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Background: This note comments on some recently developed techniques for computing an approximate
solution to a Boundary Integral Equation (BIE) like

(1) α q(x) +

∫
Γ

K(x,y) q(y) ds(y) = f(x), x ∈ Γ,

where Γ is a piecewise smooth contour in the plane, and where K is a one of the standard kernels of potential
theory such as, e.g., the single or double layer kernels associated with the Laplace or Helmholtz equations. A
challenge in solving (1) is that its integrand exhibits complicated singular behavior near the corner points of
Γ. A classical technique for dealing with this difficulty has been to expand the unknown q near the corner
using specialized basis functions that incorporate analytical knowledge about the singularity [2]. Recently,
however, a remarkable observation has been made [1, 7, 8] that there exist general purpose techniques that do
not require any analytical à priori knowledge other than that the integrand of (1) be absolutely integrable.

In a nutshell, the idea of [1, 7, 8] is to use a standard Nyström discretization of (1) designed for a smooth
contour. The discretization should use a panel based (i.e. non-global) quadrature rule such as, e.g., a composite
Gaussian rule. Then simply refine the computational mesh near any corner. For any given computational
tolerance ε (say ε = 10−10), continue the refinement until the contribution from any panels directly touching
a corner is bounded by ε (this is possible since the integrand in (1) is absolutely integrable). Now omit the
panels nearest to the corner from the discretization. Observe that on any remaining panel, the function q is
smooth enough to be accurately represented by the interpolant implied by the chosen quadrature rule.

The apparent drawback of a simplistic refinement process like the one described is that it can dramatically
increase the number of degrees of freedom required in the Nyström discretization. A key insight of [1, 7, 8] is
that the “superfluous” degrees of freedom added by the refinement can be eliminated from the linear system
via a strictly local process. Moreover, this local process can be executed in time that scales linearly with the
number of degrees of freedom added. The end result is a linear system discretizing (1) that has about as many
degrees of freedom as one would have needed had the corner not been present in the first place. (For the case
of regular polygonal domains, the compression can even be performed in sublinear time [8].)

The task of “squeezing out” the degrees of freedom added by the local refinement near the corner is in [1, 7, 8]
executed via purpose-built local compression techniques that can be somewhat challenging to implement. The
purpose of this note is to demonstrate that this compression step can be executed via the general purpose
direct solvers described in [4, 5, 9, 11].

A linear algebraic observation: The compression technique that allows us to eliminate the superfluous
degrees of freedom is based on the observation that certain off-diagonal blocks of the coefficient matrix resulting
from the discretization of (1) have low numerical rank. Critically, the important ranks do not depend on how
many degrees of freedom are used in the refinement near the corner. To illustrate how such rank-deficiencies
can be exploited, consider in general the task of solving the linear system

(2)

[
A11 A12

A21 A22

] [
q1
q2

]
=

[
f1
f2

]
,

where A11 is of size n1 × n1 and A22 is of size n2 × n2. Now assume that A12 and A21 each are of rank k.
Think of n1 as a large number (e.g. the number of degrees of freedom used in the refinement of the corner, say
n1 ∼ 103), and k as a small number (in practice, in the range 10 – 50 ). Then A12 and A21 admit factorizations

(3)
A12 = U1 B12

n1 × n2 n1 × k k × n2
and

A21 = B21 V∗
1,

n2 × n1 n2 × k k × n1

where U1 and V1 are well-conditioned matrices. We further assume that the data vector f1 belongs to the
same k-dimensional space as the columns of A12 (if it does not, then the space can be extended as needed),

(4) f1 = U1 f̃1.

1Department of Mathematics, Dartmouth College, Hanover, NH, 03755-3551
2Department of Applied Mathematics, University of Colorado, Boulder, CO, 80309-0526

1



2

When (3) and (4) hold, the linear system (2) with n1 + n2 unknowns is in a certain sense equivalent to the
smaller system

(5)

[
D11 B12

B21 A22

] [
q̃1
q2

]
=

[
f̃1
f2

]
with only k + n2 unknowns. In (5), D11 and q̃1 are defined by

(6) D11 =
(
V∗

1A
−1
11 U1

)−1
and q̃1 = V∗

1q1.

When we say that (2) and (5) are “equivalent” we mean that the solution {q1, q2} of the larger system (2)
can be obtained from the solution {q̃1, q2} of the smaller system (5) via the formula

(7) q1 = A−1
11 U1 D11 q̃1.

To be precise, the equivalence holds when A11 and V∗
1A

−1
11 U1 are both non-singular.

Matrix skeletons: For the low-rank factorizations (3), it is convenient to use a so-called interpolative de-
composition (ID) [3] in which B12 is a k × n2 matrix consisting of k rows of A12 and B21 is an n2 × k matrix
consisting of k columns of A21. The matrices U1 and V1 each hold a k × k identity matrix as a submatrix,
and have no entries whose magnitude exceeds 1.

The advantage of using an ID is that the matrices A12 and A21 need never be formed. Instead, a local
computation determines the index vectors pointing out which columns and rows are needed. and then only
those entries need to be computed to create the off-diagonal blocks B12 and B21 in (5). Moreover, when

skeletonization is used, the vector f̃1 can be formed by evaluating the vector f1 only at the k nodes associated
with the spanning rows of A12.

A strictly local technique for computing U1 and V1, and determining the corresponding index vectors, is
described in Section 6.2 of [4].

Outline of the solution process: To describe the refinement and the local compression, we consider a
contour with a single corner, like the one shown in Figure 1(a). We partition the contour into two disjoint
parts, Γ = Γ1 ∪ Γ2, in such a way that Γ1 is a small piece containing the corner. The piece Γ2 is smooth, and
can be discretized into panels rather coarsely (since we use a high order rule, high accuracy does not require
many points). For the piece Γ1, we use a simplistic refinement strategy where we recursively cut the panel
nearest the corner in half. Once the innermost panel is small enough that its contribution can be ignored
(recall that we assume that the integrand is integrable), it is simply discarded and the refinement stops. The
Nyström discretization now results in a linear system like (2). Observe that the block A11 can be very large
since we may need thousands of points to fully resolve the singularity near the corner. The key observation is
now that the rank k of A12 and A21 is essentially independent of how finely the corner has been refined. This
allows us to employ the direct solver of [4, 5, 9, 11] to compress the corner and eliminate the “extra” degrees
of freedom used to resolve the singularity. The output of the compression is (i) a set of k collocation points
inside Γ1 that are automatically picked by the algorithm from among the n1 points used in the refinement and
(ii) a k × k dense matrix D11 that represents self-interaction among the k remaining points. The cost of this
compression is O(n1 k

2). Once the compression has been completed, all that remains is to solve the smaller
system (5) to obtain the solution {q̃1, q2}, and, if required, reconstructing the full vector q1 via (7).

For a contour with multiple corners, simply repeat the local compression for each corner. Note that the
compression processes are independent, meaning that they can be executed in parallel on a multi-core machine.
The authors of [1, 7, 8] have demonstrated the astonishing power of this observation by solving numerical
examples involving tens of thousands of corners to close to full double precision accuracy.

Note: To achieve optimal accuracy, it is important to scale the matrix elements in the Nyström discretization
as described in [2]. The idea is to scale the vectors in the discretization by the quadrature weights so that
for a panel Γp corresponding to an index vector Ip, we have ||q||L2(Γp) ≈ ||q(Ip)||ℓ2 . The matrix elements

in the coefficient matrix are scaled analogously so that ||α q(·) +
∫
Γ
k(·,y) q(y) ds(y)||L2(Γp) ≈ ||[Aq](Ip)||ℓ2 .

The idea is to not give disproportionate weight to a region of the contour that ends up with a high density of
discretization points due to a local refinement.
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Figure 1. The boundary Γ considered in the numerical experiments. (a) The original
Gaussian grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined grid.
(c) The grid after local compression.

Numerical illustration: Consider the boundary value problem

(8)

∆u(x) + κ2u(x) = 0 x ∈ Ω̄c

u(x) = g(x) x ∈ Γ = ∂Ω√
|x|

(
∂

∂|x| − iκ
)
u(x) → 0 as |x| → ∞

where κ is a constant wavenumber, Ω is a two dimensional bounded domain whose boundary Γ is a piecewise
smooth contour, and Ω̄c = R2/Ω̄. We make the ansatz that the solution u can be represented by

u(x) =

∫
Γ

(
i

4

∂

∂ν(y)
H0(κ|x− y|)

)
q(y) ds(y), x ∈ Ω̄c,

where ν(y) represents the normal vector to Γ at the point y ∈ Γ and i
4H0(κ|x−y|) is the fundamental solution

to the Helmholtz equation. By enforcing the boundary condition, we obtain the following equation for the
unknown boundary charge distribution q:

(9) −1

2
q(x) +

∫
Γ

(
i

4

∂

∂ν(y)
H0(κ|x− y|)

)
q(y) ds(y) = g(x), for x ∈ Γ.

We discretize (9) via a Nyström technique based on a composite Gaussian quadrature [10] with 10 Gaussian
nodes per panel. Note that the kernel of (9) is weakly singular, but high order accuracy can be retained by
modifying a small number of matrix entries close to the diagonal, see [6].

All experiments are run on a Lenovo laptop computer with 8GB of RAM and a 2.6GHz Intel i5-2540M pro-
cessor. The compression technique was implemented rather crudely in MATLAB, which means that significant
further gains in speed should be achievable.

A tear shaped geometry with arc-length 4π is considered, cf. Figure 1 (a), for three values of κ (corresponding
to domain sizes 0.31, 3.18, and 31.83 wavelengths, respectively). The boundary data is taken to be the incident
wave eiκx2 . We measured the error Echarge in the computed boundary charge q given by

Echarge =
∥q − qexact∥L2(Γ)

∥qexact∥L2(Γ)

and the error Epot in the potential u, evaluated on the boundary of a circle S with radius 3 enclosing Ω,

Epot =
∥u− uexact∥L2(S)

∥uexact∥L2(S)
.

Since the exact solutions qexact and uexact were not available, we measured against a very highly over-resolved
reference solution. Rows 1, 5, and 9 of Table 1 report the errors Echarge and Epot when there is no refinement
of the corner. In all other experiments, the corner is discretized with 1280 points and is compressed for three
prescribed tolerances ϵ. Table 1 reports the size of the original system (N × N), the size of the compressed
system (Ncompressed × Ncompressed), the number of skeleton nodes in the corner k, and the time Tcompress in
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κ N ϵ Ncompressed k Tcompress Echarge Epot

1 100 — — — — 2.3e− 01 1.3e− 04
1 1380 1e− 7 125 25 0.66 8.9e− 07 1.3e− 07
1 1380 1e− 10 137 37 0.85 8.5e− 10 9.1e− 11
1 1380 1e− 12 145 45 0.96 6.6e− 12 1.1e− 12
10 400 — — — — 4.4e− 01 1.4e− 04
10 1680 1e− 7 427 27 0.64 1.8e− 05 5.7e− 07
10 1680 1e− 10 438 38 0.86 9.2e− 07 1.4e− 09
10 1680 1e− 12 445 45 1.00 1.5e− 11 6.4e− 13
100 1600 — — — — 1.0e− 01 1.4e− 04
100 2880 1e− 7 1589 29 0.65 8.1e− 07 1.5e− 07
100 2880 1e− 10 1599 39 0.85 7.2e− 10 1.3e− 10
100 2880 1e− 12 1607 48 1.00 9.3e− 12 6.1e− 12

Table 1. Results from solving the external Helmholtz problem (8) on the geometry shown
in Figure 1(a) for three different values of the wave-number κ. The errors Echarge and Epot

report the relative errors in the computed charge distribution q, and the evaluated potential,
respectively. k is the rank of interaction (to precision ϵ) between the corner piece in Γ1 and
the rest of the contour, and Ncompress is the size of the compressed system. Tcompress is the
time in seconds required for compressing the corner.

seconds for the compression. We observe that very high accuracy is attained for every wave-number. Moreover,
the rank k of interaction between the corner patch (Γ1) and the rest of the domain (Γ2) is always small, it
depends only weakly on the requested accuracy, and it hardly depends at all on the wave-number.

The technique described can easily be adapted to complicated domains with many corners, in a manner
entirely analogous to [1, 7, 8].

As a curiosity, let us finally mention that we also ran numerical experiments on domains whose corners
were not re-entrant to Ωc, but found that for such domains, nine digits of accuracy was obtained without local
refinement in the corner.
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