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Abstract

Radial basis functions (RBFs) can be seen as a major generalization of pseu-

dospectral (PS) methods, abandoning the orthogonality of the basis functions

and in return obtaining much improved simplicity and geometric flexibility.

Spectral accuracy becomes now easily available also when using completely

unstructured node layouts, permitting local node refinements in critical areas.

The first major PDE applications for which RBFs have been shown to com-

pete successfully against the best currently available numerical approaches

can be found in the geosciences. Examples that are discussed here include

translating vortex roll-ups (cyclogenesis), nonlinear flows on the sphere mod-

eled by the shallow water equations, and 3D convection in the earth’s mantle.

Keywords: Radial basis functions, RBF, spherical geometry, transport

schemes, shallow water equations, mantle convection

∗Corresponding Author
Email addresses: flyer@ucar.edu (Natasha Flyer), fornberg@colorado.edu

(Bengt Fornberg)

Preprint submitted to Elsevier April 30, 2010

Manuscript
Click here to view linked References

http://ees.elsevier.com/caf/viewRCResults.aspx?pdf=1&docID=1481&rev=0&fileID=55534&msid={6456817F-414F-4456-9B5B-63696481FD55}


1. Introduction

Radial basis functions (RBFs) were first applied to the task of solving

PDEs about 20 years ago [1, 2]. While high accuracy and geometric flexibil-

ity have always been noted strengths of the approach [3], it is only in the last

few years that their application to PDEs has progressed from tests on highly

simplified model problems to demonstrating that the approach can compete

successfully against the best existing numerical methods on ‘full-scale’ ap-

plications, as these arise for examples in the geosciences [4, 5, 6, 7]. A brief

review of this development is therefore timely.

There are several ways to introduce RBFs. One way is to note that they

generalize cubic splines in many ways, such as to scattered node layouts in

any number of spatial dimensions and, in terms of accuracy, from fourth

order to spectral (above any algebraic order). Since our present context con-

cerns solving PDEs, we choose a different path here, starting instead from

standard finite difference (FD) approximations. In their limit of increasing

orders of accuracy, FD transform to pseudospectral (PS) methods, which al-

ternatively can be described in terms of expansions in orthogonal functions -

e.g. of Fourier- or Chebyshev- type. PS methods can be extremely effective,

but are usually limited to simple domain shapes. With RBFs, we use data lo-

cation dependent expansion functions, and give up all orthogonality features.

In exchange, it transpires that one can gain a wide range of advantages, in-

cluding complete geometric flexibility with regard to both domain shapes

and node layouts, as well as freedom from mesh generation. The traditional

PS methods can be recovered as special cases of RBFs. Computational cost

and numerical stability were initially seen as potential difficulties, but major
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progress has recently been made also in these areas.

2. FD and PS methods

FD approximations are typically derived in 1D by finding weights which

make them exact for monomials of as high degrees as possible. In more than

1D, they can be applied in each direction in turn. In contrast, FD approx-

imations that are directly designed to be exact for multivariate monomials

have seldom been successful. It is often not clear which monomials to include

and, for scattered nodes, the linear systems that determine the FD weights

will often become singular.

2.1. FD formulas

Several numerical and symbolic algorithms are available for calculating

FD weights on equispaced grids [8]. In case of a FD stencil of the general

shape described by the numbers s (real), and d, n (non-negative integers):

↓ ← s → ↓ ← d → ↓
◦ − ◦ − ◦ ←− Entries for dmu

dxm

• − • − • − • − • − • ←− Entries for u
↑ ← · · · n · · · → ↑

,

the briefest algorithm requires only two lines of code. In Mathematica 7:

t = PadeApproximant[xs
(

Log[x]
h

)m

, {x, 1, {n, d}}];

CoefficientList[{Denominator[t],Numerator[t]}, x]

This routine produces also the coefficients for all the main classes of linear

multistep methods for ODEs. In our present context, these FD formulas

are of particular interest due to the relation that is indicated in (1). The
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‘classical’ centered FD formulas of increasing order for approximating ∂u
∂x
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. (1)

converge to a simple limit when the order is increased. A main theme of [9]

was to generalize and expand on this observation.

At or near boundaries, one needs to use non-centered FD formulas. The

weights will then instead diverge for increasing orders, as a consequence of

the Runge phenomenon. A commonly used remedy is to cluster nodes near

the boundary, e.g. as Chebyshev nodes xk = − cos kπ
n

, k = 0, 1, . . . , n on

[-1,1]. Effective algorithms for finding optimal FD weights are available also

for such non-uniform grid cases [8], [10].

2.2. PS methods

We consider here only Fourier-PS and Chebyshev-PS methods.

2.2.1. Fourier-PS methods

For 2π-periodic data fk given at xk = 2(k−1)π
n

, k = 1, 2, . . . , n, two ways

to approximate df
dx

are:

i. Bring fk to Fourier space by an FFT, differentiate analytically, and

return the derivative values to physical space by an inverse FFT, or

ii. Apply the ‘PS limit’ stencil (last line of (1)) to the data (including

its periodic extensions).

These two approaches will always give identical results (any order deriva-

tive, regular or staggered grids, etc.) Hence, it is natural to view the Fourier-
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PS method as the limit of centered FD approximations as their order in-

creases. The approach (i) is the most practical one. If we for simplicity

assume n to be odd, we can view 1, {cos(kx), sin(kx)} , k = 1, 2, . . . , n−1
2

as

the Fourier-PS method’s basis functions.

2.2.2. Chebyshev-PS methods

With the nodes placed at Chebyshev locations, we have again two main

options for approximating derivatives:

i. With a FCT (fast cosine transform - a variation of the FFT), ob-

tain the interpolating polynomial in the form of its Chebyshev expansion

coefficients, modify these according to analytic differentiation and return to

physical space by another FCT.

ii. Create the differentiation matrix (DM) such that multiplying it

with a column of function values at the nodes will return the matching deriva-

tive values. Each row in this DM contains the weights of a corresponding

global FD stencil.

Also the Chebyshev-PS method can therefore be viewed either in terms

of an expansion in basis functions (now Tk(x), k = 0, 1, . . . , n), or as the

application of high order FD stencils. Both versions are numerically practical,

with operation counts of O(n log n) and O(n2), respectively. The latter option

is usually the faster one when n / 200.

2.2.3. PS methods in more than 1D

Grid layouts for PS methods in 2D are essentially limited to mappings

of rectangular grids, giving very limited opportunities for handling irregular

geometries and for carrying out local node refinements. Scattered nodes can
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in general not be used [11]. Suppose they are located at xk and that the basis

function set is Fk(x), k = 1, 2, . . . , n. The coefficients λk for the interpolant

s(x) =
∑n

k=1 λkFk(x) are obtained by solving the linear system







F1(x1) F2(x1) · · · Fn(x1)
F1(x2) F2(x2) · · · Fn(x2)
...

. . .
...

F1(xn) F1(xn) · · · Fn(xn)











λ1
λ2
...
λn



 =





f1
f2
...
fn



 . (2)

In more than 1D, it is possible to move the nodes continuously so that two

nodes end up interchanged, without them having coincided at any time. The

effect on the coefficient matrix above is that two rows become interchanged,

i.e. its determinant has changed sign. It must therefore have been zero

somewhere along the way. One can attempt to partly bypass this limitation

by means of domain decomposition, e.g. spectral elements, but other com-

plications will then arise (such as the need to introduce internal unphysical

boundaries).

3. Introduction to RBF interpolation

RBF interpolation is based on a linear combination of translates of a

single radially symmetric function, φ(||x − xk||2), that collocates the data

{fk}
n
k=1 at the nodes {xk}

n
k=1 , xk ∈ R

n, as shown in Figure 1 and given by

(where we have dropped the subscript 2 on ℓ2 norm)

s(x) =

n
∑

k=1

λkφ(||x− xk||). (3)
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Figure 1: (a) Data values {fk}
n
k=1

and locations {xk}
n
k=1

(b) RBF collocation functions

(c) Unique linear combination of the RBFs, agreeing with all provided data.

The expansion coefficients, λk, can be found by inverting the matrix, A, in

(4)







φ(||x1 − x1||) φ(||x1 − x2||) · · · φ(||x1 − xn||)
φ(||x2 − x1||) φ(||x2 − x2||) · · · φ(||x2 − xn||)
...

...
...

φ(||xn − x1||) φ(||xn − x2||) · · · φ(||xn − xn||)











λ1
λ2
...
λn



 =





f1
f2
...
fn



 .

(4)

Since RBFs only depend on a scalar distance (defined by the ℓ2 norm), dis-

cretization is independent of coordinate system, dimension and domain ge-

ometry. As an example, even if node locations on a sphere are given in

spherical coordinates, no such grids need to be used. Distances are measured

straight through the sphere and not along great arcs. As a result, RBFs are

very simple to program.

For all the choices of RBFs listed in Table 1 (with a minor modification

needed in (3) in case of GDS), the matrix in (4) can never be singular, no

matter how any number of (distinct) nodes are scattered in any number of

dimensions [12, 13, 14]. The ‘piecewise smooth’ radial functions feature a

singularity at the origin and in the compactly supported ‘Wendland’ case
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[15] also at r = 1. Radial functions listed under ‘piecewise smooth’ are of

significant interest in the contexts of interpolation and statistics, but less so

when solving PDEs (the fact that they are not C∞ yields algebraic as opposed

to spectral accuracy [15, 16]), and will not be discussed further. Infinitely

smooth RBFs depend on a shape parameter ε that plays an important role

in accuracy and conditioning of the matrix A in (4).

All numerical schemes for interpolation and for solving PDEs exhibit two

main types of errors, truncation and rounding errors. The first is caused by a

continuous problem having being replaced by a discrete one and the latter by

finite floating point precision. We will later see that the flat RBF limit (small

ε) can offer small truncation errors although numerical ill-conditioning can

then amplify rounding errors, often to the extent of destroying all precision.

The two main remedies against this are: 1) Instead of directly inverting

the interpolation matrix (known as RBF-Direct), employ a stable algorithm

(as discussed in Section 4.2); and 2) gradually increase ε when the number

of nodes n is increased, in order to keep the numerical conditioning intact.

This latter approach is commonly used and often works quite well, but the

saturation error effect [3] may then prevent the overall error from converging

to zero.

4. Flat RBFs (ε → 0)

Classical basis functions are often designed to have various orthogonality

properties, implying that functions of increasing orders become more oscilla-

tory. Figure 2 (a) illustrates this for Legendre and Chebyshev polynomials.

This can be contrasted to the situation when RBFs are made flatter (ε→ 0),
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Type of basis function Radial function φ(r = ||x− x
k
||2)

Piecewise smooth RBFs
Generalized Duchon spline (GDS) r2m log r, m ∈ N

r2m, m > 0 and m /∈ N
Wendland (1− r)m

+p(r), p certain polynomials, m ∈ N

Matern 21−m

Γ(m)
rmKm(r), m > 0

Infinitely smooth RBFs
Gaussian (GA) e−(εr)2

Multiquadric (MQ)
√

1 + (εr)2

Inverse Multiquadric (IMQ) 1/
√

1 + (εr)2

Inverse Quadratic (IQ) 1/(1 + (εr)2)

Table 1: Some common choices for radial functions

Figure 2: (a) Legendre and Chebyshev polynomials of increasing orders, (b) Eleven equi-

spaced translates of GA RBFs for four different values of ε. From top to bottom, ε = 10,

1, 0.1 and 0.01.
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Figure 3: (a) A set of 41 scattered nodes in the unit circle, (b) The error in max norm

when the test function f(x, y) = 59/(67+(x+ 1

7
)2 +(y− 1

11
)2) is interpolated using these

nodes, displayed as a function of the shape parameter ε.

as seen in Figure 2 (b) for GA RBFs in 1D. The conditioning of the coefficient

matrix A in (4) worsens rapidly in this process. For example, in the case of

n = 41 scattered nodes in 1D, with any of the ‘Infinitely smooth RBFs’ in

Table 1, cond(A) = O(ε−80) and det(A) = O(ε1640). In 2D, the correspond-

ing rates become O(ε−16) and O(ε416), resp. Increasing n also worsens the

conditioning. In 2D, cond(A) = O(ε−2 [(
√

8n−7−1)/2]), where [·] denotes the

integer part [17]. As suggested by Figure 3, the low ε-range is nevertheless

of great interest. Part (a) shows 41 scattered nodes over the unit circle in 2D

and part (b) shows how the max norm error varies with ε when using RBF-

Direct, i.e. interpolating a test function by directly applying (4) and (3) in

standard 64 bit double precision. As ε is made smaller, accuracy increases

to very high levels until numerical ill-conditioning kicks in. This observation

naturally prompts a number of questions:

1. In exact arithmetic (with ill-conditioning not an issue), will RBF inter-

polants s(x) converge some limit function as ε→ 0?
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2. Is it possible to develop numerical algorithms that remain numerically well

conditioned even as ε→ 0?

3. What error levels can be reached with RBF interpolation and derivative

approximation?

4.1. PS - A special case of RBFs as ε→ 0

For scattered data in 1D, it was shown in [18] that the RBF interpolant

will converge to Lagrange’s interpolation polynomial as ε → 0. The result

is subject to some minor ‘fine print’ that has been strictly proven in the GA

case [19, 20] but also holds for other infinitely smooth RBFs. Since the PS

interpolant follows from the Lagrange intepolation polynomial (cf. Section

2), this result implies that RBF interpolants will reproduce PS interpolants in

this limit. For example, periodically equispaced nodes will reproduce Fourier-

PS methods. The convergence of RBF approximations to the Fourier-PS

method in the 1D periodic case is analyzed in [21].

It was shown in [22] that, if the limit for ε → 0 exists for a finite node

configuration, the RBF interpolant must converge to a polynomial form also

in multivariate cases. Numerical tests indicated that the limit indeed always

exists when using GA RBFs (later proven in [23]) and also for a certain class

of Bessel RBFs [24]. However, convergence may fail in connection with finite

Cartesian lattices (and with other ‘non-unisolvent’ node configurations) for

other RBF types. Other disadvantages with such finite lattices, in the context

of RBFs, are noted in Section 5.

4.2. Stable numerical algorithms in the limit as ε→ 0

As ε→ 0, the RBF expansion coefficients λk will diverge rapidly towards

±∞ (as seen by the behavior of the condition number for the 1D and 2D
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cases above). Hence, a vast amount of numerical cancellations must occur

in the sum (3) for it not to diverge. The two numerically stable algorithms

for calculating s(x) in the ε → 0 limit were motivated by the realization

that RBF-Direct (solving for the coefficients in (4) followed by summing the

terms in (3)) amounts to two successive numerically ill-conditioned steps for

calculating a well conditioned quantity s(x). Thus, there also ought to exist

numerically well-conditioned algorithms for the task.

Varies types of preconditioning/SVD decomposition of (4), as well as the

use of high precision arithmetic have been suggested in the literature. The

basic problem with the first of these approaches is that essential information

becomes irretrievably lost the moment the coefficient matrix A is formed,

and no regularization ideas can recover this. Nor does this approach address

that also (3) is ill conditioned. High precision arithmetic can offer some

help if very fast high precision hardware is available, but the degradation of

condition numbers with increasing n and decreasing ε is often too severe for

this venue to be practical. Only two algorithmic concepts, summarized next,

have so far been found that permit well conditioned calculations all the way

into the ε→ 0 limit.

Contour-Padé algorithm. The key concept is to consider the RBF interpolant

not only for real values of ε but also for complex ones. Then, s(x) in (3)

becomes a meromorphic function of ε in the vicinity of ε = 0, with this point

itself usually being only a removable singularity. That observation led to the

first successful stable algorithm [25]. Its main shortcoming is a limitation on

the number of nodes n that the algorithm will work for; in 1D n / 20 and in

2D n / 80. These relatively low limits have still allowed much exploratory
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work on RBFs in the low ε regime. The algorithm conclusively showed that

there exists no inevitable ‘uncertainty principle’-type conflict between high

RBF approximation accuracy and numerical conditioning.

RBF-QR algorithm. Figure 4 shows that one must separate carefully between

a space and a basis that spans it. In both of the displayed examples, the

spaces are excellent, yet the basis chosen to span them can be good or bad.

Turning to RBFs, the translates of near-flat RBFs clearly form a basis that

is ill-suited for immediate numerical use. The key question is whether the

underlying approximation space is bad, or if we can resolve all conditioning

issues just by finding an alternate good basis in exactly the same space.

This latter case turns out to hold true, leading to the follow-up issue of how

one analytically can carry out the key steps of the basis conversion so that

no numerical cancelations will arise in the process. The first RBF case for

which this was done successfully was for scattered nodes over a sphere [26],

based on certain expansion formulas that were originally devised for different

purposes in [27, 28]. In this case, there is no limit on the number of nodes. A

corresponding algorithm for regular general 1D,2D, and 3D domains is given

in [29].

5. PS vs. RBF derivative approximations

It follows immediately from the observations above that PS methods can

be seen as a very special case of RBF methods - just place the nodes in the

manner required for some classic PS method, and then let ε→ 0. Typically,

neither the flat basis function limit, nor grid-based node placing are opti-

mal. Even on regular lattices, RBFs can provide (slightly) better derivative
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Figure 4: Examples of ‘good’ approximation spaces spanned by good vs. bad basis.

(a) (b)

Figure 5: (a) Nodes typically used for approximating ∂
∂x

(�) and ∂
∂y

(o) at the origin on a

2D Cartesian grid, with × marking the direction for the directional derivative 1√
2
( ∂

∂x
+ ∂

∂y
)

(b) Where data for approximating ∂
∂x

should be picked up in a grid-free (x,y) plane.
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approximations than PS methods. Consider for example the task of approx-

imating ∂
∂x

at the origin of a 2D Cartesian grid. Figure 5a illustrates by

squares (“�”) which nodes will be used by FD and PS methods. In the case

of ∂
∂y

, the nodes will instead be those marked with (“◦”). The PS approxima-

tion for L = 1√
2
( ∂

∂x
+ ∂

∂y
) will be a combination of these two approximations,

There is something quite strange about this. The operator L represents the

directional derivative in the direction with nodes marked (“×”), yet not a

single one of these nodes have been utilized Some nearby function values

along this line ought contain more significant information than what is the

case for function values far out along the x- and y-axes. Some very heuristic

arguments in [30] suggest that the function x
8 0

F
1
(3,−1

4
(x2 + y2)), shown in

Figure 5b, better reflects how information should be collected in the vicinity

of the origin when approximating ∂
∂x

. Unless the RBF shape parameter ε is

reduced all the way to the PS limit (or GA RBFs are used on a Cartesian

lattice), RBF-based derivative approximations will typically pick up informa-

tion in a way that is more reminiscent of Figure 5b than of the line marked

by squares in Figure 5a (along the x-axis only). Although the accuracy ad-

vantage with RBFs is not very large in this particular case of doubly periodic

Cartesian grids, it is still noteworthy that the RBF approach even here more

than holds its own in comparison with periodic PS methods. Hexagonal and

somewhat scattered node layouts, impossible with the PS approach, can im-

prove RBF accuracy further still as well as provide better conditioning, c.f.

Section 6.2.

15



6. Introductory examples of RBFs for PDEs

Kansa proposed in 1990 to use the analytic derivatives of an RBF inter-

polant to approximate the spatial derivatives of steady-state and convective-

diffusive PDEs [1, 2]. For time-stepping, the DMs can be formed as a pre-

processing step and then be applied fast as matrix times vector multiplica-

tions. For steady-state cases, the RBF expansion is enforced at each node

such that both PDE and boundary conditions are satisfied. This approach

has been widely successful, even if rare possibilities for singularities were later

noted [31]. Although a ‘symmetric’ version [32], [33] can never be singular,

its practical advantage is unclear. Like for interpolation, infinitely smooth

radial functions typically provide spectral accuracy [16, 34, 35].

6.1. First uses of stable algorithms

The study [36] introduced the novelty of applying a stable algorithm to

the task of solving PDEs by RBFs. Figure 6 shows a typical result. Kansa’s

direct approach is used here for a Poisson equation in 2D:

∆u(x) = f(x) in interior Ω (5)

u(x) = g(x) on boundary ∂Ω. (6)

A simple test case is obtained by choosing u(x) = 100/(100+(x−0.2)2+2y2)

and then selecting g(x) and f(x) accordingly. The domain is the unit circle

(in order to allow easy comparisons of RBFs against FD2 and PS methods,

which require simple domain shapes). We use here in all three cases node

sets with NB = 16 nodes on ∂Ω and NI = 48 nodes in Ω with distributions:

(RBF) generally scattered, (PS) equispaced in angle, Chebyshev across the
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Figure 6: ℓ∞ errors as a function of ε, when solving (6) using GA, IQ, MQ RBFs (a)

Using RBF-Direct and (b) Using Contour-Padé. The dashed lines across both subplots

compares the accuracies reached by FD2 and PS (both independent of ε).

circle; and (FD2) equispaced in both angle and across circle. The use of a

stable algorithm not only improves the accuracy, but also makes the choice

of ‘optimal’ ε very much less critical. The first use of the RBF-QR algorithm

for solving PDEs is noted Section 7.1.1.

6.2. Boundary issues and node distributions

Interpolation is always much more stable than extrapolation. Likewise,

errors at a domain boundary tend to be larger than in domain interiors.

In the case of high degree polynomial interpolation, this edge effect gives

rise to the Runge phenomenon, often controlled by Chebyshev-type node

clustering. With RBFs, especially when they are used to solve PDEs, there

are additional (and usually better) options available to control these edge

effects [37, 38]. While some aspects of RBF theory have benefitted from

analysis on Cartesian lattices [39, 40, 41, 42], it should be noted again that
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such lattices usually are unfavorable node distributions [18] (Ex. 7), [30, 43].

Hexagonal lattices can be significantly better, as can Halton node sets and

node sets achieved by greedy algorithms [44]. Infinite lattice analysis is often

misleading, for example in showing low order algebraic convergence rates

even when finite node distributions feature spectral convergence.

7. RBFs applied to PDEs arising in the geosciences

The largest-scale implementations of RBF spatial discretization for solv-

ing PDEs have been pursued in the geosciences. These implementations are

in 2D and 3D spherical geometries, using 1000s to over half million degrees of

freedom in space. Performance comparisons are presented against the most

advanced currently existing numerical methods. The results below are only

partial summarizations of [4, 5, 6, 7], with these articles giving studies in

convergence, time stability, and the choice of the shape parameter ε. In all

cases presented, no filtering was needed to stabilize the RBF method.

7.1. Transport on a sphere

Since advection is a primary process in most astro/geophysical fluid ap-

plications, it is important to the accuracy of the advective solver that the

solution is kept intact without artificial dispersion or dissipation. As a result,

the first benchmarks to be addressed are two cases in pure transport on the

sphere: 1) linear translation (solid-body rotation) [4] and 2) cyclogenic defor-

mation (translating vortex roll-up) [4, 6]. Although the PDEs are posed in

spherical coordinates, no pole singularities exist when using the RBF method

since the basis functions are not defined in terms of any surface-based coordi-
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nate system. In this section, we consider only scalar-valued variables. In case

of vector valued dependent variables, see the discussions in [5, 45, 46, 47].

7.1.1. Solid body rotation

This standard benchmark describes the advection, by a non-divergent

wind, of a solid body (i.e. the initial condition) around the sphere at an

angle α relative to the polar axis [4, 48, 49, 50, 51]. The governing PDE in

latitude (θ) and longitude (λ) is

∂h

∂t
+ (cos α− tan θ sin ϕ sin α)

∂h

∂ϕ
− cos ϕ sinα

∂u

∂θ
= 0, (7)

where h is the initial condition, a rotated cosine function connecting to a

flat plane at its base, implying a jump in the second derivative there. This

irregularity makes it more typical of actual (non-smooth) data, and does not

give any unfair advantages to high order methods. Figure 7 [4] shows the

(a) (b)

Figure 7: Left: Cosine bell (peak height 1000) displaced after one revolution in a 4096

node RBF calculation, Right: The error, with a maximum of 0.3%, is seen to be dominated

by errors at its base caused by the jump there in the second derivative.
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Method Relative Nr of nodes/ Time step Code Ref.

l2 error free parameters length

RBF Rad. basis fn. 0.006 4,096 1/2 hour < 40 [4]

SPH Spherical harm. 0.005 32,768 90 sec. > 500 [52]

DF Double Fourier 0.005 32,768 90 sec. > 100 [52]

SE Spectral elem. 0.005 7,776 6 min. > 1,000 [53]

Table 2: Comparison between one revolution cosine bell calculations in the literature

result of a typical calculation corresponding to one full revolution around the

sphere, with the time scaled so that one revolution corresponds physically to

12 days. The same test case was run in [50] to thousands of revolutions, in

which case the best ε-value necessitated the use of the RBF-QR method. The

error picture remained essentially unchanged from the one shown in Figure

7b for just one revolution. Table 2 compares different numerical methods

from the literature on this test case for achieving the a relative l2 error of

approximately 0.0005 after one revolution. The RBF calculation requires the

least number of nodes, while using the longest time steps. It should be noted

that the RBF time step in Table 2 was not limited by stability as in the case

of the other methods but so that time discretization errors matched spatial

discretization errors. In terms of stability, the RBF method could take a

31
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hour time step with only about an order of magnitude loss in error (see

Section 5.3 [4]).

7.1.2. Translating vortex roll-up

Here, two opposing vortices form as they are translated along the equator

of a coordinate system rotated an arbitrary angle relative to the polar axis
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(see [6, 54]). Since the angular velocity depends on the vortex centers, the

rotating flow field is time-dependent. The initial condition varies as a steep

tanh profile between the poles. The purpose of the test is to see how well

a numerical method handles a solution with increasingly stronger gradients

over time, as seen in Figures 8(a-d) for 1 revolution (12 days). The test

was conducted with and without local node refinement. Table 3 compares
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Figure 8: RBF solution and magnitude of the error at t = 3 and 12 days for the moving

vortex case with N = 3136 refined nodes and ∆t = 18 minutes. For the plots of the

solution, contours with an interval of 0.05 are shown and the dashed lines correspond to

h < 1.

the latest as well as all implementations for this case, where FV is finite

volume and DG is a hybrid spectral element discontinuous Galerkin method.
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Method Number Angular Time-step Relative ℓ2 Ref.

of nodes Resolution in min error in h

Without local refinement

RBF 3,136 6.4o 60 4 · 10−3 [6]

FV (lat-long grid) 165,888 0.625o 10 2 · 10−3 [54]

FV (cubed sphere) 38,400 1.125o 30 2 · 10−3 [55]

DG 9,600 2.6o 6 7 · 10−3 [54]

With local refinement

RBF 3,136 - 20 8 · 10−5 [6]

FV (lat-long) - 5o − 0.625o 1-3 2 · 10−3 [54]

Table 3: Comparison between methods in the literature for translating vortex roll-up at

t=12 days.

Without local refinement, for the same accuracy, RBFs use less nodes with

larger time-steps. With local refinement, the RBF calculation gave much

higher accuracy than any other previous implementation.

7.2. Shallow water equations (SWE) - Forced translating low pressure system

This common benchmark models a short wave trough that is embedded in

a westerly jet [48]. Forcing terms are added to the SWE, a set of 3 nonlinear

coupled PDEs, so that the initial condition is nonlinearly advected intact.

An analytic solution is available (see Section 6b [5]). The results below refer

to the RBF calculations in [5]. The initial velocity and height(pressure) field

with the error after 5 days (∼ 1/4 of the way around the sphere) is given in

Figure 9. An important aspect in geo-modeling is the conservation of total

energy and mass. Table 4 gives the relative difference (final/initial-1) in the
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total energy and mass of the system after 5 and 25 days. Unlike FV methods,

the RBF method used here is not constructed to inherently conserve these

quantities, yet for N = 4096, both quantities are conserved to 9 decimal

places. Table 5 compares the RBF method to the most recent high-order

method results for this test case in the literature. The RBF calculation

easily offers the highest accuracy with the longest time step that has yet

been presented. Actual wall clock times are harder to compare, since each

study use very different hardware - in many cases super-computers. The

RBF calculations reported here were run in Matlab on a standard 2.66 GHz

PC, with the N = 3136 run taking 2 minutes and the N = 5041 run taking

12 minutes. These times include pre-processing steps.

(a)

10600

(b) (c)

Figure 9: (a) The initial velocity field; (b) The initial height(pressure) field, contours at

50m intervals; (c) The error in (b) after 5 days for N = 3136.

7.3. Mantle convection in 3D spherical geometry

The physical scenario is the following: the flow is incompressible; temper-

ature (T ) is governed by a mixed convective-diffusive PDE; the momentum
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Nr. of Nodes Mass 5 days 25 days Energy 5 days 25 days

N = 3136 2 · 10−9 4 · 10−9 −3 · 10−9 2 · 10−9

N = 4096 1 · 10−11 2 · 10−10 −1 · 10−10 5 · 10−10

Table 4: Relative Difference (final/initial-1) in total mass and energy after 5 and 25 days.

Method Nr. of Nodes Time step ℓ2 Error Ref.

RBF Radial basis fn. 784 40 min 4.8 · 10−1 [5]

3,136 15 min 8.8 · 10−6

5,041 6 min 1.0 · 10−8

DF Double Fourier 2,048 6 min 3.9 · 10−1 [52]

8,192 3 min 8.2 · 10−4

32,768 90 sec 4.0 · 10−4

SPH Spherical harmonics 8,192 3 min 2.0 · 10−3 [56]

SE Spectral elements 6,144 90 sec 6.5 · 10−3 [57]

24,576 45 sec 4.0 · 10−5

Table 5: Comparison between t = 5 day calculations for the SWE (in the SPH case,

discretizations are needed in both lat-long grids and SPH coefficient space, using 8,192

and 1,849 parameters, respectively).
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PDEs are modeled by Stokes flow, requiring an elliptic solver; the imperme-

able boundaries are slip with T = 1 at the core and T = 0 at the crust.

The PDEs are approximated in [7] by RBF discretization on each of many

concentric spherical shells, combined with Chebyshev PS discretization ra-

dially (see Figure 10). Since no analytic solutions are available, isoviscous

flow at low Ra = 7, 000 is used as a benchmark since it is a steady-state

regime, requiring low resolution. The initial condition for this benchmark is

a combination of fourth-order spherical harmonics times linear decay in the

radial direction (see [7]). The results are summarized in Table 6, comparing

the global variables, Nucrust, Nucore, < VRMS >, < T > (Nu is the Nusselt

Number, VRMS is the root mean square velocity, and < > indicates globally

averaged). For the scheme to conserve energy, Nucrust should equal Nucore

for this test. We note that the RBF-CH method achieves near perfection

in terms of accuracy while using a much lower level of discretization when

compared to the Romberg extrapolated results of the SPH-FD method, the

only other semi-spectral method. It was also the only implementation that

was run on standard PC hardware.

Figure 10(c) shows Ra = 106, a more physically realistic situation when

unstable convection dominates, as the current Earth is Ra = 107. This

simulation is completely unique in that it is the only spectral model in the

literature to be run at such a high Ra in spherical geometry. In addition, the

RBF-CH calculation showed an instability at Ra = 70, 000 that had been

theorized by [62] but remained somewhat controversial, as it had not been

seen in any numerical simulations until now. This episode may be the first

case in which RBF solutions of PDEs provided new physical insights. It also
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(a) (b) (c)

Figure 10: Mantle convection: (a) RBF-CH discretization (b) Solution at Ra = 7000,

yellow=upwelling, blue=downwelling, red=core (c) Solution at Ra = 106, ≈4.5 times the

age of Earth.

demonstrated quite strikingly how effective RBFs can be on standard PCs.

7.4. Future developments

While RBFs have been applied to highly simplified PDE model problems

for decades, large-scale applications are now increasingly being pursued. Is-

sues of particular interest for future work include improved reliability, ef-

fectiveness, and scalability of RBF implementations, dynamically adaptive

node refinement [63], RBF-generated FD (RBF-FD) methods [64, 65, 66],

RBF in conjunction with domain decomposition [67, 68, 69, 70], their ap-

plication on GPUs, stability analysis in the presence of boundaries, effective

‘fast’ algorithms, additionally stable algorithms, etc.
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Method Nr of nodes Nucrust Nucore < VRMS > < T > Ref.
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Table 6: Comparison between methods in the literature for the standard Ra=7000 case.
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