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Abstract: A numerical method for variable coefficient elliptic problems on two-
dimensional domains is presented. The method is based on high-order spectral approx-
imations and is designed for problems with smooth solutions. The resulting system of
linear equations is solved using a direct solver with O(N1.5) complexity for the pre-
computation and O(N logN) complexity for the solve. The fact that the solver is direct
is a principal feature of the scheme, and makes it particularly well suited to solving prob-
lems for which iterative solvers struggle; in particular for problems with highly oscillatory
solutions. Numerical examples demonstrate that the scheme is fast and highly accurate.
For instance, using a discretization with 12 points per wave-length, a Helmholtz problem
on a domain of size 100 × 100 wavelengths was solved to ten correct digits. The com-
putation was executed on a standard laptop; it involved 1.6M degrees of freedom and
required 100 seconds for the pre-computation, and 0.3 seconds for the actual solve.

1. Introduction

1.1. Problem formulation. The paper describes a numerical method for solving boundary value
problems of the form

(1.1)

{
Au(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

where Ω is a rectangle in the plane with boundary Γ, and where A is a variable coefficient elliptic
partial differential operator

(1.2) [Au](x) = −c11(x)[∂21u](x)− 2c12(x)[∂1∂2u](x)− c22(x)[∂
2
2u](x)

+ c1(x)[∂1u](x) + c2(x)[∂2u](x) + c(x)u(x).

The methodology is based on a composite spectral discretization and can be modified to handle a
range of different domains, including curved ones. The primary limitation of the method is that it
requires the solution u to be smooth in Ω.

The key advantage of the proposed method is that it is based on an efficient direct solver, and
is therefore capable of solving problems for which iterative methods require very large numbers of
iterations. In particular, we will demonstrate that the method can solve variable coefficient Helmholtz
problems of the form

(1.3)

{
−∆u(x)− κ2 (1− b(x))u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

where the Helmholtz parameter κ is a real number, and where b is a given smooth scattering potential.
It is known [4, 23] that this equation is quite challenging to solve accurately when κ is large and
the solution is highly oscillatory. The method described in this paper is capable of solving (1.3) on
domains of size 200× 200 wave-length on a laptop computer, to ten digits of accuracy or more.

1.2. Summary of proposed methodology. We solve (1.1) by combining a spectral multidomain
technique similar to the one proposed by Pfeiffer et al in [26] with a hierarchical direct solver that is
closely related to the classical nested dissection technique of George [7].

Discretization: The equation (1.1) is discretized via a composite spectral scheme. The domain Ω
is split into small square (or rectangular) patches. On each patch, the solution u is represented
via tabulation on a tensor product grid of Chebyshev points, see Figure 1. The elliptic operator is

1



2

approximated via a spectral differentiation matrix acting on each local grid, and then equation (1.1)
is enforced strongly via collocation at all tabulation nodes in the interior of each patch. To glue
patches together, continuity of both the potential u and its normal derivative are enforced at the
spectral interpolation nodes on the boundaries between patches.

Direct solver: To solve the linear system arising from the spectral discretization, we organize the
rectangular patches into a binary tree of successively larger patches. The solver then involves two
stages, one with an upwards pass through the tree, and one with a downwards pass:

(1) A build stage where an approximation to the solution operator for (1.1) is computed. This is
done via a single sweep of the hierarchical tree, going from smaller patches to larger. For each
leaf in the tree, a local solution operator, and an approximation to the Dirichlet-to-Neumann
(DtN) map for the patch are constructed. For a parent node in the tree, a local solution
operator and a local DtN operator are computed from an equilibrium equation formed using
the DtN operators of the children of the patch. The build stage requires O(N1.5) operations
and O(N logN) memory.

(2) A solve stage that takes as input a vector of Dirichlet data tabulated on Γ, and constructs
tabulated values of u at all internal grid points. The solve stage involves a single downwards
sweep through the hierarchical tree of patches, going from larger patches to smaller. The
solve stage has asymptotic complexity O(N logN), and is in practice very fast.

Remark 1.1. Like most direct solvers, the scheme requires more memory than iterative techniques,
both in that memory scales as O(N logN) rather than O(N), and in that the constants suppressed
by the “big-O” notation are larger. However, for 2D problems even modest modern computers can
handle large-scale problems, as we demonstrate in Section 6.

1.3. Prior work. The direct solver outlined in Section 1.2 is an evolution of a sequence of direct
solvers for integral equations dating back to work by Starr & Rokhlin [32] and later [22, 12, 9, 16, 3].
The common idea is to build a global solution operator by splitting the domain into a hierarchical tree
of patches, build a local solution operator for each “leaf” patch, and then build solution operators
for larger patches via a hierarchical merge procedure in a sweep over the tree from smaller to larger
patches. In the context of integral equations, the “solution operator” is a type of scattering matrix
while in the present context, the solution operator is a DtN operator.

The proposed method is also somewhat similar in its objective to the direct solver for Poisson’s
equation described by Greengard & Etheridge [6], but the solver of [6] requires the kernel of the
solution operator to be known analytically, which is not the case in the present context.

The work on direct solvers for the dense systems arising from integral equations was inspired
by earlier work on direct solvers for sparse systems arising from finite difference and finite element
discretizations of elliptic PDEs such as the classical nested dissection method of George [7] and the
multifrontal methods by Duff and others [5]. While the direct solver described in this paper was
arrived at via a different path, it is possible it is functionally similar to the solver that would result if
such classical nested dissection techniques were applied to construct an LU-factorization of the block
sparse system arising from a collocation discretization of a spectral composite method. Both methods
would have complexities O(N1.5) and O(N logN) for the build and solve stages, respectively.

The discretization technique we use is similar to earlier work on multidomain pseudospectral
methods, see, e.g., [18, 36], and in particular Pfeiffer et al [26]. A difference is that we immediately
eliminate all degrees of freedom associated with nodes that are internal to each patch (i.e. nodes not
shared with any other patch) and formulate a linear system that involves only the boundary nodes.
We demonstrate that this system is very amenable to efficient direct solvers, which enables us to
solve problems with highly oscillatory solutions. (In contrast, [26] relies on iterative solvers.)

The technique proposed here is also similar to the Spectral Element Method (SEM) [25, 28] in
that both methods represent solutions to the differential equation via tabulation of function values
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on spectral composite meshes (as illustrated in Fig. 1). SEM is commonly used for solving wave-
equations via time-stepping [14, 37, 15], but appears to be less popular for solving time-harmonic
problems; we have not found computational examples in the literature involving highly oscillatory
solutions in the variable coefficient regime. Mehdizadeh and Paraschivoiu [23] report results for
problems up to size 17 × 17 wave-lengths, and report that convergence in the iterative solver is
a problem, even though different pre-conditioners were tested. Kwan and Shen [19] describe a
direct solver for elliptic PDEs discretized via SEM that could potentially overcome these convergence
problems, but their method requires the PDE to be separable and they apply it only to constant
coefficient problems. Ainsworth & Wajid present an error analysis of SEM for constant coefficient
Helmholtz in [1], and for related work for the case of hp-FEM discretizations see Sauter & Melenk
[24]. Shen and co-workers have analyzed spectral methods for the constant coefficient Helmholtz
equation at high wave-numbers [30, 31]; for alternative spectral approaches to such problems, see
also [13] and [10] and the references therein.

An early version of this manuscript was published on arXiv as [21].

1.4. Generalizations. The discretization scheme and the direct solver described in Section 1.2 can
be extended and improved in several directions. For instance, the method can easily be applied to
non-rectangular domains such as L-shapes and curved domains, as illustrated in Sections 6.3 and 6.4.
For situations where the solution is non-oscillatory (or only moderately oscillatory), the scheme can
be improved to attain optimal O(N) complexity for both the build and the solve stages, see Section
7.1. It can be modified to handle the free space scattering problem

(1.4) −∆u(x)− κ2 (1− b(x))u(x) = f(x), x ∈ R2,

coupled with appropriate radiation conditions at infinity as long as the “scattering potential” b is
smooth and has compact support, see Section 7.2. It can handle local mesh refinements near points
where the solution is singular or has sharp gradients, and can be extended to 3D, see Section 7.3.

1.5. Outline. The paper is organized as follows: Section 2 introduces notation and lists some clas-
sical material on spectral interpolation and differentiation. Section 3 describes how to compute the
solution operator and the DtN operator for a leaf in tree (which is discretized via a single tensor-
product grid of Chebyshev nodes). Section 4 describes how the DtN operator for a larger patch
consisting of two small patches can be computed if the DtN operators for the smaller patches are
given. Section 5 describes the full hierarchical scheme. Section 6 reports the results of some numerical
experiments. Section 7 describes how the scheme can be extended to more general situations.

2. Preliminaries — spectral differentiation

This section introduces notation for spectral differentiation on tensor product grids of Chebyshev
nodes on the square domain [−a, a]2. This material is classical, see, e.g., Trefethen [33].

Let p denote a positive integer. The Chebyshev nodes on [−a, a] are the points

ti = a cos((i− 1)π/(p− 1)), i = 1, 2, 3, . . . , p.

Let {xk}p
2

k=1 denote the set of points of the form (ti, tj) for 1 ≤ i, j ≤ p. Let Pp denote the linear
space of sums of tensor products of polynomials of degree p− 1 or less. Pp has dimension p2. Given

a vector u ∈ Rp2 , there is a unique function u ∈ Pp such that u(xk) = u(k) for 1 ≤ k ≤ p2. (A reason
Chebyshev nodes are of interest is that for any fixed x ∈ [−a, a]2, the map u 7→ u(x) is stable.) Now
define D, E, and L as the unique p2 × p2 matrices such that

[Du](k) = [∂1u](xk), k = 1, 2, 3, . . . , p2,(2.1)

[Eu](k) = [∂2u](xk), k = 1, 2, 3, . . . , p2,(2.2)

[Lu](k) = [−∆u](xk), k = 1, 2, 3, . . . , p2.(2.3)
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Figure 1. The box Ω = [0, 1]2 is split into 4× 4 leaf boxes, and a Cartesian grid of
Chebyshev nodes is placed on each leaf box. The figure shows local grids of size 7× 7
for clarity; in actual computations, local grids of size 21× 21 were typically used.

3. Leaf computation

This section describes the construction of a discrete approximation to the Dirichlet-to-Neumann
operator associated with the an elliptic equation such as (1.1) for a square patch Ω. We in this
section assume that the patch is small enough that it can readily be handled via a “single-domain”
(non-composite) spectral method using a tensor product grid of Chebyshev nodes on Ω. In addition
to the DtN operator, we also construct a solution operator to (1.1) that maps the Dirichlet data on
the nodes on the boundary of Ω to the value of u at all internal interpolation nodes.

For notational simplicity, we restrict attention to the variable coefficient Helmholtz problem (1.3).

3.1. Notation. Let Ω denote a square patch. Let {xk}p
2

k=1 denote the nodes in a tensor product
grid of p× p Chebyshev nodes. Partition the index set

{1, 2, . . . , p2} = Ie ∪ Ii
in such a way that Ie contains all nodes on the boundary of Ω, and Ii denotes the set of interior
nodes, see Figure 2(a). Let u be a function that satisfies (1.3) on Ω and let

u = [u(xk)]
p2

k=1, v = [∂1u(xk)]
p2

k=1, w = [∂2u(xk)]
p2

k=1,

denote the vectors of samples of u and its partial derivatives. We define the short-hands

ui = u(Ii), vi = v(Ii), wi = w(Ii), ue = u(Ie), ve = v(Ie), we = w(Ie).

Let L, D, and E denote spectral differentiation matrices corresponding to the operators −∆, ∂1, and
∂2, respectively (see Section 2). We use the short-hand

Di,e = D(Ii, Ie)

to denote the part of the differentiation matrix D that maps exterior nodes to interior nodes, etc.

3.2. Equilibrium condition. The operator (1.3) is approximated via the matrix

A = L− κ2
(
I− diag(b)

)
,

where b denotes the vector of pointwise values of b,

b = [b(xk)]
p2

k=1.
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(a) (b)

Figure 2. Notation for the leaf computation in Section 3. (a) A leaf before elimina-
tion of interior (white) nodes. (b) A leaf after elimination of interior nodes.

The equation we enforce on Ω is that the vector Au should evaluate to zero at all internal nodes,

(3.1) Ai,i ui + Ai,e ue = 0,

where

Ai,i = A(Ii, Ii), Ai,e = A(Ii, Ie).

Solving (3.1) for ui, we obtain

(3.2) ui = Uue,

where

(3.3) U = −
(
Ai,i

)−1
Ai,e.

3.3. Constructing the DtN operator. Let V and W denote the matrices that map boundary
values of the potential to boundary values of ∂1u and ∂2u. These are constructed as follows: Given
the potential ue on the boundary, we reconstruct the potential ui in the interior via (3.2). Then,
since the potential is known on all Chebyshev nodes in Ω, we can determine the gradient on the
boundary {ve, we} via spectral differentiation on the entire domain. To formalize, we find

ve = De,e ue +De,i ui = De,e ue +De,iUue = Vue,

where

(3.4) V = De,e +De,iU.

An analogous computation for we yields

(3.5) W = Ee,e + Ee,iU.

4. Merge operation

Let Ω denote a rectangular domain consisting of the union of the two smaller rectangular domains,

Ω = Ωα ∪ Ωβ,

as shown in Figure 3. Moreover, suppose that approximations to the DtN operators for Ωα and Ωβ

are available. (Represented as matrices that map boundary values of u to boundary values of ∂1u
and ∂2u.) This section describes how to compute a solution operator U that maps the value of a
function u that is tabulated on the boundary of Ω to the values of u on interpolation nodes on the
internal boundary, as well as operators V and W that map boundary values of u on the boundary of
Ω to values of the ∂1u and ∂2u tabulated on the boundary.
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I1
I2
I3
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Ωα ΩβI1 I2I4

I3

Figure 3. Notation for the merge operation described in Section 4. The rectangular
domain Ω is formed by two squares Ωα and Ωβ. The sets I1, I2, and I3 form the
exterior nodes (black), while I4 consists of the interior nodes (white).

4.1. Notation. Let Ω denote a box with children Ωα and Ωβ. For concreteness, let us assume that
Ωα and Ωβ share a vertical edge. We partition the points on ∂Ωα and ∂Ωβ into four sets:

I1 Boundary nodes of Ωα that are not boundary nodes of Ωβ.
I2 Boundary nodes of Ωβ that are not boundary nodes of Ωα.
I3 The two nodes that are boundary nodes of Ωα, of Ωβ, and also of the union box Ω.
I4 Boundary nodes of both Ωα and Ωβ that are not boundary nodes of the union box Ω.

Figure 3 illustrates the definitions of the Ij ’s. Let u denote a function such that

−∆u(x)− κ2
(
1− b(x)

)
u(x) = 0, x ∈ Ω,

and let uj , vj , wj denote the values of u, ∂1u, and ∂2u, restricted to the nodes in the set “j”.
Moreover, set

(4.1) ui = u4, and ue =

 u1
u2
u3

 .
Finally, let Vα, Wα, Vβ, Wβ denote the operators that map potential values on the boundary to
values of ∂1u and ∂2u on the boundary for the boxes Ωα and Ωβ. We partition these matrices
according to the numbering of nodes in Figure 3,

(4.2)

 v1
v3
v4

 =

 Vα
1,1 Vα

1,3 Vα
1,4

Vα
3,1 Vα

3,3 Vα
3,4

Vα
4,1 Vα

4,3 Vα
4,4

  u1
u3
u4

 ,
 w1

w3

w4

 =

 Wα
1,1 Wα

1,3 Wα
1,4

Wα
3,1 Wα

3,3 Wα
3,4

Wα
4,1 Wα

4,3 Wα
4,4

  u1
u3
u4

 ,
and

(4.3)

 v2
v3
v4

 =

 Vβ
2,2 Vβ

2,3 Vβ
2,4

Vβ
3,2 Vβ

3,3 Vβ
3,4

Vβ
4,2 Vβ

4,3 Vβ
4,4


 u2

u3
u4

 ,
 w2

w3

w4

 =

 Wβ
2,2 Wβ

2,3 Wβ
2,4

Wβ
3,2 Wβ

3,3 Wβ
3,4

Wβ
4,2 Wβ

4,3 Wβ
4,4


 u2

u3
u4

 .
4.2. Equilibrium condition. Suppose that we are given a tabulation of boundary values of a
function u that satisfies (1.3) on Ω. In other words, we are given the vectors u1, u2, and u3. We can
then reconstruct the values of the potential on the interior boundary (tabulated in the vector u4)
by using information in (4.2) and (4.3). Simply observe that there are two equations specifying the
normal derivative across the internal boundary (tabulated in v4), and combine these equations:

Vα
4,1u1 + Vα

4,3u3 + Vα
4,4u4 = Vβ

4,2u2 + Vβ
4,3u3 + Vβ

4,4u4.
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(a) (b)

Figure 4. Merge operation for two small boxes to form a new large box. (a) Before
elimination of interior (white) nodes. (b) After elimination of interior nodes.

Solving for u4 we get

(4.4) u4 =
(
Vα

4,4 − Vβ
4,4

)−1(
Vβ

4,2u2 + Vβ
4,3u3 − Vα

4,1u1 − Vα
4,3u3

)
.

Now set

(4.5) U =
(
Vα

4,4 − Vβ
4,4

)−1[−Vα
4,1

∣∣ Vβ
4,2

∣∣ Vβ
4,3 − Vα

4,3

]
,

to find that (4.4) is (in view of (4.1)) precisely the desired formula

(4.6) ui = Uue.

The net effect of the merge operation is to eliminate the interior tabulation nodes in Ωα and Ωβ so
that only boundary nodes in the union box Ω are kept, as illustrated in Figure 4.

4.3. Constructing the DtN operators for the union box. We will next build a matrix V that
constructs the derivative ∂1u on ∂Ω given values of u on ∂Ω. In other words v1

v2
v3

 = V

 u1
u2
u3

 .
To this end, observe from (4.2) and (4.3) that

v1 = Vα
1,1 u1 + Vα

1,3 u3 + Vα
1,4 u4 = Vα

1,1 u1 + Vα
1,3 u3 + Vα

1,4Uue(4.7)

v2 = Vβ
2,2 u2 + Vβ

2,3 u3 + Vβ
2,4 u4 = Vβ

2,2 u2 + Vβ
2,3 u3 + Vβ

2,4Uue.(4.8)

Equations (4.2) and (4.3) provide two different formulas for v3, either of which could be used. For
numerical stability, we use the average of the two:

v3 =
1

2

(
Vα

3,1u1 + Vα
3,3u3 + Vα

3,4u4 + Vβ
3,2u2 + Vβ

3,3u3 + Vβ
3,4u4

)
(4.9)

=
1

2

(
Vα

3,1u1 + Vα
3,3u3 + Vα

3,4Uue + Vβ
3,2u2 + Vβ

3,3u3 + Vβ
3,4Uue

)
.(4.10)

Combining (4.7) – (4.10) we obtain v1
v2
v3

 =


 Vα

1,1 0 Vα
1,3

0 Vβ
2,2 Vβ

2,3
1
2V

α
3,1

1
2V

β
3,2

1
2V

α
3,3 +

1
2V

β
3,3

+

 Vα
1,4

Vβ
2,4

1
2V

α
3,4 +

1
2V

β
3,4

 U


 u1

u2
u3

 .
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Figure 5. The square domain Ω is split into 4×4 leaf boxes. These are then gathered
into a binary tree of successively larger boxes as described in Section 5.1. One possible
enumeration of the boxes in the tree is shown, but note that the only restriction is
that if box τ is the parent of box σ, then τ < σ.

In other words,

(4.11) V =

 Vα
1,1 0 Vα

1,3

0 Vβ
2,2 Vβ

2,3
1
2V

α
3,1

1
2V

β
3,2

1
2V

α
3,3 +

1
2V

β
3,3

+

 Vα
1,4

Vβ
2,4

1
2V

α
3,4 +

1
2V

β
3,4

 U.

An analogous computation for we yields

(4.12) W =

 Wα
1,1 0 Wα

1,3

0 Wβ
2,2 Wβ

2,3
1
2W

α
3,1

1
2W

β
3,2

1
2W

α
3,3 +

1
2W

β
3,3

+

 Wα
1,4

Wβ
2,4

1
2W

α
3,4 +

1
2W

β
3,4

 U.

5. The full hierarchical scheme

5.1. The algorithm. Now that we know how to construct the DtN operator for a leaf (Section 3),
and how to merge the DtN operators of two neighboring patches to form the DtN operator of their
union (Section 4), we are ready to describe the full hierarchical scheme for solving (1.3).

First we partition the domain Ω into a collection of square (or possibly rectangular) boxes, called
leaf boxes. These should be small enough that a small spectral mesh with p×p nodes (for, say, p = 20)
accurately interpolates both any potential solution u of (1.3) and its partial derivatives ∂1u, ∂2u, and
−∆u. Let {xk}Nk=1 denote the points in this mesh. (Observe that nodes on internal boundaries are
shared between two or four local meshes.) Next construct a binary tree on the collection of boxes by
hierarchically merging them, making sure that all boxes on the same level are roughly of the same
size, cf. Figure 5. The boxes should be ordered so that if τ is a parent of a box σ, then τ < σ. We
also assume that the root of the tree (i.e. the full box Ω) has index τ = 1.

With each box τ , we define two index vectors Iτi and Iτe as follows:

Iτe A list of all indices of the nodes on the boundary of τ .

Iτi For a leaf τ , Iτi is a list of all interior nodes of τ .
For a parent τ , Iτi is a list of all its interior nodes that are not interior nodes of its children.

Next we execute a pre-computation in which for every box τ , we construct the following matrices:

Uτ The matrix that maps the values of u on the boundary of a box to the values of u
on the interior nodes of the box. In other words, u(Iτi ) = Uτ u(Iτe ).

Vτ The matrix that maps the values of u on the boundary of a box to the values of v
(tabulating du/dx1) on the boundary of a box. In other words, v(Iτe ) = Vτ u(Iτe ).

Wτ The matrix that maps the values of u on the boundary of a box to the values of w
(tabulating du/dx2) on the boundary of a box. In other words, w(Iτe ) = Wτ u(Iτe ).
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To this end, we scan all boxes in the tree, going from smaller to larger. For any leaf box τ , a dense
matrix Aτ of size p2× p2 that locally approximates the differential operator in (1.3) is formed. Then
the matrices Uτ , Vτ , and Wτ are constructed via formulas (3.3), (3.4), and (3.5). For a parent box τ
with children σ1 and σ2, the matrices Uτ , Vτ , and Wτ are formed from the DtN operators encoded
in the matrices Vσ1 , Wσ1 , Vσ2 , Wσ2 using the formulas (4.5), (4.11), and (4.12). The full algorithm
is summarized in Figure 6. An illustrated cartoon of the merge process is provided in Appendix A.

Once all the matrices {Uτ}τ have been formed, it is a simple matter to construct a vector u holding
approximations to the solution u of (1.3). The nodes are scanned starting with the root, and then
proceeding down in the tree towards smaller boxes. When a box τ is processed, the value of u is
known for all nodes on its boundary (i.e. those listed in Iτe ). The matrix Uτ directly maps these
values to the values of u on the nodes in the interior of τ (i.e. those listed in Iτi ). When all nodes
have been processed, all entries of u have been computed. Figure 7 summarizes the solve stage.

Remark 5.1. Every interior meshpoint xk belongs to the index vector Iτi for precisely one node τ .
In other words

∪
τ I

τ
i forms a disjoint union of the interior mesh points.

Remark 5.2. The way the algorithms are described, we compute for each node τ matrices Vτ and
Wτ that allow the computation of both the normal and the tangential derivative at any boundary
node, given the Dirichlet data on the boundary. This is done for notational convenience only. In
practice, any rows of Vτ and Wτ that correspond to evaluation of tangential derivatives need never
be evaluated since tangential derivatives do not enter into consideration at all.

Remark 5.3. The merge stage is exact when performed in exact arithmetic. The only approximation
involved is the approximation of the solution u on a leaf by its interpolating polynomial.

5.2. Complexity analysis. The analysis of the asymptotic cost of the algorithm in Section 5.1
closely mimics the analysis of the classical nested dissection algorithm [17, 7]. For simplicity, we
analyze the simplest situation in which a square domain is divided into 4L leaf boxes, each holding
a spectral cartesian mesh with p × p points. The total number of unknowns in the system is then
roughly 4L p2 (to be precise, N = 4L (p− 1)2 + 2L+1 (p− 1) + 1).

Cost of leaf computation: Evaluating the formulas (3.3), (3.4), and (3.5) requires dense matrix algebra
on matrices of size roughly p2 × p2. Since there are about N/p2 leaves, the total cost is

Tleaf ∼
N

p2
×

(
p2
)3 ∼ N p4.

Cost of the merge operations: For an integer ℓ ∈ {0, 1, 2, . . . , L}, we refer to “level ℓ” as the collection
of boxes whose side length is 2−ℓ times the side of the full box Ω (so that ℓ = 0 corresponds to the
root and ℓ = L corresponds to the set of leaf boxes). To form the matrices Uτ , Vτ , and Wτ for a
box on level ℓ, we need to evaluate each of the formulas (4.5), (4.11), and (4.12) three times, with
each computation involving matrices of size roughly 2−ℓN0.5 × 2−ℓN0.5. Since there are 4ℓ boxes on
level ℓ, we find that the cost of processing level ℓ is

Tℓ ∼ 4ℓ ×
(
2−ℓN0.5

)3
∼ 2−ℓN1.5.

Adding the costs at all levels, we get

Tmerge ∼
L−1∑
ℓ=0

Tℓ ∼
L−1∑
ℓ=0

2−ℓN1.5 ∼ N1.5.

Cost of solve stage: The cost of processing a non-leaf node on level ℓ is simply the cost of a matrix-
vector multiply involving the dense matrix Uτ of size 2−ℓN0.5 × 2−ℓN0.5. For a leaf, Uτ is of size
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Pre-computation

This program constructs the global Dirichlet-to-Neumann operator for (1.3).
It also constructs all matrices Uτ required for constructing u at all interior nodes.
It is assumed that if node τ is a parent of node σ, then τ < σ.

for τ = Nboxes, Nboxes − 1, Nboxes − 2, . . . , 1
if (τ is a leaf)

bτi = [b(xj)]j∈Iτi
Uτ = −

(
−Li,i − κ2diag(bτi )

)−1
Li,e

Vτ = De,e +De,iU
τ

Wτ = Ee,e +De,iU
τ

else
Let σ1 and σ2 be the children of τ .
Partition Iσ1

e and Iσ2
e into vectors I1, I2, I3, and I4 as shown in Figure 3.

if (σ1 and σ2 are side-by-side)

Uτ =
(
Vσ1

4,4 − Vσ2
4,4

)−1[−Vσ1
4,1

∣∣ Vσ2
4,2

∣∣ Vσ2
4,3 − Vσ1

4,3

]
else

Uτ =
(
Wσ1

4,4 −Wσ2
4,4

)−1[−Wσ1
4,1

∣∣ Wσ2
4,2

∣∣ Wσ2
4,3 −Wσ1

4,3

]
end if

Vτ =

 Vσ1
1,1 0 Vσ1

1,3

0 Vσ2
2,2 Vσ2

2,3
1
2V

σ1
3,1

1
2V

σ2
3,2

1
2V

σ1
3,3 +

1
2V

σ2
3,3

+

 Vσ1
1,4

Vσ2
2,4

1
2V

σ1
3,4 +

1
2V

σ2
3,4

 Uτ .

Wτ =

 Wσ1
1,1 0 Wσ1

1,3

0 Wσ2
2,2 Wσ2

2,3
1
2W

σ1
3,1

1
2W

σ2
3,2

1
2W

σ1
3,3 +

1
2W

σ2
3,3

+

 Wσ1
1,4

Wσ2
2,4

1
2W

σ1
3,4 +

1
2W

σ2
3,4

 Uτ .

Delete Vσ1 , Wσ1 , Vσ2 , Wσ2 .
end if

end for

Figure 6. Pre-computation

Solver

This program constructs an approximation u to the solution u of (1.3).
It assumes that all matrices Uτ have already been constructed in a pre-computation.
It is assumed that if node τ is a parent of node σ, then τ < σ.

u(k) = f(xk) for all k ∈ I1e .
for τ = 1, 2, 3, . . . , Nboxes

u(Iτi ) = Uτ u(Iτi ).
end for

Figure 7. Solve stage.

roughly p2 × p. Therefore

Tleaf ∼
N

p2
× p2 p+

L−1∑
ℓ=0

4ℓ ×
(
2−ℓN0.5

)2
∼ N p+N L ∼ N p+N log(N).
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Remark 5.4. In terms of practical efficiency, the direct solver proposed excels for problems where
iterative solvers require many iterations, such as the equations with highly oscillatory solutions
investigated in Sections 6.1 – 6.4. In situations where iterative solvers converge rapidly, we expect
the proposed solver to be competitive for moderate size problems, but for large scale problems,
its O(N1.5) complexity will eventually render it uncompetitive (unless acceleration as outlined in
Section 7.1 is implemented). Note however that the solve stage is O(N logN) with a very small
scaling constant, which makes the direct solver of high interest in situations where the same equation
needs to be solved for a sequence of data functions. Finally we note that the direct solver requires
somewhat more memory than an iterative method, although this tends to be unproblematic in 2D.

Remark 5.5. The solver parallelizes very well since all patches are processed independently of their
neighbors; the only information required to process a patch comes from its children. For very large
problems, the build time will be dominated by the dense matrix operations required at the top levels
(the largest patches). These are dicey to parallelize well, but since they concern standard matrix
operations, the top levels can be executed efficiently using standardized packages [2, 27].

5.3. Problem of resonances. The scheme presented in Section 5.1 will fail if one of the patches
in the hierarchical partitioning is resonant in the sense that there exist non-trivial solutions to the
Helmholtz equation that have zero Dirichlet data at the boundary of the patch. (Observe that this
is a property of the “physics” of the problem, and not a mathematical or numerical artifact.) In this
case, the Neumann data for the patch is not uniquely determined by the Dirichlet data, and the DtN
operator cannot exist. In practice, this problem will of course arise even if we are merely close to a
resonance, and will be detected by the discovery that the inverse matrix in the formulas (3.3) and
(4.5) for the solution operator Uτ is ill-conditioned.

It is our experience from working even with domains a couple of hundreds of wave-lengths across
that resonances are very rare; one almost never encounters the problem. Nevertheless, it is important
to monitor the conditioning of the formulas (3.3) and (4.5) to ensure the accuracy of the final answer.
Should a problem be detected, the easiest solution would be to simply start the computation over
with a different tessellation of the domain Ω. Very likely, this will resolve the problem.

While the problem of resonances can be managed, it would clearly be preferable to formulate a
variation of the scheme that is inherently not vulnerable in this regard. We are currently investigating
several different possibilities, including using the so called “total wave” approach suggested by Yu
Chen of New York University (private communication). The idea is to maintain for each leaf not
an operator that maps Dirichlet data to Neumann data, but rather a collection of matching pairs
of Dirichlet and Neumann data (represented as vectors of tabulated values on the boundary). This
scheme is easy to implement, but it would likely get prohibitively expensive in 3D, and does not seem
to easily lend itself to acceleration techniques like those described in Section 7.1.

6. Numerical experiments

This section reports the results of some numerical experiments with the method described in
Section 5.1. The method was implemented in Matlab and the experiments executed on a Lenovo
W510 laptop with a quad core Intel i7 Q720 processor with 1.6GHz clockspeed, and 16GB of RAM.

The speed and memory requirements of the algorithm were investigated by solving the special case
where b = 0 in (1.3), and the Dirichlet data is set to equal a known analytic solution. The results are
reported in Section 6.1. We also report the errors incurred in the special case; these represent a best
case estimate of the errors since the equation solved is particularly benign. To get a more realistic
estimate of the errors in the method, we also applied it to three situation in which exact solutions are
not known: A problem with variable coefficients in Section 6.2, a problem on an L-shaped domain
in Section 6.3, a curved domain in Section 6.4, and a convection-diffusion problem in Section 6.5.
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6.1. Constant coefficient Helmholtz. We solved the basic Helmholtz equation

(6.1)

{
−∆u(x)− κ2 u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

where Ω = [0, 1]2 and Γ = ∂Ω. The boundary data were in this first set of experiments chosen as the
restriction to Γ of an exact solution

(6.2) uexact(x) = Y0(κ|x− x̂|),
where x̂ = (−0.2, 0.4), and where Y0 is the 0’th Bessel function of the second kind. This experiment
serves two purposes. The first is to systematically measure the speed and memory requirements of
the method described in Section 5.1. The second is to get a sense of what errors can be expected
in a “best case” scenario with a very smooth solution. Observe however that the situation is by no
means artificial since the smoothness of this case is exactly what one encounters when the solver is
applied to a free space scattering problem as described in Section 7.2.

The domain Ω was discretized into n × n patches, and on each patch a p × p Cartesian mesh of
Chebyshev nodes was placed. The total number of degrees of freedom is then

N =
(
n(p− 1)

)2
+ 2n(p− 1) + 1.

We tested the method for p ∈ {6, 11, 21, 41}. For each fixed p, the method was executed for several
different mesh sizes n. The wave-number κ was chosen to keep a constant of 12 points per wavelength,
or κ = 2π n(p− 1)/12.

Since the exact solution is known in this case, we computed the direct error measure

(6.3) Epot = max
k : xk∈Ω

∣∣ucomputed(xk)− uexact(xk)
∣∣,

where {xk}Nk=1 is the set of all mesh points. We also computed the maximum error in the gradient
of u on the boundary as computed via the V and W operators on the root box,

(6.4) Egrad = max
k : xk∈Γ

{∣∣vcomputed(xk)− [∂1uexact](xk)
∣∣, ∣∣wcomputed(xk)− [∂2uexact](xk)

∣∣}.
Table 1 reports the following variables:
Nwave The number of wave-lengths along one side of Ω.
tbuild The time in seconds required to execute the build stage in Figure 6.
tsolve The time in seconds required to execute the solve stage in Figure 7.
M The amount of RAM used in the build stage in MB.
The table also reports the memory requirements in terms of number of the number of double precision
reals that need to be stored per degree of freedom in the discretization.

The high-order version of the method (p = 41) was also capable of performing a high accuracy
solve with only six points per wave-length. The results are reported in Table 2.

We see that increasing the spectral order is very beneficial for improving accuracy. However, the
speed deteriorates and the memory requirements increase as p grows. Choosing p = 21 appears to
be a good compromise.

For comparison, Table 3 describes the computational results obtained when using a non-composite
method with a p × p tensor product grid of Chebyshev nodes. For a domain of size 5.1× 5.1 wave-
lengths, this method performs very well. For an intermediate domain of size 25.1 × 25.1 wave-
lengths, this method just barely converges before we run out of memory. For a large domain of size
100.1× 100.1 wave-lengths, we attain no accuracy on the largest grid our computer could handle.

Table 4 shows how the accuracy in the spectral composite method depends on the order p of
the local grids, and on the panel size h = 1/n as p and n are increased for a fixed wave-number.
We observe good convergence and stability for both h and p refinement. Figure 8 shows the time
required for the experiments reported in Table 4. We see that for a small problem (of size 5.1× 5.1
wave-lengths), the single-panel spectral method excels. On the other hand, for the large problem
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p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

6 6561 6.7 0.28 0.0047 8.02105e-03 3.06565e-01 2.8 56.5
6 25921 13.3 0.96 0.0184 1.67443e-02 1.33562e+00 12.7 64.2
6 103041 26.7 4.42 0.0677 3.60825e-02 5.46387e+00 56.2 71.5
6 410881 53.3 20.23 0.2397 3.39011e-02 1.05000e+01 246.9 78.8
6 1640961 106.7 88.73 0.9267 7.48385e-01 4.92943e+02 1075.0 85.9
11 6561 6.7 0.16 0.0019 2.67089e-05 1.08301e-03 2.9 58.0
11 25921 13.3 0.68 0.0073 5.30924e-05 4.34070e-03 13.0 65.7
11 103041 26.7 3.07 0.0293 1.01934e-04 1.60067e-02 57.4 73.0
11 410881 53.3 14.68 0.1107 1.07747e-04 3.49637e-02 251.6 80.2
11 1640961 106.7 68.02 0.3714 2.17614e-04 1.37638e-01 1093.7 87.4
21 6561 6.7 0.23 0.0011 2.56528e-10 1.01490e-08 4.4 87.1
21 25921 13.3 0.92 0.0044 5.24706e-10 4.44184e-08 18.8 95.2
21 103041 26.7 4.68 0.0173 9.49460e-10 1.56699e-07 80.8 102.7
21 410881 53.3 22.29 0.0727 1.21769e-09 3.99051e-07 344.9 110.0
21 1640961 106.7 99.20 0.2965 1.90502e-09 1.24859e-06 1467.2 117.2
21 6558721 213.3 551.32 20.9551 2.84554e-09 3.74616e-06 6218.7 124.3
41 6561 6.7 1.50 0.0025 9.88931e-14 3.46762e-12 7.9 157.5
41 25921 13.3 4.81 0.0041 1.58873e-13 1.12883e-11 32.9 166.4
41 103041 26.7 18.34 0.0162 3.95531e-13 5.51141e-11 137.1 174.4
41 410881 53.3 75.78 0.0672 3.89079e-13 1.03546e-10 570.2 181.9
41 1640961 106.7 332.12 0.2796 1.27317e-12 7.08201e-10 2368.3 189.2

Table 1. Results from an experiment with a constant coefficient Helmholtz problem
on a square. The boundary data were picked so that the analytic solution was known;
as a consequence, the solution is smooth, and can be smoothly extended across the
boundary. The wave-number was chosen to keep a constant of 12 discretization points
per wave-length.

p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

41 6561 13.3 1.30 0.0027 1.54407e-09 1.78814e-07 7.9 157.5
41 25921 26.7 4.40 0.0043 1.42312e-08 2.35695e-06 32.9 166.4
41 103041 53.3 17.54 0.0199 1.73682e-08 5.84193e-06 137.1 174.4
41 410881 106.7 72.90 0.0717 2.28475e-08 1.51575e-05 570.2 181.9
41 1640961 213.3 307.37 0.3033 4.12809e-08 5.51276e-05 2368.3 189.2

Table 2. This table illustrates the same situation as Table 1, but now κ is increased
twice as fast (so that we keep only 6 points per wave-length).

(of size 100.1× 100.1 wave-lengths), the single panel spectral method attains no accuracy at all. In
contrast, the high order spectral composite methods rapidly converge to 10 digits of accuracy.

Remark 6.1. In the course of executing the numerical examples, the instability problem described
in Section 5.3 was detected precisely once (for p = 16 and 12 points per wave length).

6.2. Variable coefficient Helmholtz. We solved the equation

(6.5)

{
−∆u(x)− κ2

(
1− b(x)

)
u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,
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p tbuild tsolve M Epot

(sec) (sec) (MB) Nwave = 5.1 Nwave = 25.1 Nwave = 100.1
21 0.0 0.0003 2.0 1.48e-01 2.51e-01 6.46e-02
41 0.4 0.0026 35.3 3.39e-12 6.96e-01 1.76e-02
61 2.6 0.0166 184.9 6.42e-13 1.73e+00 2.00e-02
81 11.9 0.0461 594.3 4.28e-13 1.59e-01 1.16e+00
101 39.9 0.1151 1465.8 1.32e-12 2.00e-08 2.71e-01
121 112.1 0.2205 3059.9 1.84e-12 4.89e-13 4.96e-01

Table 3. Accuracies resulting from solving the constant coefficient Helmholtz equa-
tion (6.1) using a p× p tensor product grid of Chebyshev nodes. The accuracy is the
sup norm error Epot as defined by (6.3), given for three different domain sizes.

n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

Nwave = 5.1

p = 6 1.1e+00 2.8e-01 2.8e-02 3.0e-01 5.7e-03 3.6e-04 2.3e-05 1.4e-06
p = 11 1.3e-01 5.7e-03 4.0e-05 6.5e-08 8.9e-11 6.2e-11 3.1e-10 —
p = 21 1.4e-07 4.3e-12 1.2e-12 1.2e-11 6.0e-11 1.6e-10 — —
p = 41 6.8e-13 4.7e-12 1.7e-11 5.8e-11 — — — —

Nwave = 25.1

p = 6 1.3e-01 1.2e-01 1.8e-01 1.3e+00 5.8e-01 3.0e-02 3.2e-03 2.3e-04
p = 11 1.4e-01 2.3e-01 3.4e-01 2.7e-02 4.9e-05 1.1e-07 1.4e-10 1.4e-11
p = 21 1.7e+00 1.4e+00 1.3e-05 2.8e-10 8.0e-14 2.8e-12 1.1e-12 —
p = 41 9.8e-01 3.6e-10 2.9e-13 9.4e-13 5.4e-12 — — —

Nwave = 100.1

p = 6 6.2e-02 6.0e-02 6.9e-02 6.7e-02 1.0e-01 6.0e+00 6.2e-01 7.8e-02
p = 11 6.8e-02 6.4e-02 8.1e-02 1.3e-01 5.2e-01 7.8e-02 4.1e-04 1.0e-06
p = 21 6.7e-02 1.5e-01 3.5e+00 1.2e+00 8.5e-05 2.5e-09 2.1e-12 —
p = 41 8.4e-01 9.2e-01 5.2e-01 4.4e-09 1.7e-12 — — —

Table 4. Accuracies resulting from solving the constant coefficient Helmholtz equa-
tion (6.1) on a domain of size Nwave × Nwave. The discretization used n × n panels
and a p × p tensor product Chebyshev grid on each panel (so that the panel size h
satisfies h = 1/n). The accuracy given is the sup norm error Epot as defined by (6.3).

where Ω = [0, 1]2, where Γ = ∂Ω, and where

b(x) = (sin(4πx1) sin(4πx2))
2 .

The Helmholtz parameter was kept fixed at κ = 80, corresponding to a domain size of 12.7 × 12.7
wave lengths. The boundary data was given by

f(x) = cos(8x1)
(
1− 2x2

)
.

The equation (6.5) was discretized and solved as described in Section 6.1. The speed and memory
requirements for this computation are exactly the same as for the example in Section 6.1 (they do
not depend on what equation is being solved), so we now focus on the accuracy of the method. We
do not know of an exact solution, and therefore report pointwise convergence. Letting uN denote
the value of u computed using N degrees of freedom, we used

Eint
N = uN (x̂)− u4N (x̂)

as an estimate for the pointwise error in u at the point x̂ = (0.75, 0.25). We analogously estimated
convergence of the normal derivative at the point ŷ = (0.75, 0.00) by measuring

Ebnd
N = wN (ŷ)− w4N (ŷ).
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Figure 8. Computational accuracy is plotted against computational time (tbuild).
The constant coefficient Helmholtz equation (6.1) was solved on a domain of size
Nwave ×Nwave wave-lengths for three different values of Nwave. The lines with crosses
correspond to a single-domain spectral method, while the lines with circles correspond
to the composite scheme with p× p local grids for p = 6, 11, 21, 41.

The results are reported in Table 5. Table 6 reports the results from an analogous experiment, but
now for a domain of size 102× 102 wave-lengths.

We observe that accuracy is almost as good as for the constant coefficient case. Ten digits of
accuracy is easily attained, but getting more than that seems challenging; increasing N further leads
to no improvement in accuracy. The method appears to be stable in the sense that nothing bad
happens when N is either too large or too small.

6.3. L-shaped domain. We solved the equation

(6.6)

{
−∆u(x)− κ2 u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

where Ω is the L-shaped domain Ω = [0, 2]2\[1, 2]2 shown in Figure 9(a), and where the Helmholtz
parameter κ is held fixed at κ = 40, making the domain 12.7×12.7 wave-lengths large. The pointwise
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p N pts per wave uN (x̂) Eint
N wN (ŷ) Ebnd

N

6 6561 6.28 -2.505791196753718 -2.457e-01 -661.0588680825 -8.588e+03
6 25921 12.57 -2.260084219562163 1.676e-01 7926.8096554095 8.141e+04
6 103041 25.13 -2.427668162910011 1.779e-02 -73484.9989261573 -3.894e+04
6 410881 50.27 -2.445455646843485 1.233e-03 -34547.6403539568 -1.235e+03
6 1640961 100.53 -2.446688310709834 7.891e-05 -33313.0000081604 -7.627e+01
6 6558721 201.06 -2.446767218259172 -33236.7252190062
11 6561 6.28 -2.500353149793093 -5.375e-02 -27023.0713474340 6.524e+03
11 25921 12.57 -2.446599788642489 1.728e-04 -33547.3621639994 -3.153e+02
11 103041 25.13 -2.446772604281610 -9.465e-08 -33232.0940315585 -4.754e-01
11 410881 50.27 -2.446772509631734 3.631e-10 -33231.6186528531 -7.331e-04
11 1640961 100.53 -2.446772509994819 -33231.6179197169
21 6561 6.28 -2.448236804078803 -1.464e-03 -32991.4583727724 2.402e+02
21 25921 12.57 -2.446772430608166 7.976e-08 -33231.6118304666 5.984e-03
21 103041 25.13 -2.446772510369452 5.893e-11 -33231.6178142514 -5.463e-06
21 410881 50.27 -2.446772510428384 2.957e-10 -33231.6178087887 -2.792e-05
21 1640961 100.53 -2.446772510724068 -33231.6177808723
41 6561 6.28 -2.446803898373796 -3.139e-05 -33233.0037457220 -1.386e+00
41 25921 12.57 -2.446772510320572 1.234e-10 -33231.6179029824 -8.940e-05
41 103041 25.13 -2.446772510443995 2.888e-11 -33231.6178135860 -1.273e-05
41 410881 50.27 -2.446772510472872 7.731e-11 -33231.6178008533 -4.668e-05
41 1640961 100.53 -2.446772510550181 -33231.6177541722

Table 5. Results from a variable coefficient Helmholtz problem on a domain of size
12.7× 12.7 wave-lengths.

p N pts per wave uN (x̂) Eint
N wN (ŷ) Ebnd

N

21 6561 0.79 0.007680026148649 4.085e-03 3828.84075823538 6.659e+03
21 25921 1.57 0.003595286353011 1.615e+00 -2829.88055527014 -1.791e+02
21 103041 3.14 -1.611350573683137 1.452e+00 -2650.80640712917 -5.951e+03
21 410881 6.28 -3.063762877533994 4.557e-03 3299.72573600854 -7.772e+00
21 1640961 12.57 -3.068320356836451 -7.074e-08 3307.49786015114 9.592e-05
21 6558721 25.13 -3.068320286093162 3307.49776422768
41 6561 0.79 -0.000213617359480 -1.608e-01 -833.919575889393 -1.006e+03
41 25921 1.57 0.160581838547352 -7.415e-01 171.937456004515 -1.797e+03
41 103041 3.14 0.902057033817060 3.970e+00 1969.187023322940 -1.338e+03
41 410881 6.28 -3.068320045777766 2.405e-07 3307.497852217234 8.792e-05
41 1640961 12.57 -3.068320286282830 (-1.897e-10) 3307.497764294187 (6.651e-8)

Table 6. Results from a variable coefficient Helmholtz problem on a domain of size
102× 102 wave-lengths.

errors were estimated at the points

x̂ = (0.75, 0.75), and ŷ = (1.25, 1.00),

via

Eint
N = uN (x̂)− u4N (x̂), and Ebnd

N = wN (ŷ)− w4N (ŷ).

The results are given in Table 7.
We observe that the errors are in this case significantly larger than they were for square domains.

This is presumably due to the fact that the solution u is singular near the re-entrant corner in the
L-shaped domain. (When boundary conditions corresponding to an exact solution like (6.2) are
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Figure 9. (a) The domain Ω in Section 6.3. (b) The domain Ψ in Section 6.4. (c)
The domain Ω in Section 6.4.

p N pts per wave uN (x̂) Eint
N wN (ŷ) Ebnd

N

6 19602 12.57 8.969213152495405 2.258e+00 226.603823940515 8.748e+01
6 77602 25.13 6.711091204119065 1.317e-01 139.118986915759 4.949e+00
6 308802 50.27 6.579341284597024 8.652e-03 134.169908546083 3.261e-01
6 1232002 100.53 6.570688999911585 133.843774958376

11 19602 12.57 6.571117172871830 9.613e-04 133.865552472382 3.851e-02
11 77602 25.13 6.570155895761215 5.154e-05 133.827043929015 5.207e-03
11 308802 50.27 6.570104356719250 1.987e-05 133.821836691967 2.052e-03
11 1232002 100.53 6.570084491282650 133.819785089497
21 19602 12.57 6.570152809642857 4.905e-05 133.898328735897 7.663e-02
21 77602 25.13 6.570103763348836 1.951e-05 133.821703687416 1.943e-03
21 308802 50.27 6.570084254517955 7.743e-06 133.819760759394 7.996e-04
21 1232002 100.53 6.570076511737839 133.818961147570

Table 7. Results from a constant coefficient Helmholtz problem on an L-shaped
domain of size 12.7× 12.7 wave-lengths.

imposed, the method is just as accurate as it is for the square domain.) Nevertheless, the method
easily attains solutions with between four and five correct digits.

6.4. A curved domain. A key feature of a composite, or “multi-domain,” spectral method such as
the one described here is its ability to accommodate a range of different domains. We illustrate this
capability by considering a simple curved domain Ψ given by an analytic parameterization over the
unit square Ω = [0, 1]2. We solve the constant coefficient Helmholtz equation

(6.7)

{
−∆u(y)− κ2 u(y) = 0 y ∈ Ψ,

u(y) = f(y) y ∈ ∂Ψ,

by mapping the equation to a variable coefficient equation on our reference domain Ω. We consider
the simple domain Ω given in Figure 9(b) which is parameterized as

Ψ =

{
(y1, y2) : 0 ≤ y1 ≤ 1 0 ≤ y2 ≤

1

ψ(y1)

}
=

{(
x1,

x2
ψ(x1)

)
: (x1, x2) ∈ Ω

}
,
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Exact solution known Dirichlet data f = 1

N Epot Egrad E
(1)
N E

(2)
N E

(3)
N

25921 2.12685e+02 3.55772e+04 2.24618e-01 4.99854e-01 6.69023e-01
103041 3.29130e-01 5.89976e+01 1.10143e-02 5.28238e-03 6.14890e-02
410881 1.40813e-05 1.98907e-03 4.57900e-06 2.18438e-06 1.13415e-05
1640961 7.22959e-10 1.17852e-07 5.12914e-07 1.67971e-06 4.97764e-06
3690241 1.63144e-09 2.26204e-07 — — —

Table 8. Errors in solving the Helmholtz problem (6.7) on a curved domain of size
35 × 50 wavelengths (see Figure 9(b)). Local Chebyshev grids with 21 × 21 points
were used. The errors reported are defined by (6.3), (6.4), and (6.9).

where, in our computational examples, ψ(y1) = 1 − 0.3 sin(6 y1). A simple application of the chain
rules (see Appendix B) shows that the Helmholtz equation (6.7) takes the form

(6.8)
∂2u

∂x21
+

2ψ′(x1)x2
ψ(x1)

∂2u

∂x1∂x2
+

(
x22ψ

′(x1)
2

ψ(x1)2
+ ψ(x1)

2

)
∂2u

∂x22
+
x2ψ

′′(x1)

ψ(x1)

∂u

∂x2
+k2u = 0, x ∈ Ω.

We solved equation (6.8) for k = 220 which corresponds to a domain Ψ of size roughly 35 × 50
wave-lengths. We used local Chebyshev grids with 21×21 points, and ran two different experiments:
In the first experiment, we used Dirichlet data corresponding to an analytically known solution
uexact(y) = cos(0.6κ y1 + 0.8κ y2). For this case, we computed the errors Epot in the potential and
Egrad in the boundary gradients, as defined by (6.3) and (6.4). In the second experiment, we solved
(6.8) for constant Dirichlet data f = 1. In this case, we used a point-wise error estimate

(6.9) E
(i)
N = (1/M) |ucomputed(x

(i))− uref(x
(i))|,

where M = 87.1 is an estimate for ||u||∞, where {x(1), x(2), x(3)} are three fixed observation points,
and where uref is the solution resulting from the finest mesh. We used:

x(1) = (0.125, 0.875) x(2) = (0.75, 0.25) x(3) = (0.875, 0.875)

uref(x
(1)) = −14.10206115033 uref(x

(2)) = −12.09692774593 uref(x
(3)) = 53.784389296457

The results are given in Table 8. We observe that the method handles this situation very well, but
that we lose a couple of digits worth of accuracy compared to a square domain.

6.5. Convection diffusion. We solved the equation

(6.10)

{
−∆u(x)− 1000 [∂2u](x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

where Ω = [0, 1]2, where Γ = ∂Ω, and where the boundary data was given by f(x) = cos(x1) e
x2 .

The equation (6.5) was discretized and solved as described in Section 6.1.
The pointwise errors were estimated at the points

x̂ = (0.75, 0.25), and ŷ = (0.75, 0.00),

via

Eint
N = uN (x̂)− u4N (x̂), and Ebnd

N = wN (ŷ)− w4N (ŷ).

The results are given in Table 9. Table 10 reports results from an analogous experiment, but now
with the strength of the convection term further increased by a factor of 10.

We observe that the method has no difficulties resolving steep gradients, and that moderate order
methods (p = 11) perform very well here.
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p N uN (x̂) Eint
N wN (ŷ) Ebnd

N

11 25921 1.987126286905920 -3.191e-04 1255.25512379751 -7.191e-03
11 103041 1.987445414657945 3.979e-13 1255.26231503666 -6.529e-04
11 410881 1.987445414657547 2.455e-12 1255.26296795281 -1.889e-05
11 1640961 1.987445414655092 1255.26298684450
21 25921 1.987076984861468 -3.684e-04 1255.26075989546 -2.186e-03
21 103041 1.987445414658047 -3.009e-13 1255.26294637880 -4.054e-05
21 410881 1.987445414658348 -2.600e-13 1255.26298691798 -7.881e-08
21 1640961 1.987445414658608 1255.26298699680
41 25921 1.988004762686629 5.593e-04 1255.26290210213 -8.478e-05
41 103041 1.987445414657579 -9.706e-13 1255.26298687891 -1.178e-07
41 410881 1.987445414658550 -1.237e-12 1255.26298699669 -1.636e-09
41 1640961 1.987445414659787 1255.26298699832

Table 9. Errors for the convection diffusion problem (6.10).

p N uN (x̂) Eint
N wN (ŷ) Ebnd

N

21 25921 1.476688750775769 -4.700e-01 13002.9937044202 4.325e+02
21 103041 1.946729131937971 -4.206e-02 12570.4750256324 -7.862e-03
21 410881 1.988785675941193 -1.716e-06 12570.4828877374 -4.900e-03
21 1640961 1.988787391699051 (6.719e-13) 12570.4877875310 (-4.411e-04)
41 25921 2.587008191566030 6.407e-01 13002.1084152522 4.316e+02
41 103041 1.946284950165041 -4.250e-02 12570.4835546978 -2.618e-03
41 410881 1.988785277235741 -2.114e-06 12570.4861729647 -2.127e-03
41 1640961 1.988787391699218 12570.4882994934

Table 10. Errors for a convection diffusion problem similar to (6.10), but now for
the even more convection dominated operator A = −∆− 10 000 ∂2.

7. Extensions

7.1. Linear complexity algorithms. In discussing the asymptotic complexity of the scheme in
Section 5.1 we distinguish between the case where N is increased for a fixed wave-number κ, and the
case where κ ∼ N0.5 to keep the number of degrees of freedom per wavelength constant.

Let us first discuss the case where the wave-number κ is kept fixed as N is increased. In this
situation, the matrices Uτ will for the parent nodes become highly rank deficient (to finite precision).
By factoring these matrices in the build stage, the solve stage can be reduced to O(N) complexity.
Moreover, the off-diagonal blocks of the matrices Vτ and Wτ will also be of low numerical rank;
technically, they can efficiently be represented in data sparse formats such as the H-matrix format
[11], or the Hierarchically Block-Separable-format of [9, 35, 16]. Exploiting the internal structure
in these matrices, the complexity of the build stage can be reduced from O(N1.5) to O(N). This
acceleration is analogous to what was done for classical nested dissection for finite-element and finite-
difference matrices in [8, 20, 29, 34]. Note that while the acceleration of the solve phase is trivial, it
takes some work to exploit the more complicated structure in Vτ and Wτ .

Now consider the case where κ ∼ N0.5 as N increases. The numerical ranks of the matrices Uτ

and the off-diagonal blocks of Vτ and Wτ will in this situation grow in such a way that no reduction
in asymptotic complexity can be expected. However, the matrices are in practice far from full rank,
and exploiting this internal structure is likely to lead to substantial practical accelerations.
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7.2. Free space scattering problems in the plane. Once you know the DtN operator for the
inhomogeneous square, you can rapidly solve free space scattering problem. Consider the equation

−∆u(x)− κ2 (1− b(x))u(x) = f(x), x ∈ R2.

Appropriate radiation conditions at infinity are imposed on u. We assume that there is a rectangle
Ω such that b is compactly supported inside Ω, and that f is compactly supported outside Ω. The
standard technique is to look for a solution u of the form u = v+w, where v is an incoming field and
w is the outgoing field. The incoming field is defined by v(x) = [ϕκ ∗ f ](x) =

∫
R2 ϕκ(x− y) f(y) dy,

where ϕκ is the fundamental solution to the free space Helmholtz problem. Then −∆v − κ2v = f ,
and since b(x) = 0 for x ∈ Ωc, we find that the outgoing potential w must satisfy

(7.1) −∆w(x)− κ2w(x) = 0, x ∈ Ωc.

Now use the method in Section 5.1 to construct the DtN map T for the problem

−∆u(x)− κ2
(
1− b(x)

)
u(x) = 0, x ∈ Ω.

Then we know that

(7.2) vn|Γ + wn|Γ = T
(
v|Γ + w|Γ

)
,

where vn and wn are normal derivatives of v and w, respectively. Now use boundary integral equation
methods to construct the DtN map S for the problem (7.1) on the exterior domain Ωc. Then

(7.3) wn|Γ = S w|Γ.
Combining (7.2) and (7.3) we find vn|Γ + S w|Γ = T v|Γ + T w|Γ. In other words,

(7.4) (S − T )w|Γ = T v|Γ − vn|Γ.
Observing that both v|Γ and vn|Γ can be obtained directly from the explicit formula for v, and that
S and T are now available, we see that w|Γ can be determined by solving (7.4).

7.3. Problems in 3D. The method described can after trivial modifications be applied to problems
in R3. However, since the fraction of points located on interfaces will increase, the complexity of the
build and the solve stages will be O(N2) and O(N4/3), respectively. To attain a truly efficient 3D
code, the use of the acceleration techniques described in Section 7.1 will likely become crucial.

8. Conclusions

The paper describes a composite spectral scheme for solving variable coefficient elliptic PDEs with
smooth coefficients. The method is described for the case of simple domains such as squares and
rectangles, but can be extended to other geometries. The method involves a direct solver and can
in a single sweep solve problems for which state-of-the-art iterative methods require thousands of
iterations. High order spectral approximations are used. As a result, potential fields can be computed
to a relative precision of about 10−10 using twelve points per wave-length or less.

Numerical experiments indicate that the method is very fast. For a problem involving 1.6M degrees
of freedom discretizing a Helmholtz problem on a domain of size 100 × 100 wavelengths, the build
stage of the direct solver took less than 2 minutes on a laptop. Once the solution operator had
been computed, the solve stage that given a vector of Dirichlet data on the boundary constructs
the solution at all 1.6M tabulation points required only 0.3 seconds. The computed solution had a
relative accuracy of 10−9.

The asymptotic complexity of the method presented is O(N1.5) for the construction of the solution
operator, and O(N logN) for a solve once the solution operator has been created. For a situation
where N is increased while the wave-number is kept fixed, it is possible to improve the asymptotic
complexity to O(N) for both the build and the solve stages (see Section 7.1); this work will be
reported in a subsequent paper.
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Appendix A. Graphical illustration of the hierarchical merge process

This section provides an illustrated overview of the hierarchical merge process described in detail
in Section 5.1 and in Figure 6. The figures illustrate a situation in which a square domain Ω = [0, 1]2

is split into 4× 4 leaf boxes on the finest level, and an 8× 8 spectral grid is used in each leaf.

Step 1: Partition the box Ω into 16 small boxes that each holds an 8× 8 mesh of Chebyshev nodes.
For each box τ , identify the internal nodes (marked in white) and eliminate them as described in
Section 3. Construct the solution operator Uτ , and the DtN operators Vτ and Wτ .

⇒
Step 1

Step 2: Merge the small boxes by pairs as described in Section 4. The equilibrium equation for each
rectangle is formed using the DtN operators of the two small squares it is made up of. The result is
to eliminate the interior nodes (marked in white) of the newly formed larger boxes. Construct the
solution operator U and the DtN matrices V and W for the new boxes.
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⇒
Step 2

Step 3: Merge the boxes created in Step 2 in pairs, again via the process described in Section 4.

⇒
Step 3

Step 4: Repeat the merge process once more.

⇒
Step 4

Step 5: Merge one final time to obtain the DtN operator for the boundary of the whole domain.

⇒
Step 5
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Appendix B. Derivation of the change of variables formula

In this section, we provide the derivation of equation (6.8) of the Helmholtz equation in a curved
domain after a change of variables. Recall that the starting point is the equation

(B.1)

{
−∆u(y)− κ2 u(y) = 0 y ∈ Ψ,

u(y) = f(y) y ∈ ∂Ψ,

and that we seek to effect the change of variables in (B.1) from y to x, where

x1 = y1

x2 = ψ(y1) y2.

Now

(B.2)
∂u

∂y1
=
∂x1
∂y1

∂u

∂x1
+
∂x2
∂y1

∂u

∂x2
=

∂u

∂x1
+ ψ′(y1)y2

∂u

∂x2
.

Next

∂2u

∂y21
=
∂x1
∂y1

∂2u

∂x21
+
∂x2
∂y1

∂2u

∂x1∂x2
+ ψ′′(y1)y2

∂u

∂x2
+ ψ′(y1)y2

∂x1
∂y1

∂u

∂x1∂x2
+ ψ′(y1)y2

∂x2
∂y1

∂u

∂x22
(B.3)

=
∂2u

∂x21
+ 2ψ′(y1)y2

∂u

∂x1∂x2
+

(
ψ′(y1)y2

)2 ∂u
∂x22

+ ψ′′(y1)y2
∂u

∂x2
.

Similarly

(B.4)
∂u

∂y2
=
∂x1
∂y2

∂u

∂x1
+
∂x2
∂y2

∂u

∂x2
= ψ(y1)

∂u

∂x2
.

And

(B.5)
∂2u

∂y22
= ψ(y1)

∂x1
∂y2

∂2u

∂x1∂x2
+ ψ(y1)

∂x2
∂y2

∂2u

∂x22
=

(
ψ(y1)

)2∂2u
∂x22

.

Combining, we find that the Helmholtz equation (6.7) takes the form

(B.6)
∂2u

∂x21
+ 2ψ′(y1) y2

∂2u

∂x1∂x2
+

(
y22ψ

′(y1)
2 + ψ(y1)

2
)∂2u
∂x22

+ y2ψ
′′(y1)

∂u

∂x2
+ k2u = 0, x ∈ Ω.

To obtain an equation with no y’s at all, substitute y1 = x1 and y2 = x2/ψ(x1):

(B.7)
∂2u

∂x21
+
2ψ′(x1)x2
ψ(x1)

∂2u

∂x1∂x2
+

(
x22ψ

′(x1)
2

ψ(x1)2
+ ψ(x1)

2

)
∂2u

∂x22
+
x2ψ

′′(x1)

ψ(x1)

∂u

∂x2
+k2u = 0, x ∈ Ω.

We recognize (B.7) as (6.8).

Remark B.1. Observe that formulas (B.2) and (B.4) can be used to compute the normal and
tangential derivatives at a point at the boundary of Ψ, provided ∂u/∂x1 and ∂u/∂x2 are known.


