the four test functions that were used in the present
comparisons:

f1(x, y, z) = 1 + x+ y2 + x2y + x4 + y5 + x2y2z2

f2(x, y, z) = 0.75 e−(9x−2)2/4−(9y−2)2/4−(9z−2)2/4+

+0.75 e−(9x+1)2/49−(9y+1)/10−(9z+1)/10+

+0.5 e−(9x−7)2/4−(9y−3)2/4−(9z−5)2/4 −
−0.2 e−(9x−4)2−(9y−7)2−(9z−5)2

f3(x, y, z) = (1 + tanh(−9x− 9y + 9z))/9
f4(x, y, z) = (1 + sign (−9x− 9y + 9z))/9 .

(4)
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8 Bengt Fornberg, Jordan M. Martel

Fig. 6 The three test functions f1, f2, f3 displayed by means of 10 equispaced contour lines.
The fourth test function f4 is very similar to f3, but transitions discontinuously rather than
steeply between the levels 2/9 and 0.
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Fig. 7 Magnitude of largest (analytically calculated) SPH coefficient as function of its degree,
shown for the four test functions. For the functions f3(x, y, z) and f4(x, y, z), only even degrees
are visible since all odd degree coefficients vanish.

The first of these, f1(x, y, z), contains only SPH modes up through degree 6. The
next two test functions have been considered repeatedly in the literature (Renka,
1988; Sommariva and Womersley, 2005). The function f2(x, y, z) is quite smooth,
whereas f3(x, y, z) and f4(x, y, z) feature increasingly slowly converging SPH ex-
pansions, as illustrated in Figure 7. The surface integrals are

f1(x, y, z) : 216π/35
f2(x, y, z) : 6.6961822200736179523 . . .
f3(x, y, z) : 4π/9
f4(x, y, z) : 4π/9 .

(5)

4.2 Results with the present least squares approach

Figures 8-10 display test results for the first three functions f1, f2, f3, respectively.
In each case, results are shown for six different numbers of nodes: N = 100, 400,
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On spherical harmonics based numerical quadrature over the surface of a sphere 9

1296, 1849, 3600, 6561. Each subplot displays four curves, one for each of the
four node sets: MD (solid curve), ME (dashed curve), Halton (dash-dot curve)
and Random (dotted curve). The horizontal axes show the highest order SPH
included. The left edge represents using only the order zero degree SPH mode
Y 0
0 (x) ≡ 1

2
√
π

, in which case all the quadrature weights become identical, wi =

4π/N , independently of the node distribution. At the other extreme, the right
edge represents using all the SPH modes, i.e. using interpolation rather than least
squares when calculating the quadrature weights. The vertical axes show the worst
quadrature error encountered in 1,000 separate tests, differing in that the node set
(or equivalently, the test function) has undergone random 3-D rotations.

Comments on f1(x, y, z) ; Figure 8: In every case, errors fall to near machine ac-
curacy whenever 6 or more SPH orders are included in the weights calculation.
However, at the very far right - corresponding to calculating weights via SPH
interpolation - a severe accuracy loss is seen in all but the MD case - consistent
with the singular value situation seen in Figure 4.

Comments on f2(x, y, z) ; Figure 9: There now appears a clear distinction between
the node sets, corresponding to their level of regularity, showing ME to perform
the best and Random the worst. Omitting the highest SPH order(s) when
calculating the weights is essential in all cases but for MD.

Comments on f3(x, y, z) ; Figure 10: This test function is less smooth still, but
this makes no difference in the overall assessment. Especially for large N (high
accuracy), the advantage of ME over MD becomes increasingly pronounced.
Similar calculations with the discontinuous test function f4(x, y, z) shows fur-
ther tendency towards increasing flattening of the curves, i.e. the corresponding
subplots also become, for large N , reminiscent of the first two subplots in Fig-
ure 10.

4.3 Additional comparisons, also including Gaussian quadrature-type
node/weight sets

4.3.1 Gaussian-type quadrature on the sphere

In 1-D, one needs data at N nodes in order to uniquely pin down a polynomial
interpolant pN−1(x) of degree N − 1. However, if the nodes are placed at cer-
tain Gaussian quadrature (GQ) locations, one can nevertheless obtain the exact
quadrature results for all polynomials up through degree 2N − 1. The concept
behind this is that the polynomial space that is not pinned down will have the
property that all its members integrate to zero. The situation on the sphere is
similar. Node locations can be found such that about (m+ 1)2/3 nodes suffice to
give the exact result for the first (m + 1)2 spherical harmonics (i.e. up through
order m), c.f. McLaren (1963) and Ahrens and Beylkin (2009). The second of these
references provide an algorithm for finding such node/weight sets.

4.3.2 The ‘regularities’ of the node and weight sets

The top right subplots in Figures 9 and 10 suggest that, in the case of N = 1296,
suitable values for k (number on the horizontal axes, i.e. the maximal SPH degree
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10 Bengt Fornberg, Jordan M. Martel

Fig. 8 Test results for f1(x, y, z) : For each of six N -values, the worst error level encountered
in 1,000 random node set rotations is displayed against the highest order of SPHs used in the
weight calculation.

to include in the least squares process) would be

Random 23
Halton 31
MD 35 (i.e. SPH interpolation)
ME 33

(6)

Whether N is a perfect square or not, a simple rule of thumb for ME-like node
sets is to fit with SPH functions about two degrees lower than the highest ones
possible. This provides also a safe margin against accidental rank deficiencies.
With the choices in (6), Figure 11 displays the obtained quadrature weight vs.
the distance from the node to its nearest neighbor. Included also is a N = 1332
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On spherical harmonics based numerical quadrature over the surface of a sphere 11

Fig. 9 Test results for f2(x, y, z) : For each of six N -values, the worst error level encountered
in 1,000 random node set rotations is displayed against the highest order of SPHs used in the
weight calculation.

GQ set. The figure illustrates how irregularities in node distributions result in a
corresponding scatter in the quadrature weights. Some more specific observations:

Halton and Random : The large scatter in the node distributions causes many
weights to become negative. This is not altogether unreasonable, since best
approximations over areas devoid of nodes would need to use derivative-like
information from nearby nodes to best represent the integral over such areas.

MD, ME, and GQ : In the MD case, there is a very weak trend that nodes that
are more distant from their surrounding ones get slightly larger weights. The
ME nodes are (because of their construction) particularly uniform in terms
of distances to nearest neighbors and thereby also in weights. If direct SPH
interpolation was used for this same node set, the weights would become scat-
tered irregularly between 0.0057 and 0.0135, reminiscent of the interpolation
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12 Bengt Fornberg, Jordan M. Martel

Fig. 10 Test results for f3(x, y, z) : For each of six N -values, the worst error level encountered
in 1,000 random node set rotations is displayed against the highest order of SPHs used in the
weight calculation.

scatter seen in the lower subplot of Figure 2. The construction of the GQ set
ensures again a very high level of weight uniformity in spite of its slightly larger
variation in nearest-distances.

4.3.3 Accuracy comparisons

Figure 12 shows, separately for each of the test functions f2, f3, f4, how the
quadrature errors decrease with increasing node numbers when using the different
node distributions and following the ad-hoc rule of thumb guidelines for choosing
k as given in Section 4.3.2. In the case of the highly smooth test function f2
(featuring a particularly rapidly convergent SPH expansion), the GQ approach is
superior - not surprisingly since it integrates exactly about three times as many
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SPH modes as there are nodes. With reduced smoothness of the test functions, the
GQ advantage vanishes. A very similar situation is reported by Trefethen (2008),
where 1-D GQ is compared against Clenshaw-Curtis integration. In most of our
present cases, ME holds a small but distinct advantage over MD.

Fig. 11 The quadrature weight at a node plotted against the distance from the node to its
nearest neighbor (in the case of N = 1296 nodes for Random, Halton, MD, ME; N = 1332 for
GQ). All the five subplots have matching scales on their axes.

5 Conclusions

The test results and the discussion above show that, when integrating very smooth
functions, the preference order between the node sets becomes GQ, ME, MD, fol-
lowed somewhat distantly by the more irregular Halton and Random node sets.
However, for functions of less smoothness (as would be typical for numerical PDE
solutions obtained by RBF-FD methods), the differences become less pronounced,
making ME a generally good and convenient choice. When calculating quadrature
weights, it is for ME, Halton and Random nodes imperative to not use direct SPH
interpolation, but to address the issue of small singular values and the associated
rank deficiency. The proposed least squares approach - in MATLAB just changing
inv to a pinv - provides a particularly simple approach for this.

The primary goals of the present study have been to improve the understanding of

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 Bengt Fornberg, Jordan M. Martel

SPH-based quadrature procedures and to minimize their sensitivity to details in
the node distributions. Important further issues with regard to quadratures over
a sphere include (i) finding weight sets for N nodes much faster than the present
O(N3) operations and (ii) finding good weight sets also for cases with very strong
spatial variations in node density (as arises in applications utilizing local node
refinements).

Fig. 12 The worst errors encountered when integrating 1,000 random rotations of the three
test functions f2, f3, f4 using quadrature based on five different node distribution strategies,
in each case displayed against the number of nodes N .
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