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a b s t r a c t

Traditional finite difference (FD) methods are designed to be exact for low degree
polynomials. They can be highly effective on Cartesian-type grids, but may fail for
unstructured node layouts. Radial basis function-generated finite difference (RBF-FD)
methods overcome this problem and, as a result, provide a much improved geometric
flexibility. The calculation of RBF-FD weights involves a shape parameter ε. Small values
of ε (corresponding to near-flat RBFs) often lead to particularly accurate RBF-FD formulas.
However, the most straightforward way to calculate the weights (RBF-Direct) becomes
then numerically highly ill-conditioned. In contrast, the present algorithm remains
numerically stable all the way into the ε → 0 limit. Like the RBF-QR algorithm, it uses
the idea of finding a numerically well-conditioned basis function set in the same function
space as is spanned by the ill-conditioned near-flat original Gaussian RBFs. By exploiting
some properties of the incomplete gamma function, it transpires that the change of basis
can be achievedwithout dealingwith any infinite expansions. Its strengths andweaknesses
compared with the Contour-Padé, RBF-RA, and RBF-QR algorithms are discussed.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Theweights in finite difference (FD) stencils are typically determined by requiring that the resulting FD formula becomes
exact for polynomials of as high degree as possible [1]. On lattice-based node sets, multi-dimensional FD formulas can then
be obtained by combining 1-D formulas. This standard FD approach becomes problematic if multi-dimensional node sets
are unstructured, since the linear systems that need to be solved for the weights then frequently become singular or highly
ill conditioned. The RBF-FD idea [2–5] is to require such approximations to be exact for radial basis functions (RBFs) rather
than for multivariate polynomials. When using Gaussian RBFs, this procedure can never give rise to singularities, no matter
how the nodes are distributed [6–8]. Results tend to become particularly accurate when using nearly flat RBFs (very small
shape parameter ε) [9–11], but the resulting systems will then again become ill conditioned. However, in contrast to the
multivariate polynomial case, the ill-conditioning that arises in the RBF case is not of a fundamental nature, and it can be
avoided by using appropriate numerical algorithms. The first RBF algorithm that remained well conditioned all the way into
the flat ε → 0 limit (the Contour-Padé method) [12] was shortly after its discovery applied to the task of creating RBF-FD
stencils [11].

The earliest RBF-FD studies described numerical solutions of elliptic and of convective–diffusive PDEs. The approach
was soon afterwards shown to be well suited for computational fluid mechanics [13–15], more recently also in purely
convective situations [16,17]. Most of the studies quoted above provide estimates for the errors that are caused by replacing
continuum equations with RBF-FD discretizations. The present study is not concerned with this, but instead with the
accurate computation of the weights (coefficients) in RBF-FD formulas.
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So far, only two numerical approaches have been presented that remain stable all the way into the ε → 0 (increasingly
flat) RBF limit: the Contour-Padé/RBF-RA methods, and the RBF-QR method. These two approaches are based on entirely
different principles. Contour-Padé/RBF-RAmethods are limited to a relatively lownumber of RBF nodes (n slightly less than a
hundred in 2-D,more in 3-D) [12,18,19]. The RBF-QR algorithmwas first developed for the case of nodes distributed over the
surface of a sphere, then allowing n-values in the thousands [20]. Generalizations of RBF-QR to d-D domains (d = 1, 2, 3, . . .)
has so far been achievedmainly for Gaussian (GA) RBFs [21,22] (however, see [23] for an extension to Bessel-type RBFs [24]).
The RBF-QR algorithm is used in [25] for calculating RBF-FD stencils, and in [26] for exploring RBF-FD approximations to
Poisson’s equation (showing that the low ε-regime is particularly important in RBF-FD contexts).

The algorithm introduced in the present paper has conceptual similarities to the RBF-QR method, but with the novelty
of not making any use of truncated infinite expansions or of any other forms of numerical approximations. We describe it
here primarily for the task of calculating explicit RBF-FD formulas in 2-D, but it generalizes readily to other RBF tasks in d-D.
We denote it the RBF-GA method since (i) the present implementation is specific to Gaussian RBFs and (ii) the incomplete
gamma function plays a critical role in the algorithm.

2. Governing equations for FD and RBF-FD weights

In the case of explicit FD formulas, one wants to find weights wi to use at node locations xi, i = 1, 2, . . . , n so that one
obtains the exact value at a location x = xc (where the underline in x indicates a vector quantity with d components in d-D)
for a linear operator L and some set of test functions ψk(x), k = 1, 2, . . . , n. The following relation then needs to hold

ψ1(x1) ψ1(x2) · · · ψ1(xn)
ψ2(x1) ψ2(x2) · · · ψ2(xn)
...

...
...

ψn(x1) ψn(x2) · · · ψn(xn)



w1
w2
...
wn

 =


Lψ1(x)|x=xc
Lψ2(x)|x=xc

...
Lψn(x)|x=xc

 . (1)

The most common set of 1-D test functions are the monomials ψk(x) = xk−1, in which case (1) becomes a standard
Vandermonde system. If ψk(x) instead are d-dimensional RBFs φ(∥x − xk∥), one similarly obtainsφ(∥x1 − x1∥) · · · φ(∥xn − x1∥)

...
...

φ(∥x1 − xn∥) · · · φ(∥xn − xn∥)


w1
...
wn

 =

Lφ(∥x − x1∥)|x=xc
...

Lφ(∥x − xn∥)|x=xc

 . (2)

We will consider this latter system in 2-D and 3-D, using Gaussian (GA) RBFs, i.e. with the radial function φ(r) = e−(εr)2 . As
noted above, the parameter ε is denoted the shape parameter.

A commonly used variation of (2) is to also include some low order monomial basis functions and add matching
constraints to the associated RBF expansion coefficients. For example, in this case of including 1, x, y in 2-D, (2) becomes
replaced by

| 1 x1 y1

A |
...

...
...

| 1 xn yn
− − − + − − −

1 · · · 1 |

x1 · · · xn | 0
y1 · · · yn |





w1
...
wn
−

wn+1
wn+2
wn+3


=



Lφ(∥x − x1∥)|x=xc
...

Lφ(∥x − xn∥)|x=xc
−

L 1|x=xc
L x|x=xc
L y|x=xc


, (3)

where components beyond wn of the solution vector should be ignored. The top left submatrix A is the same matrix as in
(2). For medium-to-large ε-values, the latter form (3) (in particular, including a constant) is usually advantageous. However,
since our present focus is on small ε values, we focus in this study on (2). Still another possible generalization, mainly
relevant for time-independent PDEs, is to employ implicit (Hermite-type) RBF-FD stencils [11].

We note that the A-matrix above is exactly the same as the one that arises in the RBF-Direct approach for finding the
interpolant

s(x, ε) =

n
k=1

λiφ(∥x − xi∥) (4)

to scattered data {xi, fi}, i = 1, 2, . . . , n, in which case the coefficients λi can be found as the solution to the linear system

A λ = f . (5)

A stable algorithm will in this interpolation application arrive at s(x, ε) without the (for small ε) highly ill-conditioned
intermediate calculation of the λ-vector.
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The Eqs. (5) and (4) mathematically define the RBF interpolant s(x, ε), which is well conditioned with respect to node
locations and the data values at these locations. Similarly (2) and (3) define a well-conditioned set of RBF-FD weightsw for
any value of ε. As noted above, the challenge is to arrive at these final answers without using any intermediate step that
resembles an inversion of the ill-conditioned A-matrix.

3. The extent of the A-matrix ill-conditioning

In the 2-D case, with the nodes not located on any kind of lattice, the n eigenvalues of the (positive definite) GA A-matrix
were in [27] found to be of the sizes {O(1)}, {O(ε2),O(ε2)}, {O(ε4),O(ε4),O(ε4)}, {O(ε6),O(ε6),O(ε6),O(ε6)}, . . . etc.,
until all the n eigenvalues have been accounted for (i.e. the last groupmight contain fewer than its maximally allowed num-
ber of entries). From this sequence it follows that the condition number for A grows very rapidly to infinity for decreasing ε:

cond(A) = O(ε−2⌊(
√
8n−7−1)/2⌋) (6)

where ⌊·⌋ denotes the integer part. For simplicity in describing the algorithm, we focus the discussion in Section 5 on 2-D
and for n-values taken from the sequence n =

1
2k(k + 1), k = 1, 2, 3, . . . , i.e. n = 1, 3, 6, 10, . . . . In these cases, all

the eigenvalue groups that are present are complete. For scattered nodes in d-D, the corresponding sequence becomes n =
d+k−1

d


, k = 1, 2, 3, . . . . The resulting algorithmwill however work as well also for other n-values. Before describing the

present RBF-GA algorithm, we summarize next some previous ideas for addressing the issue of ill-conditioning for small ε.

4. Some ideas for overcoming the A-matrix ill-conditioning

We first note two approaches that may give some benefits, but which have severe limitations (including leaving the
ε → 0 limit out of reach): (i) Regularization of the A-matrix, and (ii) Use of high precision arithmetic. As an example of the
former approach, one may replace regular Gaussian elimination-type factorization of A with an SVD-decomposition of A,
and then somehow adjust the smallest singular values. A conceptual problem with this approach is that irretrievable loss
of information will occur already when the A-matrix is formed (using standard precision arithmetic). While subsequent
‘regularization’ can produce smooth solutions, it is not clear what improvement (if any) it offers over the use of fewer nodes
or larger ε. High precision arithmetic is typically easy to apply, but tends to be very slow [12]; see also Fig. 8. By means of
exact formulas, such as (6), it is easy to estimate in advance just how costly high precision arithmetic will become in any
special case (as a function of both n and ε).

The algorithm introduced in this study is closely related to the RBF-QR method. It is again based on making a clear
distinction between a basis and the space that it spans. As an example, exactly the same space is spanned by the monomials
{1, x, x2, . . . , x100} andby the Chebyshev polynomials {T0(x), T1(x), . . . , T100(x)}. Tasks such as interpolation, approximation
of derivatives, calculations of weights, etc. will mathematically produce identical results when using the two different sets
of basis functions. However, the former set (monomials) will lead to far worse conditioned numerics. Just like monomials,
near-flat RBFs form a severely ill conditioned basis. This naturally raises the question if one can find a well conditioned basis
within exactly the same space. One would then use the better conditioned basis for the actual numerical work, i.e. replace
the RBFs in (2) by the better conditioned basis and then instead use (1).

QR factorization and Gram–Schmidt orthogonalization are both standard approaches for orthogonalizing a set of basis
vectors. However, numerical orthogonalization of a set of nearly dependent vectorswill inevitably result in severe numerical
cancellations. What allows one to evaluate the Chebyshev basis functions with full accuracy is that there exist closed form
expressions for them, obtained by analytic means and not from a direct numerical orthogonalization of the monomials. In
the present Gaussian RBF case, we thus look for a way to form a much better conditioned new basis through some process
in which the cancellations occur analytically rather than numerically. (The RBF-QRmethod also relies on a QR factorization,
but for an entirely different purpose than orthogonalization.)

5. The RBF-GA algorithm in 2-D

A GA radial function φ(r) = e−(εr)2 , centered at the point xi = (xi, yi), i = 1, 2, . . . , n, can be written

ψ
(1)
i (x) = e−ε2((x−xi)2+(y−yi)2)

= e−ε2(x2i +y2i ) · e−ε2(x2+y2)
· e2ε

2(x xi+y yi). (7)

We stay in exactly the same space if we ignore the scalar multipliers e−ε2(x2i +y2i ). We also note that a closed form exact
remainder term is available for any truncation of the Taylor expansion of the exponential function. Thus, we can equivalently
use as basis functions

ψ
(2)
i (x) = e−ε2(x2+y2)

· e2ε
2(x xi+y yi)

= e−ε2(x2+y2)
·


1 +

1
1!

[2ε2(xxi + yyi)]1 + · · · +
1

(n − 1)!
[2ε2(xxi + yyi)]k−1

+ Gk(z)


(8)
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where z = 2ε2(xxi + yyi) = 2ε2x · xi, and

Gk(z) = ez −

k−1
j=0

z j

j!
(9)

=
ez

(k − 1)!

 z

0
e−t tk−1dt (10)

= ez · gammainc(z, k). (11)

Here gammainc(z, k) is equivalent toMatlab’s built-in functionwith the samename. ThisMatlab routine is computationally
fast, and it does not suffer from cancellation of significant digits (as can happen with direct implementations of (9)).

If ε is small, the successive terms in the Taylor expansion in (8) decrease rapidly in size. The apparent difficulty (or rather,
as it will turn out, the opportunity) is that the dominant leading Taylor terms feature very strong linear dependence between
different i-values.We are thus ready to form a third set of basis functionsψi(x) = ψ

(3)
i (x, y, xi, yi), still staying in exactly the

same GA space, by forming suitable linear combinations of theψ (2)
i (x, y, xi, yi) functions. The key idea is to do this in such a

way that all the Taylor coefficients in (8) will get canceled out analytically, allowing them to simply be omitted rather than
canceled numerically (in which case we would destroy significant digits). Letting ‘‘null’’ denote Matlab’s built-in function
for finding an orthogonal base for a matrix’ null-space, we thus arrive at the third basis function set (still spanning exactly
the same finite GA space):


ψ1(x)


= e−ε2(x2+y2)

·
1
ε0

[B0]

G0(2ε2x · x1)


(12)

with B0 = 1;


ψ2(x)
ψ3(x)


= e−ε2(x2+y2)

·
1
ε2


B1 · ·

· · ·

 G1(2ε2x · x1)
G1(2ε2x · x2)
G1(2ε2x · x3)

 (13)

with B1 =

null


1 1 1

T ;

ψ4(x)
ψ5(x)
ψ6(x)


= e−ε2(x2+y2)

·
1
ε4


· · · · · ·

· B2 · · · ·

· · · · · ·

 
G2(2ε2x · x1)
G2(2ε2x · x2)
G2(2ε2x · x3)
G2(2ε2x · x4)
G2(2ε2x · x5)
G2(2ε2x · x6)

 (14)

with B2 =


null


1 1 1 1 1 1
x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6

T

, etc.

The dots in the B-matrices above serve to graphically illustrate the matrix sizes. In the next stage, we get four more basis
functions ψ7(x), . . . , ψ10(x)with use of the null-space of

1 1 1 1 1 1 1 1 1 1
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
x21 x22 x23 x24 x25 x26 x27 x28 x29 x210
x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7 x8y8 x9y9 x10y10
y21 y22 y23 y24 y25 y26 y27 y28 y29 y210

 .

In stage k of the algorithm in d-D, we compute


d+k−1
d−1


new basis functions using the


d+k−1
d−1


×


d+k
d


matrix Bk, obtained

from the null-space of a


d+k−1
d


×


d+k
d


polynomial matrix. It clearly suffices to form only the last of these rectangular

matrices and then apply the null-operator to appropriately shaped top-left aligned submatrices of it in order to obtain all
the required B-matrices. In order to gain some speed, the B-matrices were in the present work obtained by QR factorization
(rather than the singular value decomposition employed byMatlab’s ‘‘null’’ routine).

A slight modification of the algorithm is necessary when a structured node set, such as nodes on a Cartesian grid, is used.
In this case, some polynomial terms do not occur in the expansion and should thus not be canceled. Focusing the description
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again on 2-D, let Pk denote the bivariate polynomial matrix of order k for all nodes, e.g.

P1 =

 1 1 · · · 1
x1 x2 · · · xn
y1 y2 · · · yn


, P2 =


1 1 · · · 1
x1 x2 · · · xn
y1 y2 · · · yn
x21 x22 · · · x2n
x1y1 x2y2 · · · xnyn
y21 y22 · · · y2n

 , etc., (15)

with Pk,j corresponding to the first j columns of this matrix. The number of new basis functions in each stage is determined
by the rank of Pk, which we will denote rk. In stage k of the algorithm, rk − rk−1 new basis functions are computed using the
null space of Pk−1,rk in the samemanner as before, and this procedure is repeated until all n basis functions have been found.
Note also that the ordering of the nodes must be chosen with some care, such that rank(Pk,rk) = rk for all k.

We also need to rapidly and accurately compute Gk(z) and some of its derivatives (up to the highest order present in the
operator L that is to be approximated by the RBF-FD stencil). With use of (11) and the gammainc function, all Gk(z) values
are very rapidly available (without any numerical cancellations). This is also the case for all its derivatives, since (9) implies

dp

dzp
Gk(z) = Gmax(0,k−p)(z), p = 0, 1, 2, . . . . (16)

The Appendix provides further implementation details about evaluating the partial derivatives of e−ε2(x2+y2)
· Gk(2ε2(xxi +

yyi)) that are needed for the right hand side (RHS) of (1).
With the construction above,ψ1(x), as given by (12),will approach the constant 1 as ε → 0. Next, {ψ2(x), ψ3(x)}, given by

(13)will approach two linear combinations of the functions x and y; from (14) it follows that {ψ4(x), ψ5(x), ψ6(x)} approach
independent combinations of {x2, xy, y2}, etc. The small deviations of theψk(x) functions from exact polynomial formwhen
ε is not quite zero are a consequence of the fact that we are still remaining in exactly the same approximation space that
is spanned by the original GA basis. If we stop the process after having obtained ψ1(x), . . . , ψ15(x), we have obtained a
base that spans exactly the same space as the first 15 GA RBFs ψ (1)

i (x), i = 1, . . . , 15, with the major differences that the
new basis functions (i) are calculated without any numerical cancellations, and (ii) do not approach linear dependence even
in the ε → 0 limit. Because of the construction using null-spaces, all leading terms in the series expansions in (8) have
vanished analytically. The remainder terms Gk(z) are obtained without any loss of significant digits (even for very small ε).
Since the Bk matrices depend only on the node locations, letting ε decrease towards zero cannot have any adverse effect on
their calculation either.

5.1. Illustrations of basis functions

In the test calculations described in the present and in subsequent sections, we use in 2-D one or several of the node
sets that are illustrated in Fig. 1. Fig. 2 shows GA RBFs with ε = 10−2 in the n = 15 case. The condition number for the
RBF A-matrix becomes (according to (6)) of size O(ε−8) = O(1016), making it unclear if RBF-Direct in double precision will
suffice for even a single significant digit. Fig. 3 shows the exactly same test case, but with the basis functions rearranged as
described above. The basis functions have now become far more independent.

Reducing ε from 10−2 towards zero will cause the condition number for the RBF A-matrix to grow much further still,
whereas the new basis functions will change minimally—their low condition number will remain intact. When increasing ε
to one, both basis sets (the original and the new one)will be satisfactory. Making ε larger still will cause problems in the new
basis set, as the sum in (9) then becomes small compared to the exponential term ez , and the basis function independence
will degrade. Fig. 4(a) illustrates how the conditioning of the two basis sets (the original RBF set, and the new set) vary with
ε. Simply choosing the set that has the best conditioning produces accurate results for all values of ε.

One potential concern, suggested by Fig. 3, might be that the new basis functions look reminiscent of a constant, two
independent linear functions, three independent quadratic functions, etc., quite independently of the locations of the GARBF
centers. The test calculations described next will show that this similarity to increasing order polynomials in fact has a
very limited adverse effect in the present RBF-FD context. The reason is that the number of basis functions required for
a typical stencil is sufficiently small to avoid conditioning issues with the new basis. Additionally, numerical errors from
approximation using high degree polynomials tend to be far larger at domain boundaries than in domain interiors (cf. the
Runge phenomenon [28,27]). In RBF-FD contexts, stencils typically extend in all directions away from a centrally located
node, which is the only place at which we need good accuracy.

6. Test calculations

To illustrate the benefits and limitations of the proposed algorithm, some examples in 2-D and 3-D are presented below.
Note that only errors in the computed weights are shown. The obtained accuracy when applying a stencil depends on a
variety of factors in addition to the accuracy of the weights, such as the function it is applied to, the value of the shape
parameter, the stencil size and the node layout. Such considerations however lie beyond the scope of the current work.
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(a) n = 10. (b) n = 15. (c) n = 36. (d) n = 105.
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(e) n = 36. (f) n = 55. (g) n = 21. (h) n = 45.

Fig. 1. Node sets within the unit circle used in the present study. A ring marks the central node at which the differential operator is approximated. (a)–(d)
show near-uniform nodes, (e) Halton-type, (f) hexagonal and (g)–(h) Cartesian nodes. The near-uniform nodes were obtained by projecting nodes onto a
plane from a large near-uniform node set on the sphere.
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Fig. 2. Original set of basis functions ψ (1)
i (x) = e−(ε2∥x−xi∥

2) in the case of ε = 10−2 .

6.1. Examples in 2-D

The strengths of the RBF-FD method are most significant when computing weights for unstructured nodes, here
exemplified by the near-uniformnodes and theHalton-type nodes shown in Fig. 1(a)–(e). Nearly uniformnodes are typically
preferable for approximating derivatives to high accuracy (in the vicinity of the center of a stencil) and theHalton-type nodes
are foremost included to demonstrate the robustness of the RBF-GA algorithm with respect to the node layout.
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Fig. 3. New set of basis functions ψi(x) created by the RBF-GA algorithm, spanning exactly the same space as the ones shown in Fig. 2, displayed in
rows of subplots corresponding to Eqs. (12)–(14), etc. Since ε is small (here ε = 10−2), the functions displayed in row k are very close to k independent
homogeneous polynomials of degree k − 1.

Fig. 4(a) shows the condition number of the basis functions for the original basis and the RBF-GA basis with near-uniform
nodes. A scaling of the basis functions by e2k, where k is the stage in the RBF-GA algorithm, improves the condition number
significantly and, while this scaling has no effect on the accuracy of the computed RBF-FD weights, it provides a better
estimate of the loss of precision. The conditioning of the RBF-GA basis shows no dependence on ε for small values of the
parameter, unlike the original RBF basis which becomes severely ill-conditioned as ε → 0. Moving from moderate to
large values of ε, the condition number of the RBF-GA basis rapidly increases, while the original RBF basis remains well-
conditioned. For small node sets, there is an overlap region where both bases are well-conditioned and either one can be
used. As the node set grows, the RBF-GA basis gradually becomes ill-conditioned and still more robust (but computationally
slower) algorithms such as RBF-QR [22,25] should be employed if the RBF-GA algorithm fails to provide the necessary
accuracy.

The relative ℓ∞ error of the computed weights, given by e∞ =
∥w−wexact∥∞

∥wexact∥∞
, for ∂

∂x is shown in Fig. 4(b). The exact weights
wexact were obtained by RBF-Direct using extended precision arithmetic. As expected from the conditioning results shown
in Fig. 4(a), accuracy is rapidly lost as ε decreases when using the RBF basis, regardless of stencil size. The error using the
well-conditioned RBF-GA basis is on the other hand below 10−14 for all ε for the smallest stencil of 10 nodes, and around
10−12 and 10−8 for 36 and 105 nodes, respectively.

Fig. 5 shows the error as a function of n at a fixed ε for ∂
∂x ,

∂
∂y and ∆ =

∂2

∂x2
+

∂2

∂y2
, for both near-uniform and Halton-

type nodes. The difference in error between the two node sets is minor, as is the difference in error between the different
operators. As the RBF-GA basis depends on the node ordering, different orderings may influence conditioning and accuracy.
Randomly permuting the order appears to have little effect on either for unstructured nodes, and any ordering, e.g. by
distance from the center,may be used. The growthwith n should be expected, since the newbasis, while a vast improvement
over the original one (cf. Figs. 2 and 3) is still far from orthogonal.
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Fig. 4. In (a), the condition number, and in (b), the relative ℓ∞ error in the computed RBF-FD weights when approximating ∂/∂x, as functions of n and ε
on near-uniform nodes in 2-D.
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Fig. 5. The relative ℓ∞ error of the computed RBF-FD weights as a function of n at ε = 10−4 , using the RBF-GA algorithm on unstructured nodes. Note
from Fig. 4(b) that RBF-Direct gives O(1) errors throughout this range of n.

With the small modifications mentioned in Section 5, the RBF-GA algorithm performs well also on structured nodes. For
the node sets studied in this example, shown in Fig. 1(f)–(h), the condition numbers and relative errors are presented in
Fig. 6(a) and (b). The obtained accuracy is similar to that for unstructured nodes, in fact marginally higher in this example.
This is also reflected in the condition numbers, which remain below 106 for all values of ε for these four structured node sets.

6.2. Example in 3-D

The behavior of the RBF-GA algorithm for unstructured nodes in 3-D is quite similar to that in 2-D, as apparent from
Fig. 7(a) and (b). The onset of ill-conditioning with increasing n for the RBF-GA basis is however more gradual and the
algorithm is accurate up to at least 500 nodes, which should be sufficient for any application in which the RBF-FD method
is of interest.

6.3. Timing example

The measured wall-clock time for computing an RBF-FD stencil in 3-D with a Matlab implementation of the RBF-GA
method, compared to the directmethod, the RBF-QRmethod and the directmethodusing variable precision arithmetic (VPA)
with 100 digit precision, is shown in Fig. 8 (with only negligible cost savings possible from lowering the VPA precision). For
the RBF-GA algorithm, computational cost is generally dominated by the QR factorization to obtain the Bk-matrices, followed
by the evaluation of the incomplete gamma function. The runtime for a 2-D problemwould be marginally higher for a given
n, as more stages are required in this case. Compared to the direct method, RBF-GA is around 10 times slower, while the
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Fig. 7. In (a), the condition number and in (b), the relative ℓ∞ error in the computed RBF-FD weights when approximating ∂/∂x, as functions of n and ε
on Halton-type nodes in 3-D.

fastest direct method with VPA is in turn generally 100 times slower than the RBF-GA method. The RBF-QR method lies
between the two, typically 2–4 times slower than RBF-GA. Note that the performance of the RBF-QR method depends on
ε, with optimal performance obtained for small values of the parameter. In this example, the value ε = 10−4 was chosen,
which is in or close to the optimal region for all n. The runtime for large n approaches O(n3) for all these methods, as
expected.

7. Conclusions

The present test results show the RBF-GA algorithm to work effectively for up to a few hundred node points in 2-D
and up to at least 500 node points in 3-D, which well exceeds the range provided by the Contour-Padé and the RBF-RA
algorithms. Indeed, it covers the entire range that is likely to ever be of interest in RBF-FD contexts. Its main disadvantages
compared to these two algorithms are (i) that it is strictly limited to GA-type RBFs and (ii) that derivative approximations
need to be implemented using the more complex modified basis set rather than the original GA set (especially significant
when creating compact stencils, cf. [11]). Compared to the RBF-QR algorithm, as implemented in [25] for generating RBF-FD
formulas, it offers great algorithmic simplicity (especially in 3-D) as it involves neither Chebyshev, nor spherical harmonics
expansions. This also results in a lower computational cost. On the other hand, when employing the pivoting strategies
described in [25], these expansions provide higher accuracy for large node sets and may give RBF-QR a higher degree of
robustness in ‘degenerate’ cases when the nodes are located on low-dimensional manifolds (such as on a small near-flat
patch on the surface of a sphere).
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Appendix. Differentiation of the ψk(x) basis functions

The quantities that we need to evaluate partial derivatives for are (in 2-D) of the form

ψ(x, y) = e−ε2(x2+y2)
· G(2ε2(xxi + yyi)) (17)

where G(z) is a function of one variable, with any number of derivatives immediately available bymeans of (16). The regular
product rule allows for easy evaluation of loworder partial derivatives ofψ(x, y). Implementing the hyperviscosity approach
for stabilizing convection-dominated PDEs [17] requires RBF-FD stencils that approximate powers of the Laplacian operator
∆ =

∂2

∂x2
+

∂2

∂y2
. These calculations can be simplified by first rewriting (17) as the product of two functions of one variable

only. This is achieved, separately for each (xi, yi), by a coordinate rotation (x, y) → (ξ , η) such that

xxi + yyi = riξ, (18)

where ri =


x2i + y2i . Also noting that x2 + y2 = ξ 2 + η2, we obtain from (17)

ψ(x(ξ , η), y(ξ , η)) =


e−ε2ξ2G(2ε2riξ)


·


e−ε2η2


= K1(ξ) · K2(η).

Since the coordinate change was a rotation, it leaves the Laplace operator invariant, i.e.
∂2

∂x2
+
∂2

∂y2

m

ψ(x, y) =


∂2

∂ξ 2
+
∂2

∂η2

m

K1(ξ) · K2(η), m = 0, 1, 2, . . . . (19)

The separation of variables implies

∆1(K1 · K2) = K1K
(2)
2 + K (2)1 K2 (20)

∆2(K1 · K2) = K1K
(4)
2 + 2K (2)1 K (2)2 + K (4)1 K2

∆3(K1 · K2) = K1K
(6)
2 + 3K (2)1 K (4)2 + 3K (4)1 K (2)2 + K (6)1 K2

etc.,

where the superscripts in the RHS denote derivatives.
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It thus only remains to repeatedly differentiate K1(ξ) = e−ε2ξ2G(βξ) (with β = 2ε2ri) and K2(η) = e−ε2η2 . With Hk(z)
denoting the regular kth Hermite orthogonal polynomials, it follows from their relation d

dz (e
−z2Hk(z)) = −e−z2Hk+1(z) that

K1 = e−ε2ξ2
· {H0(εξ)G} (21)

K ′

1 = e−ε2ξ2
·

−ε1H1(εξ)G + βH0(εξ)G′


K ′′

1 = e−ε2ξ2
·

ε2H2(εξ)G − 2βεH1(εξ)G′

+ β2H0(εξ)G′′


K ′′′

1 = e−ε2ξ2
·

−ε3H3(εξ)G + 3βε2H2(εξ)G′

− 3β2εH1(εξ)G′′
+ β3H0(εξ)G′′′


etc.

The pattern seen in (21), with coefficients according to Pascal’s triangle, continues indefinitely. The case of K2(η) is a special
case of (21) where the variable is η instead of ξ , and the function G is identically one, i.e. all terms in (21) with derivatives
of G vanish, leaving in each case only the leading term remaining.

In the case of 3-D, one replaces (18) by a rotation such that xxi + yyi + zzi = riξ , from which it follows ψ =
e−ε2ξ2G(2ε2riξ)


·


e−ε2η2


·


e−ε2ζ 2


, etc.
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