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Numerical homogenization via approximation of
the solution operator

A. Gillman, P. Young, and P.G. Martinsson

Abstract The paper describes techniques for constructing simplified models for problems governed
by elliptic equations involving heterogeneous media. Examples of problems under consideration in-
clude electro-statics and linear elasticity in composite materials, and flows in porous media. A com-
mon approach to such problems is to either up-scale the governing differential equation and then
discretize the up-scaled equation, or to construct a discrete problem whose solution approximates
the solution to the original problem under some constraints on the permissible loads. In contrast,
the current paper suggests that it is in many situations advantageous to directly approximate the
solution operator to the original differential equation. Such an approach has become feasible due to
recent advances in numerical analysis, and can in a natural way handle situations that are challeng-
ing to existing techniques, such as those involving, e.g. concentrated loads, boundary effects, and
irregular micro-structures. The capabilities of the proposed methodology is illustrated by numeri-
cal examples involving domains that are loaded on the boundary only, in which case the solution
operator is a boundary integral operator such as, e.g., a Neumann-to–Dirichlet operator.

1.1 Introduction

1.1.1 Background

The purpose of this report is to draw attention to a number of recent developments in computational
harmonic analysis that may prove helpful to the construction of simplified models for heterogeneous
media. We consider problems modeled by elliptic PDEs such as electrostatics and linear elasticity
in composite materials, and Stokes’ flow in porous media.

Many different solution approaches have been proposed for the type of problems under consider-
ation. A classical technique that works relatively well in situations where there is a clear separation
of length-scales is to derive so called homogenized equations which accurately model the macro-scale
behavior of the constitutive equations without fully resolving the micro-structure. The homogenized
equations can sometimes be derived analytically, but they are typically obtained from numerically
solving a set of equations defined on a Representative Volume Element (RVE). An unfortunate as-
pect of this approach is that its accuracy is held hostage to many factors that are outside of the
control of the modeler. Phenomena that tend to lead to less accurate solutions include:

1. Concentrated loads.
2. Boundaries, in particular non-smooth boundaries.
3. Irregular micro-structures.

The accuracy cannot readily be improved using generic techniques, but a number of strategies for
developing coarse-grained models for specific situations have been developed. The most popular ones
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appear to be variations of finite element methods in which a discretization on the macro-scale is
constructed by solving a set of local problems defined on a representative collection of patches of
fully resolved micro-structure.

We contend that it is in many situations advantageous to approximate the solution operator,
rather than the differential operator. For the elliptic problems under consideration in this paper, the
solution operator takes the form of an integral operator with the Green’s function of the problem
as its kernel. That such operators should in principle allow compressed representations has been
known for some time (at least since [4]), but efficient techniques for actually computing them have
become available only recently.

To illustrate the viability of the proposed techniques, we demonstrate how they apply to a couple
of archetypical model problems. We first consider situations in which the micro-structure needs to
be fully resolved and a coarse-grained model be constructed computationally. We show that this
computation can be executed efficiently, and that once it has been, the reduced model allows for very
fast solves, and is highly accurate even in situations that are challenging to existing coarse-graining
methods. We then show that the proposed methods can fully exploit the simplifications possible
when an accurate model of the material can be derived from computations on an RVE.

1.1.2 Mathematical problem formulation

While the ideas described are applicable in a broad range of environments, we will for expositional
clarity focus on scalar elliptic boundary value problems defined on some regular domain Ω ⊂ R2

with boundary Γ . Specifically, we consider Neumann problems of the form{
−∇ ·

(
a(x) · ∇u(x)

)
= 0, x ∈ Ω,

un(x) = f(x), x ∈ Γ,
(1.1)

where a : Ω → R2×2 is a matrix-valued function that varies “rapidly” (on the length-scale of the
micro-structure), and where un(x) denotes the normal derivative of u at x ∈ Γ . Our objective is to
rapidly construct u|Γ , from a given boundary function f . We are interested both in the situation
where we are allowed a pre-computation involving some given function a, and in the situation in
which a is specified probabilistically.

Some of our numerical work will focus on the special case where (1.1) represents a two-phase
material. To be precise, we suppose that Ω can be partitioned into two disjoint “phases,” Ω̄ =
Ω̄1 ∪ Ω̄2, and that there exist constants a1 and a2 such that

a(x) =

{
a1 I, x ∈ Ω1,
a2 I, x ∈ Ω2,

where I is the identity matrix. We further suppose that Ω̄2 is wholly contained inside Ω, and let Γint

denote the boundary between Ω1 and Ω2, see Figure 1.1. Then (1.1) can more clearly be written

−a1∆u(x) = 0, x ∈ Ω1,

−a2∆u(x) = 0, x ∈ Ω2,

[u](x) = 0, x ∈ Γint,

[a un](x) = 0, x ∈ Γint,

un(x) = f(x), x ∈ Γ,

(1.2)

where for x ∈ Γ , [u](x) and [a un](x) denote the jumps in the potential and in the flow −a(x)∇u(x)
in the normal direction, respectively.

While the current paper concerns only situations modeled by equations of the types (1.1) and
(1.2), the methodology extends to more general elliptic differential equations, see Section 1.5.
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Fig. 1.1 A two phase domain.

1.1.3 Coarse-graining of the differential operator (homogenization)

A classical technique [2, 14] for handling a problem such as (1.1) with a rapidly varying coefficient
function a is to construct a functions ahom that varies on the macroscale only (or may even be
constant) such that the solution u is in some sense approximated by the solution uhom to{

−∇ ·
(
ahom(x) · ∇uhom(x)

)
= 0, x ∈ Ω,

∂n uhom(x) = f(x), x ∈ Γ.
(1.3)

The derivation of an equation such as (1.3) typically relies on fairly strong assumptions on
separation of length-scales, rendering this technique problematic in situations involving boundary
effects, concentrated loads, multiple or undifferentiated length-scales, etc. A common technique for
ameliorating these difficulties is to preserve a piece of the fully resolved micro-structure near the
boundary, or the concentrated load, and then to “glue” the two models together.

Another common approach is to forego the construction of a coarse-grained continuum model
and construct an equation involving a discretized differential operator whose solution in some sense
captures the macro-scale behavior of the solution of (1.3), see e.g. [17]. The elements of the discretized
matrix are typically constructed via local computations on patches of micro-structure.

1.1.4 Coarse-graining of the solution operator

The premise of our work is that it is possible, and often advantageous, to approximate the solution
operator of (1.1), rather than the differential operator itself. We will demonstrate that with this
approach, many of the difficulties encountered in common coarse-graining strategies can be side-
stepped entirely. To be precise, we note that mathematically, the solution to (1.1) takes the form

u(x) = [K f ](x) =

∫
Γ

G(x, y) f(y) ds(y), x ∈ Γ, (1.4)

where G is a kernel function that depends both on the function a, and on the domain Ω. It is known
analytically only in the most trivial cases (such as a being constant, and Ω being a square or a
circle). However, it turns out that the solution operator can be constructed numerically relatively
cheaply, and that it admits very data-sparse representations.

Roughly speaking, our proposal is that instead of seeking an approximation of the form (1.3) of
(1.1), it is often advantageous to seek an approximation of the form

uhom(x) = [Khom f ](x) =

∫
Γ

Ghom(x, y) f(y) ds(y), x ∈ Γ.
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of (1.4). The purpose of the manuscript is to demonstrate the basic viability and desirability of this
approach. Specifically, we seek to:

1. Demonstrate via numerical examples that the solution operators can to high precision be approx-
imated by “data-sparse” representations.

2. Illustrate a framework in which highly accurate reduced models can be constructed even for
situations involving boundary effects, and concentrated loads.

3. Demonstrate that the reduced models can in many instances be computed inexpensively from
statistical experiments on RVEs.

4. Demonstrate that in situations where the full micro-structure needs to be resolved, there exist
highly efficient techniques for doing so, and that the resulting reduced models form natural
building blocks in computational models.

Remark 1. In this paper, we focus on problems with no boundary load, such as (1.1). However, the
ideas set out can equally well be applied to problems such as{

−∇ ·
(
a(x) · ∇u(x)

)
= h(x), x ∈ Ω,

un(x) = f(x), x ∈ Γ.
(1.5)

The mathematical solution operator then contains two terms, one corresponding to each of the two
data functions f and g,

u(x) =

∫
Γ

G(x, y) f(y) ds(y) +

∫
Ω

K(x, y)h(y) dA(y), x ∈ Ω. (1.6)

The second term in (1.6) is compressible in a manner very similar to that of the first.

Remark 2. A reason why approximation of the solution operator may prove advantageous compared
to approximating the differential operator is hinted at by the spectral properties of the problem. For
a bounded domain, an elliptic operator A such as the one defined by equation (1.1) or (1.2) typically
has a discrete spectrum (λn)

∞
n=1, where λn → ∞, and where eigenfunctions get more oscillatory

the larger λn is. In up-scaling A, we seek to construct an operator Ahom whose low eigenvalues
and eigenfunctions approximate those of A. Measuring success is tricky, however, since the operator
A − Ahom is in a certain sense dominated by the high eigenvalues. One way of handling this is to
consider multi-scale representations of the operators, see, e.g., [1, 9, 16, 18, 19]. Another way is to
try to approximate the inverse of the operator. We observe that A−1 is typically compact, and its
dominant eigenmodes are precisely those that we seek to capture. Roughly speaking, we advocate
the numerical construction of a finite dimensional operator T such that ||A−1 − T || is small.

Remark 3. Our goal with this paper is not to set up a mathematical analysis of the properties of
kernels such as the function G in (1.4). However, to give a sense of the type of questions that
arise, let us consider a situation where the function a in (1.1) represents a micro-structure with a
characteristic length-scale λ. We then let d denote a cut-off parameter that separates the near-field
from the far-field, say d = 5λ, and set

Gnear(x, y) =

{
G(x, y), |x− y| ≤ d,
0, |x− y| > d,

Gfar(x, y) =

{
0, |x− y| ≤ d,
G(x, y), |x− y| > d,

and

unear(x) =

∫
Γ

Gnear(x, y) f(y) ds(y), ufar(x) =

∫
Γ

Gfar(x, y) f(y) ds(y).

The function y 7→ Gnear(x, y) depends strongly on the local micro-structure near x, and cannot
easily be compressed. This part of the operator must be resolved sufficiently finely to fully represent
the micro-structure. However, this is a local interaction, and unear can be evaluated cheaply once
Gnear has been determined. In contrast, Gfar is compressible. If Γ1 and Γ2 are two non-touching
pieces of the boundary, then the integral operator
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[TΓ1←Γ2σ](x) =

∫
Γ2

Gfar(x, y)σ(y) ds(y), x ∈ Γ1,

is not only compact, but its singular values typically decay exponentially fast, with the rate of decay
depending on the sizes of Γ1 and Γ2, and on the distance between them. More careful analysis of
these issues in an appropriate multi-scale framework can be found in [22].

1.2 Data-sparse matrices

A ubiquitous task in computational science is to rapidly perform linear algebraic operations involving
very large matrices. Such operations typically exploit special structure in the matrix since the costs
for methods capable of handling general matrices tend to scale prohibitively fast with matrix size:
For a general N ×N matrix, it costs O(N2) operations to perform a matrix-vector multiplication,
O(N3) operations to perform Gaussian elimination or to invert the matrix, etc. A well-known form
of structure in a matrix is sparsity. When at most a few entries in each row of the matrix are
non-zero (as is the case, e.g., for matrices arising upon the discretization of differential equations,
or representing the link structure of the World Wide Web) matrix-vector multiplications can be
performed in O(N) operations instead of O(N2). The description data-sparse applies to a matrix
that may be dense, but that shares the key characteristic of a sparse matrix that some linear
algebraic operations, typically the matrix-vector multiplication, can to high precision be executed
in fewer than O(N2) operations (often in close to linear time).

There are many different types of data-sparse representations of a matrix. In this paper, we will
utilize techniques for so called Hierarchically Semi-Separable (HSS) matrices [11, 13, 32], which arise
upon the discretization of many of the integral operators of mathematical physics, in signal process-
ing, in algorithms for inverting certain finite element matrices, and in many other applications, see
e.g. [12, 29, 32]. An HSS matrix is a dense matrix whose off-diagonal blocks are rank-deficient in
a certain sense. Without going into details, we for now simply note that an HSS matrix A can be
expressed via a recursive formula in L levels,

A(ℓ) = U(ℓ) A(ℓ−1) V(ℓ) + B(ℓ), ℓ = 2, 3, . . . , L, (1.7)

where A = A(L), and the sequence A(L), A(L−1), . . . , A(1) consists of matrices that are successively
smaller (typically, A(ℓ−1) is roughly half the size of A(ℓ)). In (1.7), the matrices U(ℓ), V(ℓ) and B(ℓ) are
all block-diagonal, so the formula directly leads to a fast technique for evaluating a matrix-vector
product. The HSS property is similar to many other data-sparse representations in that it exploits
rank-deficiencies in off-diagonal blocks to allow matrix-vector products to be evaluated rapidly; the
Fast Multipole Method [23, 24], Barnes-Hut [3], and panel clustering [25] are all similar in this
regard. The HSS property is different from these other formats in that it also allows the rapid
computation of a matrix inverse, of an LU factorization, etc, [10, 11, 15, 28, 33]. The ability to
perform algebraic operations other than the matrix-vector multiplication is also characteristic of
the H-matrix format of Hackbusch [27].

Remark 4. There currently is little consistency in terminology when it comes to “data-sparse” ma-
trices. The property that we refer to as the “HSS” property has appeared under different names
in, e.g., [28, 30, 31, 33]. It is closely related to the “H2-matrix” format [5, 6, 7, 26] which is more
restrictive than the H-matrix format, and often admits O(N) algorithms.

Remark 5. This remark describes in which sense the off-diagonal blocks of a matrix that is compress-
ible in the HSS-sense have low rank; it can safely be by-passed as the material here is referenced
only briefly in Section 1.3.3. Let A denote an N ×N HSS matrix A. Let I denote an index vector

I = [n+ 1, n+ 2, . . . , n+m],
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where n and m are positive integers such that n+m ≤ N . Then we define the HSS row block RI as
the m×N matrix

RI =


an+1,1 an+1,2 · · · an+1,n 0 0 · · · 0 an+1,n+m+1 an+1,n+m+2 · · · an+1,N

an+2,1 an+2,2 · · · an+2,n 0 0 · · · 0 an+2,n+m+1 an+2,n+m+2 · · · an+2,N

...
...

...
...
...

...
...

...
...

an+m,1 an+m,2 · · · an+m,n 0 0 · · · 0 an+m,n+m+1 an+m,n+m+2 · · · an+m,N


In other words, RI is an m × N sub-matrix of A corresponding to the rows marked by the index
vector I, but with the diagonal block corresponding to I replaced by a zero matrix. The HSS column
block CI is analogously defined as the N ×m matrix consisting of m columns of A with the diagonal
block excised. The principal criterion for a matrix A to be compressible in the HSS sense is that its
HSS blocks should have numerically low rank.

1.3 Case study: A discrete Laplace equation on a square

In this section, we illustrate how the coarse-graining techniques outlined in Section 1.1.4 can be
applied to a discrete equation closely related to (1.1). This discrete equation can be viewed either
as the result of discretizing (1.1) via a finite difference method, or as an equation that in its own
right models, for instance, electro-statics on a discrete grid.

1.3.1 Problem formulation

Given a positive integer Nside, we let Ω denote the Nside ×Nside square subset of Z2 given by

Ω = {m = (m1, m2) ∈ Z2 : 1 ≤ m1 ≤ Nside and 1 ≤ m2 ≤ Nside}. (1.8)

Figure 1.2(a) illustrates the definition. For a node m ∈ Ω, we let Bm denote a list of of all nodes in
Ω that directly connect to m. For instance, an interior node such as the node m shown in Figure
1.2(b) would have the neighbor list

Bm = {ms, me, mn, mw},

while a node on a “western” boundary like n in Figure 1.2(c) would have the neighbor list

(a) (b)

mmw me

mn

ms

(c)

n ne

nn

ns

Fig. 1.2 Geometry of the lattice problem in Section 1.3.1. (a) The full lattice for Nside = 5. The boundary nodes
in Ωb are white and the interior nodes in Ωi are black. (b) The four neighbors of an interior node m. (c) The three
neighbors of a boundary node n.
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Bn = {ns, ne, nn}.

For each pair {m, n} of connected nodes, we let αm,n denote a parameter indicating the conductivity
of the link. For a function u = u(m) where m ∈ Ω, the discrete Laplace operator is then defined via

[Au](m) =
∑

n∈Bm

αm,n

[
u(m)− u(n)

]
. (1.9)

Example: For the case where αm,n = 1 for all connected nodes, we retrieve the standard five-
point stencil associated with discretization of the Laplace operator. For instance, with column-wise
ordering of the nodes in the lattice shown in Figure 1.2(a), we obtain the 25× 25 matrix

A =


C −I 0 0 0
−I D −I 0 0
0 −I D −I 0
0 0 −I D −I
0 0 0 −I C

 , where C =


2 −1 0 0 0

−1 3 −1 0 0
0 −1 3 −1 0

0 0 −1 3 −1
0 0 0 −1 2

 , where D =


3 −1 0 0 0

−1 4 −1 0 0
0 −1 4 −1 0

0 0 −1 4 −1
0 0 0 −1 3

 , (1.10)

and where I is the 5× 5 identity matrix.

We let Ωb denote the boundary nodes and we let Ωi denote the interior nodes (cf. Figure 1.2(a)).
Partitioning the matrix A accordingly, the discrete analog of (1.1) becomes[

Ab,b Ab,i

Ai,b Ai,i

] [
ub

ui

]
=

[
fb
0

]
. (1.11)

Solving for the boundary values of the potential, ub, we find that1

ub =
(
Ab,b − Ab,i A

−1
i,i Ai,b

)−1
fb.

In consequence, the discrete analog of the solution operator (in this case a discrete analog of the
Neumann-to-Dirichlet operator) is

T =
(
Ab,b − Ab,i A

−1
i,i Ai,b

)−1
. (1.12)

The operator T defined by (1.12) is dense, but turns out to be data-sparse in the sense described in
Section 1.2. We will in this section substantiate this claim via numerical examples, and also outline
strategies for rapidly constructing such an operator in different environments.

1.3.2 Model problems

The compressibility of the solution operator T defined by (1.12) was investigated in the following
five model environments:

Case A: Constant conductivities. In this model, all conductivities are identically one,

αm,n = 1 for each connected pair {m, n}. (1.13)

For Nside = 5, the resulting matrix A is the one given as an example in (1.10). Since in this
case the matrix A can be viewed as a discretization of the Laplace operator −∆ on a square,
the solution operator T can be viewed as a discrete analog of the standard Neumann-to-Dirichlet
operator associated with Laplace’s equation.

1 Strictly speaking, the matrix Ab,b−Ab,i A
−1
i,i Ai,b has a one-dimensional null-space formed by the constant functions

and is not invertible. This is easily dealt with by a regularization that restricts attention to functions summing to
zero. In what follows, such regularization will be employed where appropriate without further mention.
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Case B: Smooth periodic conductivities. This case is a discrete analog of the equation

−∇ ·
(
b(x)∇u(x)

)
= f(x), x ∈ [0, 1]2, (1.14)

where b is a periodic function defined by

b(x) = 1− 0.9
(
cos(πNcells x1)

)2 (
cos(πNcells x2)

)2
, x = (x1, x2) ∈ [0, 1]2. (1.15)

In other words, (1.14) models a medium whose conductivity repeats periodically across Ncells×Ncells

cells in the square [0, 1]2. Figure 1.4(a) illustrates the function b for Ncells = 4. A discrete analog of
(1.14) is now obtained by setting

αm,n = b

(
m+ n− 2

2 (Nside − 1)

)
for each connected pair {m, n}.

In our experiments, we chose Ncell so that 25 nodes were used to resolve each period, Ncell =
(Nside − 1)/25 (for clarity, Figure 1.4 shows a solution with only 15 nodes per period). In this case,
the solutions are typically oscillatory on the boundary, cf. Figure 1.4(b). This is a basic two-scale
problem that should be amenable to traditional homogenization techniques provided there is a
sufficient separation of length-scales.

Case C: Random conductivities. The conductivities αm,n are for each connected pair of nodes
{m, n} drawn independently from a uniform probability distribution on [1, 2]. In this case, there is
no local regularity, but we would expect traditional homogenization to give accurate results whenever
the length-scales are sufficiently separated.

Case D: Sparsely distributed missing bars. In this model, all bars are assigned conductivity
1 (as in Case A), but then a small percentage p of bars are completely removed (in the examples
reported, p = 4%). In other words,

αm,n =

1, with probability 1− p if {m, n} is a connected pair,
0, with probability p if {m, n} is a connected pair,
0, if {m, n} is not a connected pair.

As in Case C, there is no local regularity, but we would expect traditional homogenization to give
accurate results whenever the length-scales are sufficiently separated.

Case E: A lattice with two long cracks. This model is similar to Case D in that a small number
of links have been cut, and all the remaining ones have unit conductivity. However, we organized
the cut links into two long cracks running through the lattice. Figure 1.5(a) illustrates for a case
where Nside = 50. In larger lattices, the cracks have the same proportions, but the gap between the
two cracks is kept constant at four links. In this case, solutions may exhibit major discontinuities.
Figure 1.5(b) illustrate the electric field resulting from placing oppositely signed unit sources at
the locations marked source and sink in Figure 1.5(a). We would expect analytic derivation of a
simplified model to be very hard work in a situation such as this.

1.3.3 Compressibility of the solution operator

While the operator T defined by (1.12) is dense, it is in many situations of interest data-sparse in the
sense described in Section 1.2. To illustrate this point, we computed the matrix T by brute force for
several different lattices, compressed it into the HSS format to ten digits of accuracy (we enforced
that local truncation errors be less than 10−10), and looked at how much memory was required to
store the result. Tables 1.1 and 1.2 show our findings for each of the five different models described
in Section 1.3.2, and for differently sized lattices. To provide more detail, Table 1.3 reports the
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average ranks of the so called “HSS blocks” (as defined in Remark 5) of a 6 396 × 6 396 matrix T
associated with a 1 600× 1 600 square domain for each of the five examples.

An interesting aspect of the reported data is that the matrix T associated with the classical five-
point stencil (represented by Case A) is highly compressible. To store it to ten digits of accuracy, less
than 100 floating point numbers are required for each degree of freedom (see Table 1.2). This fact has
been exploited in a series of recent papers, including [12, 22, 29]. What is perhaps more remarkable
is that the compressibility property is extremely robust to small changes in the micro-structure. As
the tables 1.1, 1.2, and 1.3 show, there is almost no discernible difference in compressibility between
the five models considered.

Once the compressed solution operator has been computed, it can be applied to a vector more or
less instantaneously. For our simple implementation, we found the following for the time tsolve (in
seconds) required for a single solve:

Nside 200 400 800 1600 3200

tsolve (sec) 4.4e-3 8.7e-3 1.8e-2 3.4e-2 7.1e-2

These numbers refer to a reduced model that is precise to within ten digits, and we would like to
emphasize that the largest example reported, which requires 0.07 seconds for one solve, involves a
problem whose micro-structure was originally resolved using 3 200× 3 200 ≈ 107 nodes.

The results reported in tables 1.1, 1.2, and 1.3 indicate that reduced models that are precise to
within ten digits of accuracy in principle exist, even in the presence of the following complications:

• Solutions that are oscillatory on the boundary, even when the period of the oscillation is not very
much smaller than the size of the domain (as in Case B).

• Solutions that are highly irregular on the boundary (as in Cases C, D, and E).
• Boundary loads that exhibit no smoothness. (We observe that the solution operator is constructed

under no assumption on smoothness of the boundary data.)
• Solutions that involving significant discontinuities (as shown in Figure 1.5(b)).

In Sections 1.3.4, 1.3.5, and 1.3.6, we will describe practical techniques for inexpensively computing
such reduced models.

1.3.4 Techniques for computing the solution operator that fully resolve
the micro-structure

Given a realization of a lattice model, the operator T defined by (1.12) can of course be computed
with brute force. While Gaussian elimination has an O(N6

side) asymptotic cost that quickly becomes
prohibitive, substantially more efficient techniques exist. Appendix A describes a variation of the
classical nested dissection method which in the present environment requires O(N3

side) floating point
operations (flops) and O(N2

side) memory. This technique is exact up to rounding errors, and is very
easy to implement. It was used to calculate the numbers reported in Section 1.3.3 and is sufficiently
fast that the solution operator associated with an 800× 800 lattice can be determined in 40 seconds
via a Matlab implementation running on a standard desktop PC.

More recently, techniques have been developed that compute an operator such as T in O(N2
side)

time (or possibly O(N2
side(logNside)

κ) for a small integer κ), which is optimal since there are O(N2
side)

links in the lattice [12, 22, 29]. These techniques are highly efficient, and enable the brute force
calculation of a reduced model in many important environments in both two and three dimensions.
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1.3.5 Techniques accelerated by collecting statistics from a
representative volume element

In situations where there is a good separation of length-scales, variations of classical homogeniza-
tion techniques can be used to dramatically accelerate the computation of a compressed boundary
operator. To illustrate, let us investigate Case C in Section 1.3.2 (the case of random conductivities,
drawn uniformly from the interval [1, 2]). The most basic “homogenized equation” is in this case a
lattice with all links have the same conductivity. Through experiments on an RVE, we determined
that this conductivity should be

c3 = 1.4718 · · ·

We let Thom denote the solution operator (i.e. the lattice Neumann-to-Dirichlet operator) for the
homogenized lattice. We measured the discrepancy between the homogenized operator Thom, and
the operator associated with the original lattice T, using the measures:

EN2D =
||Thom − T||

||T||
, and ED2N =

||T−1hom − T−1||
||T−1||

. (1.16)

Table 1.4 gives the results for a particular realization of a 50×50 lattice. In addition to the discrep-
ancies measured in operator norm, the table also provides the errors

Esmooth =
||
(
Thom − T

)
fsmooth||

||T fsmooth||
, and Erough =

||
(
Thom − T

)
frough||

||T frough||
, (1.17)

associated with two particular Neumann data vectors fsmooth and frough. The solutions associated
with these data vectors are shown in Figure 1.6. These examples show that as one would expect, the
homogenized equation provides quite high accuracy for a smooth solution, and very poor accuracy
for a rough one.

We next repeated all experiments for Case D (as defined in Section 1.3.2). In this case, numerical
experiments indicated that the homogenized conductivity is

c4 = 1− 1

2
p+O(p2).

Table 1.5 shows the errors associated with a realization of “Case D” on a 50×50 grid, with p = 0.04,
and c4 = 0.98.

Remark 6 (Computational cost). The solution operator Thom associated with a constant coefficient
lattice can be computed in time proportional to O(Nside) (in other words, in time proportional to
the number of nodes on the boundary). This means that very large lattices can be handled rapidly.
It was demonstrated in [21] that the solution operator associated with a lattice with 1010 nodes can
be computed in less than two minutes on a standard desktop PC. (Observe that only the 4 · 105
nodes on the boundary actually need to enter the calculation.)

1.3.6 Fusing a homogenized model to a locally fully resolved region

In the environments under consideration here, domains are loaded only on the border. This of course
raises the possibility of improving the accuracy in the homogenized model by preserving the actual
micro-structure in a thin strip along the boundary, and use the homogenized equations only in the
interior. In the frame-work proposed here, where the simplified model consists of a solution operator
rather than a differential operator (or in the present case, difference operator), it is extra ordinarily
simple to do so.

To illustrate, suppose that we are given a realization of an Nside×Nside lattice with heterogeneous
conductivities. We fix a parameter b that indicates how broad of a band of cells we preserve, and then
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replace all bars that are more than b cells away from the boundary by bars with the homogenized
conductivity, as illustrated in Figure 1.3(a). Then use the techniques of Section 1.3.5 to compute the
Neumann-to-Dirichlet operator for the constant coefficient lattice of size (Nside−2b)×(Nside−2b) in
the center. As observed in Remark 6, the cost is only O(Nside), and the new reduced model involves
only O(Nside) degrees of freedom. As Tables 1.4 and 1.5 demonstrate, for our model problems (“Case
C” and “Case D”) keeping only five layers of the original lattice leads to a reduced model that is
accurate to three or four digits.

Remark 7 (Accuracy of Neumann vs. Dirichlet problems). Tables 1.4 and 1.5 show that while “full”
homogenization (i.e. all conductivities are replaced by a homogenized value) is less accurate for a
Dirichlet problem than it is for a Neumann problem, the accuracy of Dirichlet problems improve
dramatically upon the introduction of even a very thin boundary layer. This is as one would expect
since the Dirichlet-to-Neumann operator is dominated by short range interactions.

1.4 Case study: Two-phase media

In this section, we briefly investigate the compressibility of the Neumann-to-Dirichlet operator for
a two-phase material modeled by equation (1.2). The two geometries we consider are shown in
Figure 1.7, with the conductivity of the inclusions set to zero. In this case, the operator under
consideration is a boundary integral operator T supported on the square outer boundary. Using
techniques described in Remark 8, we constructed an 1144× 1144 matrix T that approximated T .
With this number of nodes, any Neumann data generated by point sources up to a distance of 0.5%
of the side length of the square can be resolved to eight digits of accuracy. We compressed the
matrix T into the HSS format described in Section 1.2 to a relative precision of 10−10. The resulting
data required 1.19KB of memory to store for the geometry shown in Figure 1.7(a), and 1.22KB of
memory for the geometry shown in Figure 1.7(b). This corresponds to about 135 words of storage
per row in the matrix. The HSS-ranks (as defined in Remark 5) are reported in Table 1.6. We make
three observations:

• A compressed version of the boundary operator can in this case be stored using about the same
amount of memory (100 words per degree of freedom) as the operators associated with the discrete
problems described in Section 1.3.

• The two geometries shown in Figure 1.7 require about the same amount of memory. This is
note-worthy since the one labeled (b) corresponds to an almost singular geometry in which the

b

(a) (b) (c)

Fig. 1.3 Construction of a highly accurate reduced model by fusing a homogenized region with a region in which the
micro-structure is fully resolved. (a) The blue links are within distance b of the boundary, and maintain their original
conductivity. The red links are all assigned the “homogenized” conductivity. (b) All red links are eliminated from
the model. This requires the construction of the solution operator for a constant coefficient lattice at cost O(Nside)

(see Remark 6). (c) The few remaining links are eliminated to construct a highly approximate approximation to the
solution operator.
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domain is very close to being split in two halves. Standard assumptions used when homogenizing
an elliptic differential operator are violated in this case.

• In Table 1.6, the ranks of HSS-blocks of size 143 are larger than those of HSS-blocks of size 286.
We speculate that this unusual situation can be traced to the fact that the larger blocks are larger
than the inclusions, and largely do not “see” the heterogeneities.

Remark 8 (Details of computation). To derive our approximation to the Neumann-to-Dirichlet op-
erator, we recast equation (1.2) as a BIE defined on the joint boundary Γ ∪ Γint. We used a single
layer representation on the outer boundary Γ , and a double layer representation on the interior
boundary Γint. In other words, we sought a solution of the form

u(x) =

∫
Γ

log |x− y|σ(y) ds(y) +
∫
Γint

n(y) · (x− y)

|x− y|2
τ(y) ds(y), (1.18)

where n(y) is a unit normal vector. The resulting BIE was discretized using a Nyström method
combined with trapezoidal quadrature on the interior holes, and a Gaussian quadrature on the
exterior boundary supported on 44 panels with 26 nodes each. The quadrature rule was locally
modified as described in [8] to maintain eight digit accuracy in the presence of corners. This resulted
in a large linear system from which all degrees of freedom associated with internal nodes (those
associated with the density τ in (1.18)) where eliminated. The final approximation to the Neumann-
to-Dirichlet operator was then formed as the inverse of the resulting Schur complement.

1.5 Generalizations

This report focused on problems modeled by simple Laplace-type problems in two dimensions involv-
ing no body loads. However, the techniques can be extended to much more general environments:

Other boundary conditions: While we focused on problems with Neumann boundary conditions,
the extension to Dirichlet or mixed boundary conditions is trivial.

Other elliptic equations: The methods described extend readily to other elliptic equations whose
kernels are non-oscillary such as Stokes, elasticity, Yukawa, etc. The extension to wave problems
modeled by Helmholtz equation, or the time-harmonic version of Maxwell, is more complicated for
two reasons: (1) The presence of resonances (both true ones corresponding to the actual physics,
and artificial ones present in the mathematical model only) must be dealt with. This can be done,
but requires careful attention. (2) As the wave-number increases, the compressibility of the solution
operator deteriorates, and eventually renders the proposed approach wholly unaffordable.

Body loads: The extension to problems involving body loads is in principle straight-forward (see
Remark 1). However, the compressed solution operator becomes more expensive to store.

Problems in three dimensions: In principle, the methodology proposed extends straight-
forwardly to problems in three dimensions. However, the construction of the solution operator
does become more expensive, and the method might be best suited for environments where a pre-
computation is possible, or where the construction of the solution operator can be accelerated via
the use of homogenized models in parts of the domain (as illustrated in Section 1.3.6). Moreover, for
problems in three dimensions involving body loads, memory requirements may become prohibitive.

1.6 Conclusions

The modest goal of this report is to draw attention to recent developments in numerical analysis
that could be very useful in modeling heterogeneous media. Specifically, it has become possible
to inexpensively compute an approximation to the solution operator associated with many elliptic
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PDEs, and to perform various operations involving such solution operators: addition, multiplication,
inversion, merging operators for different sub-domains, etc. We argue that such solution operators
form excellent “reduced models” for many problems that have proven difficult to handle using
traditional homogenization techniques.

Constructing reduced models by approximating the solution operator is particularly advantageous
in the following environments:

Domains that are loaded on the boundary only: For problems that involve no body load,
the solution operator is defined on the boundary only. This reduction in dimensionality means that
once it is computed, it can be stored very efficiently, and applied to vectors sufficiently fast that
real time simulations become possible. For some problems in this category, the actual construction
of the solution operator require a large-scale (but very efficient) computation involving the entire
micro-structure, but as shown in Section 1.3.6, the solution operator can sometime be dramatically
accelerated by using a homogenized model in the interior of the domain.

Situations where a pre-computation is possible: When the entire micro-structure needs to be
resolved (as happens when the problem involves a body load, or a micro-structure not suitable for
homogenization methods), the initial construction of the solution operator can become somewhat
expensive, in particular for problems in three dimensions. However, once it has been constructed, it
can usually be applied to a vector very rapidly. This raises the possibility of pre-computing a library
of compressed models which can then be used as building blocks in computational simulations.

Problems in two dimensions (whether involving volume loads or not): Given current
trends in algorithmic and hardware development, we predict that for a great many problems in
two dimensions, it will soon become entirely affordable to resolve the entire micro-structure, and
computationally derive a reduced model of the solution operator. The automatic nature of such a
procedure would save much human effort, and would be very robust in the sense that the computed
model would be guaranteed to be accurate to whichever tolerance was requested.

Appendix A: Efficient computation of the Neumann-to-Dirichlet operator

In this appendix, we describe an efficient technique for computing the Neumann-to-Dirichlet operator
T defined by (1.12). It is a variation of the classical nested dissection techniques [20]. Throughout
the appendix, Ω is a rectangular lattice, as defined by (1.8), and A is an associated discrete Laplace
operator, as defined by (1.9).

To be precise, the technique we will describe does not compute the Neumann-to-Dirichlet operator
T, but rather the Schur complement S, defined via

S = Ab,b − Ab,i A
−1
i,i Ai,b. (1.19)

Comparing (1.12) and (1.19), we see T = S−1.

1.A.1 Outline

The technique is a divide-and-conquer scheme in which the computational domain Ω is first split into
2L× 2L roughly equisized small boxes. The parameter L is chosen so that each of the small boxes is
sufficiently small that its Schur complement can be computed by evaluating (1.19) via brute force. (In
practice, we found that letting the smallest boxes be of size roughly 50× 50, or L ≈ log2(Nside/50),
works well.) Then it turns out to be possible to merge the Schur complements of two small adjacent
boxes to form the Schur complement of the larger box; the process is described in Section 1.A.2.
The scheme proceeds by continuing the merge process to form the Schur complements of larger and
larger boxes until eventually the entire box Ω has been processed. To illustrate, we describe the
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process graphically for a 24 × 24 domain that is originally split into 4 × 4 boxes, each containing
6× 6 nodes.

Step 1: Partition the box Ω into 16 small boxes. For each box, identify the internal nodes (marked
in blue) and eliminate them using formula (1.19).

⇒
Step 1

Step 2: Join the small boxes by pairs to form the Schur complements of boxes holding twice the
number of nodes via the process to be described in Section 1.A.2. The effect is to eliminate the
interior nodes (marked in blue) of the newly formed larger boxes.

⇒
Step 2

Step 3: Merge the boxes created in Step 2 in pairs, again via the process described in Section 1.A.2.

⇒
Step 3

Step 4: Repeat the merge process once more.
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⇒
Step 4

Step 5: Repeat the merge process one final time to obtain the Schur complement associated with
the top level box Ω.

⇒
Step 2

1.A.2 Merging of two Schur complements

Suppose that Ω is a box consisting of the two smaller boxes Ωw and Ωe (as in west and east):

Γ1 Γ3 Γ4 Γ2

Ωw Ωe

Suppose further that we know the corresponding Schur complements Sw and Se and seek the Schur
complement S of Ω. In effect, we need to remove the “interior” points along the middle lines (marked
in blue in the figure).

First partition the nodes in Γw into the subsets Γ1 and Γ3, and partition Γe into Γ2 and Γ4 as
shown in the figure. The Schur complements Sw and Se are partitioned accordingly,

Sw =

[
S11 S13
S31 S33

]
, and Se =

[
S22 S24
S42 S44

]
.

Since the interior edges are unloaded, the joint equilibrium equation for the two boxes now reads
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S11 A12 S13 0
A21 S22 0 S24
S31 0 S33 A34

0 S24 A43 S44



u1

u2

u3

u4

 =


f1
f2
0
0

 , (1.20)

where Aij are the relevant submatrices of the original discrete Laplacian A. To be precise, with A
denoting the global discrete Laplace operator, and with Ji denoting an index vector marking the
nodes in Γi, we have Aij = A(Ji, Jj). We observe that all matrices Aij are very sparse (indeed, A12

and A21 have only two non-zero elements each). From (1.20), it is clear that the Schur complement
of the large box is

S =

[
S11 A12

A21 S22

]
−
[
S13 0
0 S24

] [
S33 A34

A43 S44

]−1 [
S31 0
0 S42

]
. (1.21)

1.A.3 Accelerations

The scheme as described requires O(N3
side) floating point operations, and O(N2

side) storage, just
like the original nested dissection scheme. This cost is incurred by the repeated evaluation of the
formula (1.21) which involve matrices Sij that are dense. However, as discussed at length in Sec-
tion 1.3.3, these matrices have internal structure that allows operations such as matrix inversion,
and matrix-matrix multiplication, to be evaluated in linear time. Incorporating such accelerated
procedures reduces the overall cost (both floating point operations and memory) of the scheme to
O(Nside(logNside)

κ). For recent work in this direction, see, e.g. [12, 22, 29].

Remark 9. The process described in Section 1.A.1 requires all Schur complements associated with
one level to be kept in memory at one time. It is straight-forward to change the order in which the
boxes are processed so that at most four Schur complements on each level must be kept in memory.
When dense linear algebra is used, either approach requires O(N2

side) memory, but when data-
sparse matrix formats are used, such an ordering reduces the memory requirement from O(N2

side)
to O(Nside(logNside)

κ).

Remark 10. Even without accelerations, the scheme described in Section 1.A.1 can handle moderate
size problems quite efficiently. For a rudimentary implementation in Matlab executed on a standard
desktop (with an Intel i7 CPU running at 2.67GHz), the time t required to compute T was:

Nside 100 200 400 800 1600 3200
t (sec) 2.6e-1 1.2e0 6.4e0 4.5e1 5.0e2 6.7e3

Note that less than a minute is required to process a lattice involving 8002 = 640 000 nodes.
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Fig. 1.4 The periodic problem described as Case B in Section 1.3.2 with Ncells = 4 and Nside = 61. (a) The function
b = b(x) defined by (1.15). (b) A solution to the Neumann problem (1.11) with a constant inflow at x1 = 1 and a

constant outflow at x1 = 0.
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Fig. 1.5 (a) The lattice with cracks described as Case E in Section 1.3.2 for Nside = 40. (b) A solution to the
Neumann problem (1.11) with a unit inflow at the location marked source in (a), and a unit outflow at the location
marked sink.
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Fig. 1.6 Solutions for non-homogenized equation. (a) Solution resulting the smooth boundary data fsmooth. (b)

Solution resulting from the rough boundary data frough.
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Fig. 1.7 Geometry for computations in Section 1.4. (a) A perforated material. (b) A perforated material with a
chain of holes that almost line up.

Memory requirements in KB

Nside = 100 Nside = 200 Nside = 400 Nside = 800 Nside = 1600

General matrix 1.23e3 4.95e3 1.99e4 7.98e4 3.20e5

Case A (constant cond.) 3.02e2 6.13e2 1.22e3 2.42e3 4.78e3

Case B (periodic cond.) 2.97e2 6.06e2 1.21e3 2.38e3 4.69e3

Case C (random cond.) 3.03e2 6.20e2 1.23e3 2.43e3 4.80e3

Case D (random cuts) 2.96e2 6.06e2 1.20e3 2.38e3 4.70e3

Case E (cracks) 2.96e2 6.10e2 1.22e3 2.42e3 4.77e3

Table 1.1 The table shows the amount of memory (in KB) required for storing the matrix T defined by (1.12)
for different problem sizes Nsize. The first line gives the memory required for storing a general dense matrix of size
4(Nside−1)×4(Nside−1). The following lines give the amount of memory required to store T in the “HSS” data-sparse

format described in Section 1.2 for each each of the five cases described in Section 1.3.2, to within precision 10−10.
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Memory requirements in words per degree of freedom

Nside = 100 Nside = 200 Nside = 400 Nside = 800 Nside = 1600

General matrix 396 796 1596 3196 6396

Case A (constant conductivities) 97.7 98.6 98.1 96.8 95.7

Case B (periodic conductivities) 95.9 97.4 96.7 95.4 93.9

Case C (random conductivities) 97.8 99.7 98.8 97.5 96.0

Case D (random cuts) 95.5 97.5 96.6 95.4 94.1

Case E (cracks) 95.7 98.1 97.7 96.8 95.5

Table 1.2 The table shows the same data given in Table 1.1, but now scaled to demonstrate that the memory
requirement scales linearly with problem size. To be precise, the entries given are the number of “words” (the memory
required to store a floating point number to double precision accuracy) required per node on the boundary.

HSS ranks of the Schur complements for a matrix of size 6396× 6396

Nblock = 50 Nblock = 100 Nblock = 200 Nblock = 400 Nblock = 800 Nblock = 1600

General matrix 50 100 200 400 800 1600

Case A (constant conductivities) 19.3 22.7 26.0 31.0 39.0 53.0

Case B (periodic conductivities) 18.8 21.6 24.8 29.3 37.0 50.0

Case C (random conductivities) 19.3 22.8 26.8 31.6 39.8 54.0

Case D (random cuts) 18.7 21.9 25.5 30.8 38.8 52.5

Case E (cracks) 19.2 22.7 25.9 30.9 38.8 52.5

Table 1.3 The table shows the HSS-ranks (as described in Remark 5) of blocks in the solution operator for the

different models. The reported rank was the average numerical rank (at precision 10−10) over all HSS blocks of size
Nblock that arise in the compressed representation.

Errors in homogenized operator for “Case C”

Homogenization Homogenization with buffer of width b

with no buffer b = 1 b = 2 b = 3 b = 4 b = 5 b = 10

ED2N 1.9e-01 5.4e-03 1.2e-03 3.9e-04 3.3e-04 1.3e-04 6.6e-05
EN2D 1.1e-02 7.5e-03 5.6e-03 5.7e-03 4.3e-03 4.9e-03 2.4e-03
Esmooth 7.3e-03 4.1e-03 4.1e-03 4.1e-03 2.8e-03 2.6e-03 1.4e-03

Erough 1.5e-01 2.1e-02 1.1e-02 2.2e-03 8.8e-04 3.5e-03 9.2e-04

Table 1.4 Discrepancy between the solution operator of an given lattice, and the homogenized solution operator.
These numbers refer to the model described as “Case C” in Section 1.3.2 (random conductivities). The errors ED2N,

EN2D, Esmooth, and Erough are defined in equations (1.16) and (1.17).

Errors in homogenized operator for “Case D”

Homogenization Homogenization with buffer of width b
with no buffer b = 1 b = 2 b = 3 b = 4 b = 5 b = 10

ED2N 4.4e-01 1.5e-02 4.5e-03 1.7e-03 1.2e-03 7.6e-04 3.3e-04

EN2D 8.7e-02 6.1e-02 5.6e-02 5.2e-02 4.5e-02 4.4e-02 2.8e-02
Esmooth 7.4e-02 5.9e-02 5.4e-02 4.8e-02 4.2e-02 4.1e-02 2.7e-02
Erough 1.0e-01 7.0e-02 6.8e-02 6.2e-02 5.1e-02 5.0e-02 3.4e-02

Table 1.5 Discrepancy between the solution operator of an given lattice, and the homogenized solution operator.
These numbers refer to the model described as “Case D” in Section 1.3.2 (randomly cut bars). The errors ED2N,
EN2D, Esmooth, and Erough are defined in equations (1.16) and (1.17).

Average ranks of HSS blocks for composite material example in Section 1.4

Nblock = 36 Nblock = 71 Nblock = 143 Nblock = 286

Geometry shown in Figure 1.7(a) 18.2 27.0 39.5 25.8

Geometry shown in Figure 1.7(b) 18.3 27.3 41.1 28.0

Table 1.6 The average HSS-ranks (as defined in Remark 5) for the blocks in a data-sparse representation of the
Neumann-to-Dirichlet operator for the geometries shown in Figure 1.7.


