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Fourier-based pseudospectral (PS) methods have been used since the 1970s for obtaining spectrally accu-
rate solutions to PDEs in periodic geometries. Radial basis functions (RBFs) were introduced about the
same time for interpolation on scattered nodes in irregular geometries. As was later recognized, they can
also be used for accurate numerical solution of PDEs. Although the main strength of RBFs lies in their
outstanding geometric flexibility, offering possibilities of spectral accuracy also over irregularly shaped
finite domains, it is still of interest to compare them against Fourier-based PS methods in the extremely
simple geometries (infinite or periodic domains) where the latter can also be used. Mostly by means of
heuristic arguments and graphical illustrations based on Fourier analysis and numerical experiments, we
show that there are notable differences (more pronounced in increasing numbers of dimensions) in how
the two spectral approaches approximate derivatives.
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1. Introduction

One of Ron Mitchell’s main areas of interest concerned relations between derivative approximations in
1-D compared to those in multi-dimensions (Mitchell & Fairweather (1964), Fairweather & Mitchell
(1967), Gourlay & Mitchell (1969), Gourlay & Mitchell (1969)). In the present article, dedicated to
his memory, we note that this issue again becomes very relevant in the context of understanding the
accuracy of radial basis function (RBF) approximations, especially in comparison with pseudospectral
(PS) approximations.

A key feature of RBF-based approximations for solving PDEs is that they allow spectral accuracy to
be combined with very general types of local node refinement over irregularly shaped domains (Flyer &
Lehto (2008)). Although formal proofs for spectral convergence are few and of limited scope, the key
issue is not to allow any Runge phenomenon-like issues to develop (Fornberg & Zuev (2007)). In some
recent test cases where both RBF and PS approaches have been applicable, RBF methods were found to
offer significantly higher accuracy for the same number of nodes (Larsson & Fornberg (2003), Flyer &
Wright (2007), Flyer & Wright (2008)). This present study aims at providing additional understanding
of why this often is the case, by means of examining how RBF and Fourier-PS methods approximate
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FIG. 1. PS stencils for approximating ∂
∂x (marked by “× ”) and ∂

∂y (marked by “o”). The markers “2” indicate the direction

corresponding to 1√
2
( ∂

∂ x + ∂
∂ y ), along which no data is used in its PS approximation.

derivatives. We focus here on simple cases where there are no boundaries present (i.e. either infinite
or periodic domains). In the presence of boundaries, RBF methods feature additional advantages in
that boundary effects can be handled more effectively than by Chebyshev-type node clustering (which
depletes nodes in the central regions of computational domains) (Fornberg et al. (2002)).

Although both RBF and PS methods can be applied in 1-D (and were for that situation compared in
Fornberg & Flyer (2005)), what makes the two approaches genuinely different (even on regular grids)
emerges most clearly only in higher dimensions. In order to gain insights into these matters, we focus the
present work on 2-D, and start by noting that there is something quite strange about how a pseudospectral
(PS) method on a 2-D Cartesian (rectangular) grid approximates the quantity 1√

2
( ∂

∂x + ∂
∂y ). The quantity

∂
∂x at the center point in Figure 1 is approximated using the data values at the nodes marked by ”x” and
∂
∂y using the ones marked ”o”. The quantity 1√

2
( ∂

∂x + ∂
∂y ) is then obtained as a linear combination of

these two results, i.e. the only data values used are those marked with either “x” or “o”. However, this
quantity 1√

2
( ∂

∂x + ∂
∂y ) is the derivative in the direction marked by “2”. In spite of this, not a single one

of these points has been used. A derivative is a local property of a function, so it is counterintuitive
to use nodes far out in two quite different directions (and with quite large weights - decaying only like
O(1/k) where k is the distance from the center) while ignoring available nearby information along the
true direction of the derivative.

RBF approximations are global in nature, and usually combine the information from all the node
points. In many cases they will pick up information that the PS approach ignores. We will obtain
results along these lines via Fourier analysis on 2-D infinite lattices. While Cartesian lattice-type grids
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are required for the PS approach, it will also transpire that this is not the optimal node layout for RBF
approximations.

This study presents a variety of ideas, illustrations, and analysis relating to the concept of derivative
approximations on infinite or periodic lattices. As mentioned above (and which cannot be stressed
enough), this is not the situation for which RBFs typically are used. The main strength of infinitely
smooth RBFs in actual computing resides in the fact that they can provide spectral accuracy even in cases
of finite irregular geometries with local node refinements, etc., when PS methods are either severely
degraded or entirely unavailable. In the 2-D periodic case, we also compare lattice-based node layouts
against more irregular ones.

Sections 2 and 3 discuss PS methods on infinite Cartesian grids in 1-D and 2-D, respectively. RBFs
are then introduced in Section 4, followed in Section 5 by a discussion of their properties on Cartesian
and hexagonal infinite lattices. Since the issue of lattice-based versus scattered nodes is difficult to study
on infinite domains, we address this instead on 2-D periodic domains in Section 6. Concluding remarks
are given in Section 7.

Computational cost and numerical conditioning are important issues in practical RBF computations.
Since they have been discussed extensively in the literature, we will only make some brief comments
here. The computational cost per node usually is higher than for PS methods, although not always.
For example, using Newton’s method with Gaussian elimination to solve nonlinear PDEs leads to full
matrices also in the PS case. Furthermore, there exist promising approaches for ‘fast’ RBF algorithms,
summarized in Fasshauer (2007). The most straightforward RBF procedure (RBF-Direct; a direct im-
plementation of equations (4.1) and (4.2)) becomes ill-conditioned in the case of relatively flat basis
functions. This is inconvenient, but does not amount to a fundamental ‘barrier’. The RBF-Direct pro-
cedure then consists of two successive unstable steps for computing a well conditioned result (Driscoll
& Fornberg (2002), Fornberg et al. (2004), Schaback (2005)). The first numerical algorithms which
demonstrated that genuinely stable numerics is completely feasible (in regular arithmetic precision,
even in the flat basis function limit) were the Contour-Padé method Fornberg & Wright (2004) and the
RBF-QR method by Fornberg & Piret (2007). Improvements and extensions of both of these methods
are under development. Most likely, additional fully stable algorithms will be found in the future.

2. The PS method on an infinite grid in 1-D

On a 1-D unit-spaced (h = 1) infinite grid, only the Fourier modes ei ξ x,−π 6 ξ 6 π can be present. As
a result of aliasing, any higher mode on the grid will be indistinguishable from a mode within this range.
Using the Fourier transform (FT) convention u(x)= 1√

2π

∫ ∞
−∞ û(ξ ) eiξ xdξ , û(ξ )= 1√

2π

∫ ∞
−∞ u(x) e−iξ xdx),

the relations between discrete node data u(k) and how much there is present of each mode û(ξ ) become

u(k) =
1√
2π

∫ π

−π
û(ξ ) e− i ξ kdξ , k ∈ Z (2.1)

where

û(ξ ) =
1√
2π

∞

∑
k=−∞

u(k) ei ξ k ,−π 6 ξ 6 π. (2.2)

We can use (2.1) to evaluate u(x) also for non-integer values of x, and thus obtain

u′(k) =
1√
2π

∫ π

−π
(−iξ ) û(ξ ) e− i ξ kdξ , k ∈ Z.
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FIG. 2. (a) Fourier transform ĉ(ξ ) in case of 1-D cardinal data, (b) FD coefficients wk for PS approximation to ∂
∂x .

In the case of cardinal data c(k)=
{

1 k = 0
0 otherwise , k∈Z, we get ĉ(ξ )=

{
1/
√

2π −π 6 ξ 6 π
0 otherwise

,

as illustrated in Figure 2 a.
A Fourier-PS method is designed to be exact for all Fourier modes that the grid can represent.

Converted over to global finite difference (FD) formulas (Fornberg (1996)), the FD weights wk for ∂
∂x ,

satisfying

u′(0) =
∞

∑
k=−∞

wk f (k)

therefore become

wk =
1

2π

∫ π

−π
(−iξ ) e− i ξ kdξ =

∂
∂x

sinπx
πx

∣∣∣∣
x=k

=
(−1)k

k
, (2.3)

as shown in Figure 2 b.
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FIG. 3. Function ĉ(ξ ,η) in the 2-D PS case.

3. PS and band limited derivative approximations in 2-D

3.1 The PS method on an infinite Cartesian lattice

The key formulas are in this case virtually identical to those in 1-D. The FT of cardinal data c(k1,k2)

becomes ĉ(ξ ,η) =
{

1/2π −π 6 ξ ,η 6 π
0 otherwise (Figure 3) and therefore

∂c(x,y)
∂x

∣∣∣∣
x=k1,y=k2

=
1

2π

∫ π

−π

∫ π

−π
(−iξ ) e−i(ξ k1+ηk2)dξ dη

=
(

1√
2π

∫ π

−π
(−iξ ) e− i ξ k1dξ

)(
1√
2π

∫ π

−π
e− i η k2dη

)
.

The first factor recovers the 1-D result, and the second factor is one for k2 = 0 and zero for other integer
values of k2. The FD weights for ∂

∂x will consequently extend only along the x-axis (Figure 4). From a
numerical point of view, there is therefore no purpose in attempting to create fully 2-D PS stencils for
quantities such as ∂

∂x ,
∂
∂y , since this will not produce anything different from an immediate use of the

standard 1-D formulas.

3.2 Derivative approximations of band limited functions without any associated grid

As we just observed, the 2-D lattice PS FD stencil for ∂
∂x simplified down to using the 1-D version in

each spatial direction. Suppose instead that we are not confined to a rectangular lattice, and that we
do not have any enforced special directions. The most natural variation to the Fourier transform shown
in Figure 3 would be to consider a circular rather than a square area [−π,π]× [−π,π] within which
ĉ(ξ ,η) is constant and non-zero. If for example we choose a circular area of radius one, we obtain
(most easily after an evaluation in polar coordinates)

c(x,y) =
J1(

√
x2 + y2)√

x2 + y2
, (3.1)
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FIG. 4. FD weights in 2-D corresponding to ∂
∂x - exactly the same along the x-axis as in the 1-D case displayed in Figure 2 b.

from which follows
∂
∂x

c(x,y) =
x
8 0F1(3,− 1

4
(x2 + y2)) (3.2)

(shown in Figure 5), and similarly

∂
∂y

c(x,y) =
y
8 0F1(3,− 1

4
(x2 + y2)), (3.3)

where 0F1 is a reduced form of the confluent hypergeometric function. These relations show that, once
the Cartesian lattice concept has been removed, approximations for ∂

∂x and ∂
∂y will no longer be confined

just to the x- and y-directions respectively, but will extend throughout a full vicinity of the center point.
From (3.2) and (3.3) follow that the approximation for 1√

2
( ∂

∂x + ∂
∂y ) will be exactly the same as for ∂

∂x ,
but just turned 45o (and similarly for any other angle as well). We have here again used the notation
c(x,y) because of the Fourier space similarity with grid-based cardinal functions (of which we will come
across more examples later), in spite of the fact that the function defined in (3.1) is not associated with
(or takes cardinal values on) any lattice-like node layout.

We will next introduce RBFs, and see how these approximate space derivatives.

4. Brief introduction to RBFs

With a radial function φ(r) and with data values fk given at locations xk, k = 1,2, . . . ,n, the function

s(x) =
n

∑
k=1

λk φ(||x− xk||), (4.1)
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FIG. 5. The function by which data is to be weighted (convolved) in order to approximate ∂
∂x in the case of functions that are band

limited in the sense that only Fourier modes obeying ξ 2 +η2 6 1 are included (For other bounds ξ 2 +η2 6 ρ2, the figure would
differ only in terms of the scales along the axes).
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Type of radial function 2-D Fourier transform φ̂(ρ)
Piecewise smooth

MN monomial |r|2m+1 (−1)m+1 ((2m+1)!!)2

|ρ |2m+3

TPS thin plate spline |r|2m ln |r| (−1)m+1 22m (m!)2

|ρ|2m+2

Infinitely smooth

MQ multiquadric
√

1+(εr)2 − e−
|ρ|
ε (ε + |ρ|)
|ρ |3

IMQ inverse MQ
1√

1+(εr)2

e−
|ρ|
ε

ε |ρ |

IQ inverse quadratic
1

1+(εr)2

K0(
|ρ|
ε )

ε2

GA Gaussian e−(εr)2 e−ρ2/(4ε2)

2ε2

Table 1. Definition and 2-D Fourier transforms for some cases of radial functions. For a similar table with Fourier transforms in
n-D, see Fornberg et al. (2008).

where ‖ · ‖ denotes the standard Euclidean norm, interpolates the data if we choose the expansion co-
efficients λk in such way that s(xk) = fk, k = 1,2, . . . ,n. The expansion coefficients λi can therefore be
obtained by solving the linear system A λ = f where

Ai, j = φ(||xi− x j||). (4.2)

The following are some key theorems regarding RBF interpolation. For proofs and further discus-
sions, see for example Buhmann (2003), Wendland (2005), Fasshauer (2007):

• All the smooth RBF choices listed in Table 1 will give coefficient matrices A in (4.2) which are
nonsingular, i.e. there is a unique interpolant of the form (4.1) no matter how the distinct data
points are scattered in any number of space dimensions. In the cases of IQ, IMQ and GA, the
matrix A is positive definite and, for MQ, it has one positive eigenvalue and the remaining ones
all negative.

• Interpolation using MN and TPS can become singular in multi-dimensions. However, low de-
gree polynomials can be added to the RBF interpolant to guarantee that the interpolation ma-
trix is positive definite (a stronger condition than non-singularity). For example, for cubic RBF
and TPS in d dimensions, this becomes the case if we use as interpolant s(x) = ∑d+1

k=1 γk pk(x)+
∑n

k=1 λk φ(‖x− xk‖) together with the constraints ∑n
j=1 λ j pk(x j) = 0,k = 1, . . . ,d +1. Here, pk(x)

denotes a basis for polynomials of degree one in d dimensions, i.e. in the case of d = 3 (with
x= (x1,x2,x3)), we have p1 = 1, p2 = x1, p3 = x2, p4 = x3.
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FIG. 6. (a) Poisson sum ΞCart(ξ ,η) for GA, ε = 1 (b) Ratio φ̂(ξ ,η)/ΞCart(ξ ,η).

• In 1-D, the RBF interpolant in the limit of ε → 0 converges to the Lagrange interpolation polyno-
mial (no matter how the distinct nodes are scattered) (Driscoll & Fornberg (2002)).

• For 1-D periodic data, this same limit reproduces standard trigonometric interpolants (again, for
all node distributions). For scattered nodes on a sphere, it will in general reproduce the spherical
harmonics (SPH) interpolant (Fornberg & Piret (2007)).

5. RBF interpolants and derivative approximations on infinite lattices

5.1 Cartesian lattices

As demonstrated in Buhmann & Powell (1990) the cardinal RBF interpolant on an infinite unit-spaced

lattice (obeying c(x,y) =
{

1 x,y = 0
0 x,y other integers ) can be written down explicitly:

c(x,y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

φ̂(ξ ,η)cosxξ cosyη
ΞCart(ξ ,η)

dξ dη (5.1)

where ΞCart(ξ ,η) is the 2-D Poisson sum

ΞCart(ξ ,η) =
∞

∑
k=−∞

∞

∑
l=−∞

φ(k, l) ei(k ξ + l η) = 2π
∞

∑
k=−∞

∞

∑
l=−∞

φ̂(ξ +2πk,η +2πl). (5.2)

In many cases, the last form of the double sum in (5.2) is the most convenient one to use (and it also
converges in many cases when the first double sum diverges). Table 1 lists the Fourier transforms
φ̂(ξ ,η) in the form φ̂(ρ) since they are rotationally symmetric, and therefore depend on ρ =

√
ξ 2 +η2

only. For example, in the case of GA RBF with ε = 1, we obtain ΞCart(ξ ,η) and φ̂(ξ ,η)/ΞCart(ξ ,η),
as shown in Figure 6.

Since ΞCart(ξ ,η) is a doubly periodic sum of translates of φ̂(ξ ,η), the ratio φ̂(ξ ,η)/ΞCart(ξ ,η)

will for ε → 0 (when the spikes just get sharper) approach the same result φ̂(ξ ,η)=
{

1 ξ ,η ∈ [− π,π]
0 otherwise
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FIG. 7. Key properties of the GA cardinal RBF interpolant and the generated FD approximations in the case of Cartesian lattice
and ε = 1.

as was illustrated for the PS case in Figure 3. The same result is true for any of the infinitely smooth
RBF types in their ε → 0 limit.

The equations (5.1) and (5.2) have in the past been utilized for numerous other investigations, such
as analyzing polynomial reproduction (Powell (1992), Buhmann (2003), Flyer (2006)).

5.1.1 Cardinal functions and resulting FD weights for ε > 0 Based on (5.1), (5.2) and the Fourier
transforms from Table 1, we can numerically calculate c(x,y), ∂

∂x c(x,y), and ∂
∂y c(x,y), and then read

off the corresponding FD weights as − ∂
∂x c(x,y) and − ∂

∂y c(x,y) at the lattice points. This provides
the data that is displayed in Figures 7 and 8. The very simple set of zero contour lines that arises in
the GA case (top right subplot of Figure 7; leading to FD stencils that extend only along the x- and
y-axes respectively) is not typical for other types of smooth RBFs, as seen in the MQ case, illustrated
in the Figure 8. Figure 9 shows a more detailed picture of the zero contour lines in the case of MQ
with ε = 1 (revealing a striking resemblance to a Celtic cross). Similar changes in general ‘pattern’ in
cardinal expansion coefficients and in interpolants at certain distances from the origin (increasing with
ε decreasing) have been observed and analyzed earlier in other RBF contexts, e.g. (Fornberg & Flyer
(2008), Fornberg et al. (2008)).
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12 of 28 B. Fornberg, N. Flyer, and J.M. Russell

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

FIG. 9. Zero contour lines of the cardinal interpolant in the case of MQ RBFs with ε = 1.

5.1.2 RBFs in the limit of ε → 0 In the limit of ε → 0, we noted from the analysis at the start of
Section 5.1 that the function φ̂(ξ ,η)/Ξ(ξ ,η) will approach ĉ(ξ ,η), as shown in Figure 3, and will
thus reproduce the 1-D PS differentiation formula. Consequently, the cardinal interpolant for all the
smooth RBF types (just as in the PS case) will approach

c(x,y) =
sinπx

πx
sinπy

πy
, (5.3)

as was observed earlier by Baxter (1992). Based on this limit, we can immediately compute the results
shown in Figure 10. The FD stencils will agree exactly with the PS case, as shown for ∂

∂x in Figure
4. According to (2.3), the weights decay to zero like O(1/k). This should be compared to the finite ε
results earlier in Figures 7 and 8, in which cases the decay is exponential (obtained from the Fourier
transforms of infinitely differentiable functions rather than from a discontinuous one).
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FIG. 11. Fourier ratio φ̂(ξ ,η)/ΞHex, Cardinal interpolant (on an infinite hexagonal lattice), and its zero contour lines (with the
nodes marked by dots) displayed for three cases of GA RBF (ε = 2,1,0.5 respectively).

5.2 Hexagonal lattices

Hexagonal lattices have sometimes been used in connection with low order FD methods, although never
with PS methods. In the context of RBFs, Iske (Iske (2000), Iske (2004)) described this node distribution
as ‘optimal’. Nevertheless, it has received relatively little subsequent attention.

5.2.1 Cardinal functions and resulting FD weights for ε > 0 The counterparts to (5.1) and (5.2) on
an infinite hexagonal grid with nodes located at (x,y) = (k1 + 1

2 k2,
√

3
2 k2), k1,k2 integers, is

c(x,y) =
√

3
8π2

∫ ∞

−∞

∫ ∞

−∞

φ̂(ξ ,η)cosxξ cosyη
ΞHex(ξ ,η)

dξ dη (5.4)

where

ΞHex(ξ ,η) =
∞

∑
k=−∞

∞

∑
l=−∞

φ̂(ξ +4π(k + 1
2 l),η + 2π√

3
l). (5.5)

is based on a hexagonal summation pattern in Fourier space. The results in Figure 11 were obtained
by direct numerical evaluation of (5.4) and (5.5). The left column of subplots should be compared to
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Figure 6 b. The most notable difference is that, if ε is made smaller, the ratio φ̂(ξ ,η)/Ξ(ξ ,η) this time
approaches a hexagonal based (rather than square based) step function. The middle column of subplots
shows the corresponding cardinal interpolants. We note that these are very local in character when ε
is large. For smaller values of ε , they extend much further out, in particular along the primary lattice
directions (as we will see shortly in Figure 13). Since the corresponding FD weights are proportional
to the partial derivatives of this cardinal interpolant at the node points, larger ε corresponds to more
local stencils. The rightmost column of subplots in Figure 11 should be compared to the counterparts in
Figures 7, 8, 9 and 10. As is obviously required, all node points (apart from the one at the origin) have at
least one zero contour line going exactly through it. We can note that the zero contour line connectivity
pattern changes significantly when ε varies.

5.2.2 Smooth RBFs in the limit of ε → 0 For the same reason that φ̂(ξ ,η)/Ξ(ξ ,η) approached a
constant within a square region (and zero outside it) in the Cartesian case (Figure 3), the corresponding
limit in the hexagonal case will feature the constant non-zero value within a hexagonal domain in the
ξ ,η-plane. The double integral (5.4) can in this limit be evaluated in closed form, giving

c(x,y) = − 3
4π2(x3−3xy2)

[2xcos(
4πx

3
)− (5.6)

− (x−
√

3y)cos(
2π
3

(x−
√

3y))− (x+
√

3y)cos(
2π
3

(x+
√

3y))]

Figure 12 shows the counterparts to Figures 10 for the Cartesian lattice case (note that the x,y-lattice
in the surface plot of the cardinal function bears no relation to the hexagonal node lattice). Figure 13
shows the cardinal interpolant in much greater detail, clearly revealing its ray-type character.

We have at this point several possible explanations of the fact that RBF approximations frequently
(but not always) are observed to be most accurate at some finite value of ε rather than in the ε → 0 limit:

1. As noted in connection with Figure 11, large ε approximations tend to be more local in nature -
intuitively reasonable since a derivative is a local property of a function. The ray structure seen
in Figure 13 is not ‘physical’ but a grid artifact. It emerges only in the last stages of the ε → 0
process. Earlier, the decay is exponential in all directions rather than (slow) algebraic in certain
ones.

2. As seen when comparing Figures 8 and 10, large ε approximations can pick up information that
is missed in the ε = 0 (PS) case.

3. In case boundaries are present, ε → 0 is likely to lead to Runge phenomenon type edge effects,
which typically cause an increase in errors (Fornberg & Zuev (2007)).

6. Scattered nodes and periodic domains

There are several reasons to believe that somewhat scattered node layouts for RBFs also can be very
effective. Such reasons include
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FIG. 12. Key properties of the RBF cardinal interpolant and generated FD approximations in the case of a hexagonal lattice in the
ε → 0 limit.
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character.
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FIG. 14. Comparison between ME and MD node layouts on the sphere (in the case of n = 1849 nodes)

1. As discussed in Fornberg et al. (2004), it suffices to place five nodes along a line and the RBF
interpolant, as ε → 0, will diverge to infinity off the line. In 2-D, the same phenomenon arises
on rectangular lattices of sizes 5 or larger in either direction (Driscoll & Fornberg (2002)) (GA
RBF form an exception (Fornberg et al. (2004), Schaback (2005)); most likely the Bessel class
of RBFs discussed in Fornberg et al. (2006) forms the most general class of exceptions). These
observations point towards Cartesian lattice type node layouts being prone to singularities that are
never encountered with scattered nodes.

2. On the sphere, RBF interpolants typically approach SPH interpolants as ε → 0 (Fornberg & Piret
(2007)), which are singular for a vast number of node layouts (for example, if the data is given on
a longitude-latitude grid). Minimal energy (ME) distributed nodes (as obtained by freely-moving
equal point charges repelling each other) form patterns with a hexagonal lattice resemblance (Fig-
ure 14 a), and SPH interpolation then becomes very close to singular - although not exactly so.
Womersley & Sloan (2001) found that SPH interpolation accuracy can be improved by many
orders of magnitude by changing from ME (minimal energy) to so-called MD (maximal determi-
nant) node sets (Figure 14 b), which have a more irregular appearance than the ME node set.

Since both analytical and numerical results are difficult to obtain in cases of scattered node on infinite
domains, we will instead focus the following discussion on numerical tests on 2-D doubly periodic
domains (which also are free from boundary effects).

6.1 RBFs on periodic domains

There are two main approaches for implementing RBFs on periodic domains, as illustrated below for
1-D and 2-D domains.

6.1.1 1-D periodic domain Say that the domain is [−π,π]:
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1. Modify φ(r) to make it periodic. Instead of φ(r), we use as basis functions the sums of periodic
repetitions

ψ1(r) =
∞

∑
k=−∞

φ(r +2πk). (6.1)

Collocation using ψ1(r) instead of φ(r) will produce a 2π-periodic interpolant. As an often
preferable alternative to summing (6.1) directly, it can be evaluated by means of its (generalized)
Fourier transform and Poisson’s summation formula (Fornberg & Flyer (2005)).

2. Instead of placing the nodes (denoting them for now θk, k = 1, . . . ,n) along a straight line, we can
place them around a unit circle zk = ei θk , and implement RBFs in 2-D. The distance between the
nodes θi and θ j then becomes 2sin θi−θ j

2 , so this procedure can be thought of as staying in 1-D
and using as radial function

ψ2(r) = φ(2sin
r
2
).

The two approaches above, both accommodating for periodicity, are not equivalent. The second ap-
proach has the advantage that standard theory for non-singularity immediately applies. No singularities
have been observed with the first approach, but confirming theory does not yet appear to be available.

6.1.2 2-D doubly periodic domain With basis functions centered at x = xc, y = yc, on [−π,π]×
[−π,π], the first approach generalizes to

ψ1(x− xc,y− yc) =
∞

∑
k=−∞

∞

∑
l=−∞

φ(
√

(x− xc +2πk)2 +(y− yc +2πl)2). (6.2)

In the second case, one possibility would be to embed a torus in 3-D space. A simpler, and maybe more
natural option is to use

ψ2(x− xc,y− yc) = φ(2
√

sin2( x−xc
2 )+ sin2( y−yc

2 )). (6.3)

While (6.3) can be evaluated directly for all choices of RBFs and values of ε , (6.2) is mainly convenient
in the GA case for large values of ε . Immediate use of (6.2) gives then rapid convergence of the double
sum. For small values of ε, Poisson’s summation formula (referred to above in Section 6.1.1) leads
again to a rapidly convergent representation

ψ1(x− xc,y− yc) =
∞

∑
k=−∞

∞

∑
l=−∞

e−ε2[(x−xc+2πk)2+(y−yc+2πl)2]

=

(
∞

∑
k=−∞

e−ε2(x−xc+2πk)2

)(
∞

∑
l=−∞

e−ε2(y−yc+2πl)2

)

=
1

4πε2

∞

∑
k=−∞

∞

∑
l=−∞

(
e−

1
4ε2 (k2+l2) e− i(k xc+ l yc)

)
ei (kx+ly)

where the last line follows from the identity

∞

∑
k=−∞

e−ε2(r+2πk)2
=

1
2ε
√

π

∞

∑
k=−∞

e− ( k
2ε )

2
eikr.
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FIG. 15. The four different periodic node distributions over [0,2π]× [0,2π] that we use for numerical comparisons.

6.2 Different 2-D periodic node distributions

Figure 15 shows four different periodic node distributions over [0,2π]× [0,2π]. The first one is purely
Cartesian, with 132 = 169 nodes. The second is a very close approximation to a hexagonal layout, with
168 nodes. The nearest neighbor distances vary with about 4% (a perfect hexagonal layout is impossible
on a periodic square). For these two distributions, the condition numbers of the RBF A-matrix in the
case of GA with ε2 = 0.2 are 1.28 · 1014 and 1.30 · 1011 respectively. With Matlab’s genetic algorithm
tool, we can perturb the hexagonal pattern in order to minimize this condition number further, reaching
3.81 ·1010 with the node distribution in the bottom left subplot. A fourth option that has been commonly
used both for Monte Carlo simulations and for RBFs are ‘Halton points’, as explained for example in
Appendix A of Fasshauer (2007). The condition number for GA ε2 = 0.2 in this case is 6.13 · 1013.
These four node distributions are used in the following numerical tests.

6.3 Numerical tests on a 2-D periodic domain

For the tests described below, we implemented GA for (6.2) and both GA and MQ for (6.3). No sig-
nificant difference was found between the results (just as only minor differences were found in Flyer
& Wright (2007) and Fornberg & Piret (2008) between different smooth RBF types). As a result, it is
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sufficient to present the case of GA using (6.3).

6.3.1 Fourier mode treatment by the different node sets The cardinal interpolant formulas (5.1) and
(5.4) were illustrated in Fourier space in Figure 6 b and in the left column of subplots of Figure 11 for
Cartesian and hexagonal grids, respectively. These were all infinite lattice results, and it is not clear how
to obtain counterparts to these in cases of scattered nodes. We therefore turn to a 2-D periodic geometry,
where we can proceed numerically as illustrated in Figure 16. Using each of the four node sets shown in
Figure 15, we interpolate a wide range of 2-D Fourier modes (GA, ε = 2) and then, over a much denser
grid, calculate the correlation coefficient between the Fourier modes and their RBF interpolants. If a
mode is correctly represented, this coefficient will evaluate to one, whereas it otherwise will become
close to zero. The middle row of subplots in Figure 16 shows these results. The leftmost two subplots
are very reminiscent of the infinite lattice results, but we are now also obtaining the similar functions
associated with scattered nodes. Since there are no ‘special’ directions in the scattered node cases,
contour lines (with the 0.9 level illustrated in the bottom row of subplots) become then nearly circular.
We showed earlier in Section 3.2 that if a function is band limited within a circular domain in Fourier
space, the weights for approximating derivatives are global. The last two subplots in the bottom row of
Figure 16 show that scattered nodes lead to this situation.

Although it is unclear how much conclusions can be drawn from Figure 16, it might still be in-
teresting to make a few heuristic observations. In the last two cases (‘optimized’ and ‘Halton’), the
irregularities seem to have an adverse effect on the accuracy (as seen most clearly at the zero base level
in the middle row of subplots). Comparing the ‘Cartesian’ and ‘hexagonal’ cases, we focus instead
on the bottom row of subplots, and observe near-square and near-hexagonal domains in Fourier space,
which can be shown to be of the same area when ε → 0. In 3-D, we would similarly get a cube and
a multifaceted sphere approximation of matching volumes. In D dimensions, the main diagonal in a
hypercube is

√
D times the side length, suggesting that the anisotropy in the Cartesian case worsens

quite rapidly for increasing D.

6.3.2 Accuracy comparisons in case of a 2-D periodic test function: Fixed number of nodes Figure
17 illustrates how the max norm error varies with ε when we interpolate the test function

f (x,y) =
1(

1+
(
sin π−x

2

)6 +
(
sin π−y

2

)6
)4 (6.4)

with the four 2-D periodic node point sets. Matlab’s regular ‘double precision’ worked well down to ε =
0.3 and, for lower values of ε , we instead used its VPA (variable precision arithmetic) in order to ensure
results free from ill conditioning effects. The results are entirely consistent with the different aspects of
analysis presented above (although we here consider interpolation rather than derivative approximation).
In particular, the hexagonal lattice gives the best accuracy, with a non-zero optimal ε-value. Here, the
Halton node set comes out as the worst of the four sets - most likely since the node locations are so
irregular that they at some places form very tight groups and at other places leave quite large areas
without any nodes at all. The Cartesian node set does not work very well either with the main reason
most certainly being its weaker approximation qualities in certain spatial directions as noted in Section
5.1. The ‘optimized’ node set was optimized only in terms of the GA condition number at one fixed
ε value. Although it did not in this particular test perform any better than the hexagonal node set, it
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FIG. 16. Illustration of the Fourier modes that are present when using different node layouts in a 2-D periodic domain. Top row:
The same node distributions as illustrated in Figure 15. Middle row: Correlation coefficients between 2-D Fourier modes and
their RBF interpolants, Bottom row: Regions (in 2-D Fourier space) inside which the correlation coefficients exceed 0.9.
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FIG. 17. Errors (in max norm over the domain), as function of ε , when the 2-D periodic test function (6.4) is approximated by
RBFs using different node distributions. The horizontal dashed line shows the Fourier-PS error level (same as for Cartesian RBFs
in the ε → 0 limit).

nevertheless confirmed that scattered node sets can be clearly better than Cartesian ones. The Cartesian
RBF case, in its ε → 0 limit, reproduces the standard Fourier-PS method - cf. the dashed line in Figure
17. The hexagonal RBF case with an optimal ε (just above one) gives nearly an order of magnitude
lower error.

6.3.3 Interpolation errors when increasing the number of nodes As noted earlier, RBF approxima-
tions are typically of spectral accuracy when there is no adverse Runge phenomenon is present. Our
second numerical test case is designed to test this spectral convergence. We consider the same test func-
tion (6.4), but vary the number of nodes N, choosing in each case a numerically determined ’optimal’
ε . In place of the ’optimized condition number’ node set, we introduce instead fully random sets, as
illustrated in Figure 18. Just using independent uniformly distributed random numbers as node coordi-
nates causes severe local clusterings, and rather large areas can lack nodes entirely. Although it is not
likely to be a good strategy, it will nevertheless provide interesting comparisons. The result of this test
is seen in Figure 19 (computed with RBF-Direct, using GA RBFs in standard 64-bit double precision
floating point). For all the four types of node distributions, the errors follow largely linear trends in this
log-linear plot, confirming spectral accuracy (the horizontal axis is chosen as

√
N since this quantity in
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FIG. 18. Typical examples of the highly irregular character of node layouts when the the x and y positions of the nodes are
independent random numbers

2-D becomes inversely proportional to the typical node distances). The fully random node distribution
is seen to be the worst. The severe node irregularities have damaged the accuracy, but maybe less so
than might have been expected. The Cartesian case features a strange oscillatory pattern and a clearly
disappointing performance, especially given how commonly it is used in the literature (always in PS
and often in RBF contexts). The Halton distributions perform relatively well. However, the hexagonal
layout is clearly the best of the four choices.

The differences between the four cases may seem relatively small, but they are nevertheless note-
worthy in bringing out seldomly recognized problems with Cartesian node layouts. For interpolation
of an unknown periodic function in 1-D (i.e. with nothing known that could be utilized for local node
refinement), an equispaced grid is likely to be optimal. The results in Figure 19 illustrate that the issue in
2-D is a lot more complicated, and that it would be shortsighted to just assume that a Cartesian 2-D grid
is the preferable generalization from 1-D. Although 1-D analysis often can give valuable insights, great
care has to be exercised when such results are transferred to two or more dimensions. For the heuristic
reasons indicated in Section 6.3.1, going to 3-D will likely further increase the differences between the
two primary layouts this study has focused on; Cartesian vs. hexagonal.

6.3.4 Derivative errors when increasing the number of nodes: Comparison with the Fourier-PS method
For this test, we choose the test function shown in the top left subplot of Figure 20

f (x,y) =
(2− cosx)(2− cosy)

3+ cos2x+0.2sin(x+3y)+0.5cosy
(6.5)

somewhat reminiscent of Matlab’s ’peaks’-function, but 2π-periodic in both x and y. The methods we
include now are the two best ones from the previous test (RBFs on Halton and hexagonal node sets) and
compare against standard Fourier-PS on a 2-D Cartesian grid. The computations were done with both
GA and MQ RBFs, with virtually identical results (the MQ results are shown in the figure). Again, the
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differences between the compared methods are not vast, but they are still clear and consistent enough to
make the point that, even in a 2-D periodic geometry, Fourier-PS is not the optimal method in terms of
the accuracy it provides for a fixed number of node points.

We did not in these comparisons include any node sets generated by ‘greedy’ algorithms. Such iter-
ative algorithms successively adds or subtracts nodes according to some strategy that appears plausible
at each instant (for example, by placing a new node wherever the error is the largest). Brief discussions
can be found in Fasshauer (2007) and Wendland (2005). The resulting node sets often become quite
irregular - visually on a similar level as Halton node sets. While this level of irregularities may well be
acceptable, keeping the computational cost relatively low may be a challenge.

7. Conclusions

As we have stressed repeatedly in this study, the overwhelming strength of RBF methods relates to their
spectral accuracy also in the presence of irregular boundaries in two or more dimensions, their ability
to incorporate very flexible versions of local node refinement, etc. We have here tried to shed some
light - largely for theoretical insight only - on two cases in which RBFs typically would not be used
for practical computing: infinite lattices and periodic domains. In the former case, we have provided
Fourier analysis suggesting that hexagonal grids may be advantageous over Cartesian ones - confirming
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earlier made observations based on different arguments. The latter case (2-D periodic domains) is the
most ideal setting possible for Fourier-PS methods. Our tests show that even then, RBF approximations
are capable of providing somewhat higher accuracy for the same number of nodes. We also note that
even high levels of irregularities (as featured for example by Halton-type node sets) cause only very
minor accuracy degradations.
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