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ABSTRACT

This is a mathematical study of the long-lived hydromagnetic structures pro-

duced in the tenuous solar corona by the turbulent, resistive relaxation of a

magnetic field under the condition of extremely high electrical conductivity. The

relaxation theory of Taylor (1974), originally developed for a laboratory device, is

extended to treat the open atmosphere where the relaxing field must interact with

its surrounding fields. A boundary-value problem is posed for a two dimensional

model that idealizes the corona as the half Cartesian plane filled with a potential

field (i) that is anchored to a rigid, perfectly conducting base, and, (ii) that em-

beds a force-free magnetic field in the form of a flux rope oriented horizontally

and perpendicular to the Cartesian plane. The flux rope has a free boundary

which is an unknown in the construction of a solution for this atmosphere. Pairs

of magnetostatic solutions are constructed to represent the initial and final states

of a flux-rope relaxation that conserves both the total magnetic helicity and to-

tal axial magnetic flux, using a numerical iterative method specially developed

for this study. The collection of numerical solutions found provides an insight

into the interplay among several hydromagnetic properties in the formation of

long-lived coronal structures. In particular, the study shows (i) that the outward

spread of reconnection between a relaxing flux-rope and its external field may be

arrested at some outer magnetic flux-surface within which a constant-α force-free

field emerges as the minimum-energy state, and, (ii) that this outward spread is

complicated by an inward, partial collapse of the relaxing flux-rope produced by

a loss of internal magnetic pressure.
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1. Introduction

Force-free magnetic fields are physically the simplest form of the long-lived hydromag-

netic structures populating the tenuous corona of the Sun (Aschwanden 2005; Low 1996).

Fully ionized at its million-degree temperature, the corona under quiescent conditions may be

taken to be a perfect electrical conductor. Neglecting pressure and gravity as a first approx-

imation, a coronal equilibrium structure is one whose electric current density is everywhere

parallel to the magnetic field B expressed by

∇× B = αB, (1)

∇ · B = 0. (2)

The proportionality function α in equation (1) describes twist in the magnetic field. Applying

the solenoidal condition (2) to this equation gives

B · ∇α = 0, (3)

showing that α takes a constant value along each line of force. This paper is concerned

with the turbulent, resistive relaxation of magnetic fields that produces long-lived coro-

nal structures described by these generally nonlinear equations (Aly 1989; Sakurai 1989;

Low & Lou 1992; Flyer et al. 2004; Hu & Wang 2005; Wolfson 2003; Wolfson et al. 2007;

Low & Flyer 2007).

In the presence of an ubiquitous magnetic field of 10 G or greater, the characteristic

Alfven speed in the tenuous corona is of the order of 103 km/s. The transit time of an

Alfven wave crossing a coronal structure of a typical length of 105 km is about 100 s. When

a hydromagnetic structure becomes ideally unstable, the instability has a rise time of the

order of that transit time. The different parts of the structure must exchange information

at typically the Alfven speed to bring about a growing perturbation. An instability may

either saturate or run away with a significant release of energy, such as in a flare, depend-

ing on the amount of energy stored in the unstable structure. In the case of a flare, the

runaway release of energy is dissipative in spite of the high coronal electrical conductiv-

ity. Spontaneous current sheets form in the manner described by Parker (1994) to rapidly

heat the plasma to tens of millions of degrees in temperature. A host of plasma kinetic

processes then sets in to couple nonlinearly and nonlocally with the fluid behaviors of the

corona (Alexander & Metcalf 2003; Aschwanden 2005; Krucker & Lin 2003; Lin et al. 2003;

Magara et al. 1996; Shibata et al. 1995; Shibata 1999; Tsuneta 1996a; Tsuneta 1996b).

Flares often occur when fresh magnetic flux emerges into the corona from the photo-

sphere below (Lites et al. 1995, Lites 2005, Okamoto et al. 2007, Shibata et al. 1990,
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Manchester 2001, Manchester et al. 2004, Fan 2001, Fan & Gibson 2004, Amari 2003, Mag-

ara 2006). Hereafter we qualify the terms field and flux to be magnetic only when confusion

would otherwise arise. The intermixing of fresh and pre-existing fluxes produces flares which

have the principal effect of removing excess energy to bring about a combined flux system

in a quiescent low-energy state (Manchester et al. 2004, Amari 2004, Zhang & Low 2003).

The energy of this system may build up during a slow quasi-static evolution, as photospheric

motions of the order of 1 km/s twist and shear the magnetic field. The slow evolution has a

time scale of days, extremely long compared to the Alfven transit time in the corona, lead-

ing to further flaring whenever circumstances are encountered that favor additional shedding

of excess energy (Aly & Amari 2007, Forbes & Priest 1995, Gibson et al. 2002, Titov &

Demoulin 1999, Low & Berger 2003).

These considerations suggest the following properties for a long-lived structure in static

equilibrium. It must be stable to both infinitesmal and finite perturbations in order to build

up the large amount of free energy that eventually gets liberated in a flare. By the Parker

theory, spontaneously forming current-sheets are a ready means of dissipating the stored

energy. Therefore, the build up of stored energy must also rely on some hydromagnetic

constraints that prevent spontaneous current-sheets from draining away all the stored en-

ergy. In this concern, the theory of Taylor (1974, 1986) is physically especially pertinent.

This theory is based on the idea that, as current sheets dissipate under conditions of high

conductivity, the dissipation of magnetic-helicity has a time scale much longer than that

of magnetic energy liberation (Berger 1984). Magnetic helicity is a topological measure of

twist in the magnetic field. It is twist that gives the force-free field its field-aligned current

as a stored energy. Therefore, the approximate conservation of magnetic helicity prevents

a field from losing that twist, or, equivalently, from relaxing to a current-free or potential

state. The relevance of magnetic helicity to the solar atmosphere was first pointed out by

Heyvaerts & Priest (1984) and has since gain much recognition (Amari, Luciani & Aly 2000,

Demoulin 2007, Demoulin et al. 2006, Low 1996, Zhang & Low 2005, Zhang 2006). Even

as current sheets form spontaneously and dissipate during a non-explosive evolution, this

conservation law limits the amount of energy liberated by this process. This conservation

law also applies in the case of a significant energy liberation during a flare. In other words, if

the flaring structure has a net twist as represented by a significant net helicity, the flare must

still leave behind in the field an energy associated with that approximately unchanged total

helicity. Only by removing this total helicity can the field finally attain its potential state

with its absolutely minimum energy; see the mechanism relating to coronal mass ejections

described in Zhang & Low (2005).

We present a two-dimensional model for comparing the energies and structural proper-

ties of the initial and final states in a Taylor-like relaxation. We extend this theory originally
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developed for a magnetic field wholly contained in a laboratory device to treat the interaction

of the relaxing field with an external field in an open atmosphere (Dixon et al 1989, Janse &

Low 2007). In Sections 2 and 3, we construct, analytically and numerically, families of pairs

of initial-final states that are used in Section 4 to illustrate the basic physics of magnetic

relaxation in the corona. We conclude with a summary of our results in Section 5.

2. The Free Boundary Problem

An actual turbulent relaxation interupting a quasi-static evolution of a coronal magnetic

field is an extremely complex phenomenon. It involves a host of plasma and hydromagnetic

processes taking place with the full three-dimensional freedom of physical space. The details

of these time-dependent processes may be regarded not to be essential in the simplifying view

that all they do is to dump excess magnetic energy in order to enable the field to recover

a metastable equilibrium state. From that state, quasi-static evolution takes over again.

Avoiding full-blown numerical time-dependent hydromagnetic simulations of the turbulent

relaxation is not so limiting at this stage of development. Those simulations may be helped

in the future by the insight offered by our simple approach of examining possible pairs of

intial-final equilibrium states linked by applicable hydromagnetic conservation laws. The

construction of such equilibrium-pairs is formulated below.

Consider a magnetic field that varies with Cartesian coordinates x and y but is inde-

pendent of z:

B =

(

∂A

∂y
,−∂A

∂x
, Q

)

, (4)

expressed in its solenoidal form in terms of a flux function A and the component Q in the

direction of the ignorable coordinate. Then, the force-free equations (1) and (3) require

Q(x, y) = Q(A) so that for a known form of Q(A), A satisfies the elliptic partial differential

equation

∇2A + Q(A)Q′(A) = 0. (5)

In this derivation, α = Q′(A) so that a uniform Q corresponds to the potential field. Let

us use the solutions to this equation to describe magnetic structures in the half-space y > 0

idealized to be the solar corona. For a given form of Q(A), we need to solve a boundary

value problem for A subject to (i) a given distribution of By at the atmospheric base y = 0,

and, (ii) the demand for B to vanish at infinity in y > 0.

We are interested in solutions describing a straight rope of twisted magnetic field that

is oriented horizontally in the z direction. This rope is spatially confined in the x − y plane

but blends continuously into a potential field in the unbounded exterior of the rope.



– 5 –

Except for the two special cases:

Q = α0 (A − A0) , (6)

∇2A + α2
0 (A − A0) = 0, (7)

and,

Q = λ
√

2 (A − A0)
1/2 , (8)

∇2A + λ2 = 0, (9)

where α0, A0, and λ are constants, equation (5) is formidably nonlinear. Equation (6)

describes a force-free field with a constant α = α0. In contrast, equation (8) describes a

force-free field with a variable

α =
λ√
2

(A − A0)
−1/2 . (10)

Although this class of fields are nonlinear, the governing equations in this case are reduced

to the linear equation (9) for A. By Ampere’s law, the electric current density is

∇× B =

(

∂Q

∂y
,−∂Q

∂x
,−∇2A

)

, (11)

except for a constant multiplier. Equation (9) shows that the fields it generates have a

uniform current density in the z direction. Henceforth, we refer to the fields generated by

equations (7) and (9) as the constant-α and uniform axial-current fields. Both classes of

fields, if taken to fill all space in y > 0, have unacceptable physical properties, but they will

be rendered useful in the model we now formulate.

2.1. Twisted Flux Rope with a Free Boundary

Our model requires a continuous field that has a spatially variable-α inside the rope of

twisted field but with a negligible α in the exterior of the rope. We avoid this formidable

nonlinear boundary value problem by adopting an alternative approach. Let the rope make

a cross section σ with the x − y plane, denoting its boundary by ∂σ. Set Q ≡ 0 in the

exterior, denoted by σ′, where the field B = Bpot is purely potential:

Bpot =

(

∂Apot

∂y
,−∂Apot

∂x
, 0

)

, (12)

∇2Apot = 0. (13)

Then, to complete the model, we only have to prescribe Q(A) 6= 0 in σ for the twisted field

in the flux rope. Admitting a general force-free field in σ would bring us back to nonlinear
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boundary value problems we are avoiding. Therefore, to keep the mathematical problem

simple, we demand for the field in σ to be a solution of either equations (7) or (9), taking

advantage of their linearity.

This formulation yields a free-boundary problem, with ∂σ as an unknown to be con-

structed self-consistently with the flux function A governed by the respective partial differ-

ential equations in σ and σ′. A more complicated free-boundary problem is encountered

in the model of Low & Berger (2003) that embeds a twisted flux-rope in an external field

that is also twisted. In contrast, we are considering a simpler model, the case of a twisted

flux-rope embedded in an external untwisted field. In both instances, we have avoided the

mathematical challenge of treating equation (5) as a nonlinear partial differential equation,

only to encounter it in the form of a free-boundary problem that also defies a general treat-

ment. The numerical methods developed for the free-boundary problem formulated in this

paper are a first step to similar methods to deal with the more challenging problems of Low

& Berger.

For the field given by equation (4), the flux function A is constant along a line of force,

from which follows that α = Q′(A) is constant along a line of force. There can be no

connection between the lines of force in σ, where α 6= 0, and those in σ′, where α = 0.

Therefore ∂σ is a curve in the x − y plane along which A takes a constant value A0. We

assume that ∂σ is a regular curve. In other words, the flux-rope boundary ∂σ is a magnetic

flux surface on which A = A0. The governing equations for A show that upon crossing ∂σ,

say, from σ into σ′, the solution A may have, at worst, discontinuous derivatives of second

or higher orders. It then follows that the solutions of A are assured of continuity of its first

partial derivatives across ∂σ, which, in turn implies that B is continuous everywhere.

We limit our attention to the case of ∂σ being a simple closed curve lying entirely in

y > 0. Therefore, the flux function Apot accounts for the normal flux distribution on y = 0

and must meet the requirement that the field vanishes at infinity in y > 0. We consider the

specific case of Bpot satisfying

By|y=0 = B0

x

1 + x2
, (14)

which is equivalent to specifying

A|y=0 = −1

2
B0 log

(

x2 + 1
)

. (15)

This boundary condition describes a bipolar flux distribution at the base of the atmosphere

identified with y = 0. In addition, we also require in y > 0,

as (x2 + y2)1/2 → ∞, |∇A| → 0. (16)
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Our free boundary problem seeks a solution A of the respective equations in σ and σ′ subject

to: (i) A taking a constant value on ∂σ, (ii) A being continuous across ∂σ, and, (iii) A = Apot

in σ′ satisfying boundary conditions (15) and (16).

2.2. Analytical Solutions

In order to avoid wordy sentences, we henceforth refer to a magnetic field B in terms of

its flux function A, keeping in mind that B may involve a non-zero Bz = Q. The potential

field Apot should be distinguished from the field Amin

Amin = −1

2
B0 log

(

x2 + (y + 1)2
)

, (17)

that is everywhere potential in y > 0 with Q = 0, meeting that same boundary conditions

(15) and (16). This is the minimum-energy state of all fields satisfying these boundary

conditions. The potential field Apot may be viewed to be the modification from Amin as the

result of a magnetic flux rope occupying the region σ in y > 0. The precise form of Apot

depends on the shape of ∂σ and the current in σ.

For the specific boundary conditions (15) and (16), analytical global solutions can be

constructed such that both Apot and the force-free field in σ are all cylindrically symmetric

about the point (x, y) = (0, 1). This is the motivation for using boundary condition (15)

but a word of clarification concerning magnetic energy is in order for this case. Although

the potential fields Bpot and Bmin vanish at infinity as required under boundary condition

(16), they have unbounded total magnetic energies in y > 0. This is an artifact of the two-

dimensional unbounded space adopted for our model. The unboundedness of energy is due

to an infinitely-long, straight, virtual line-current in y < 0 implied by boundary condition

(15). The force-free, i.e., non-potential, fields in y > 0, subject to boundary conditions (15)

and (16), all also have unbounded energies but each of them has a finite energy difference

∆E satisfying

∞ > ∆E =

∫

y>0

(

B2 − B2
min

)

dxdy > 0, (18)

thus retaining the idea of Bmin being a minimum-energy state.

Introduce the cylindrical polar coordinates centered at (x, y) = (0, 1):

x = R cos ϕ, (19)

y − 1 = R sin ϕ, (20)
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in terms of which the field (4) has the representation:

B =
1

R

∂A

∂ϕ
R̂ − ∂A

∂R
ϕ̂ + Qẑ. (21)

Identify ∂σ with R = R1, a circle of constant radius, defining the regions σ : R < R1 and

σ′ : R > R1. For cylindrically symmetric fields with no variation in ϕ, BR = 0. Equation

(7) can be integrated as an ordinary differential equation to give

Q2 = 2

∫ R1

R

dA

dR

1

R

d

dR

[

R
dA

dR

]

dR, (22)

which can be rewritten as

B2
z = 2

∫ R1

R

Bϕ
1

R

d

dR
[RBϕ] dR. (23)

Entire families of force-free fields in σ can be generated by prescribing Bϕ(R) for Bz to be

determined by equation (23), subject to the condition that the integral on its right hand side

is positive definite. The choice of the integration constant in the above derivation ensures

that Bz = 0 at R = R1 where Bϕ and A must match the potential field

Bpot =
B0

R
ϕ̂, (24)

Apot = −B0 log R. (25)

in the external region σ′ in accordance with boundary condition (15). The global field is

then everywhere continuous. We now proceed to construct the twisted flux rope in σ.

2.2.1. The Constant-α Flux Rope

Inside σ place the force-free field generated by the solution of equation (7):

B =
B0

R1J1 (α0R1)
[J1 (α0R) ϕ̂ + J0 (α0R) ẑ] , (26)

A =
B0

R1α0J1 (α0R1)
J0 (α0R) − B0 log R1, (27)

where J0 and J1 are Bessel functions, and we assume that α0 takes a constant value for a

given R1 such that

J0 (α0R1) = 0. (28)

This ensures the continuity of Bz across the boundary ∂σ, taking note that Bz = Q = 0

everywhere in σ′. In this solution we have also set A0 = −B0 log R1 in equation (7) for the
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continuity of A across ∂σ. Then, A is everywhere continuous up to its first derivatives and

B is continuous with Bpot across ∂σ.

The total axial flux of the flux rope is

F0 =

∫

σ

Bzdxdy,

=
2πB0

ξ1

R1, (29)

writing ξ1 = α0R1, and the total relative magnetic helicity of the flux rope is

HR =

∫

σ

AQdxdy,

=
πB2

0

ξ1

(1 − 2 log R1)R1, (30)

using the formula of Zhang, Flyer & Low (2006). These quantities will be of physical interest

later in the development.

The solutions we have constructed form a family parametrized by the single parameter

R1 which by definition is less than unity. The parameter B0 is held fixed so that all these

solutions satisfy the same boundary condition (15). The solid curve in Figure 1 displays HR

as a function of F0 over the range R1 < 1.

2.2.2. Uniform Axial-Current Flux Rope

As the second example, place a cylindrically symmetric force-free field into σ that sat-

isfies equation (9). Direct construction gives inside σ:

B =
B0

R2
1

Rϕ̂ +

√
2B0

R2
1

(

R2
1 − R2

)1/2
ẑ, (31)

A =
B0

2R2
1

(

R2
1 − R2

)

− B0 log R1, (32)

where we have set λ2 = 2B0

R2

1

. This magnetic field matches across the boundary ∂σ contin-

uously into the potential field Bpot given by equations (24) and (25). As in the previous

example, the global A is everywhere continuous up to its first derivatives.

The total axial flux of the flux rope is

F0 =
2

3

√
2πB0R1, (33)
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and the total relative magnetic helicity of the flux rope is

HR =
1

15

√
2πB2

0R1 (3 − 10 logR1) . (34)

These quantities will be of physical interest later in the development. Again we have a one-

parameter family of solutions generated by R1 holding B0 fixed. The solid curve in Figure 2

displays HR as a function of F0 in the range R1 < 1.

2.2.3. A High-Energy Flux Rope

We provide a third example of a cylindrically symmetric flux rope:

Bϕ = B1

√
R sin kR, (35)

Bz = B1

[

2(R1 − R) +
1

2k
sin 2kR + R cos2 kR

]1/2

, (36)

for the force-free field in σ, where k is an arbitrary positive constant and B1 = B0

R3/2
to

ensure that this field is continuous with the potential field in σ′. From its definition, the flux

function A(R) in σ can be determined from Bϕ by a single integration, with a choice of the

integration constant to ensure continuity of the flux function across R = R1. Then the total

axial flux F0 and total helicity HR can be computed. No analytical formula is available for

these quantities. For fixed F0 and HR, the energy contained in the flux rope depends on the

specific distribution of the field. This third example contains considerably more energy in

the flux rope than the two previous examples with the same F0 and HR, a point useful later

in our development.

3. Numerical Solutions

The cylindrically symmetric solutions are useful illustrations of flux ropes with free

boundaries. In the physical theory to be discussed in the next section, a flux rope in this

model is characterized with F0 and HR as independent, invariant physical parameters. Hence,

we need to generate flux-rope solutions with at least 2 free parameters, that is, the assumption

of a circular shape for ∂σ is too restrictive.
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Fig. 1.— The solid curve shows the values of F0 and HR for which there is an analytic

constant-α field with B0 = 1. For all parameter pairs (F0, HR) above the dashed curve

there is a solution to the constant-α free boundary problem with the flux rope cross-section

contained entirely in the upper half plane y > 0 (for those pairs on the dashed curve the flux

rope boundary is tangent to y = 0). For parameters off the solid curve these solutions are

found numerically.
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Parameter range for uniform axial current solutions

Fig. 2.— The same as Figure 1 except for uniform axial current fields. The total parameter

domain is larger and the solid curve strictly lower than in Figure 1.
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3.1. The Numerical Method

We assume that the above free-boundary value problem is well-posed. To solve it, a

modification of the numerical method employed in Elcrat et al. (2000, 2001) for the study

of steady inviscid fluid flows with vorticity is used. Our task is given prescribed values for

the axial flux F0 and total relative magnetic helicity HR as defined in (29) and (30), find

the solution A(x, y) in (5) together with the domain σ, boundary value A0, and constant λ

(uniform axial-current) or α0 (constant α) such that the prescribed values of F0 and HR are

realized. The explanation of the procedure is divided into two parts: (1) the transforma-

tions necessary to map the upper-half plane to a smooth finite domain and (2) the iterative

procedure that is used to calculate the solution.

3.1.1. Mappings

Figure 3 shows that to go from the physical (x, y) plane to the computational (ξ, η)

plane requires 3 mappings, the first and second being conformal and the third not. Our goal

is to map the upper half plane to a square, so as to be able to nicely grid it. In the first

step, the upper half of the physical x, y-plane is interpreted as the upper half of the complex

plane. We use a bilinear mapping to map it to the inside of a circle centered at the origin

in the new w-plane. This origin, back in the physical plane, corresponds to a point on the

imaginary axis we shall call a (we shall later see the role a plays). In the opposite direction,

the origin in the physical (x, y)-plane now corresponds to 1. Next, in step 2, we map the

inside of the circle to the semi-infinite strip with 1 being mapped back to the origin but the

origin being mapped to infinity. Lastly, in step 3, the semi-infinite strip is mapped to the

square [0, 1]x[0, 1].

In Figure 4, we see that by performing the reverse mappings, the grid of the compu-

tational plane represent circles nested about the point a in the physical plane. The reason

is that a lattice of horizontal and vertical lines in the computational (ξ, η)-plane will have

the same features in the u-plane and thus be straight radii from the origin and concentric

circles around the origin in the w-plane. By a well-known property of bilinear mappings, the

curves in the physical z-plane must then be circles (or straight lines, in the case they extend

to infinity).

After these mappings the partial differential equation (PDE) for the uniform axial cur-
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Fig. 3.— The mappings required to map the upper half plane to the square [0, 1] × [0, 1].
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Fig. 4.— The computational domain displayed back in the physical plane.
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rent field, (9), in terms of the ξ and η becomes

(1 − ξ)2∂2A

∂ξ2
− (1 − ξ)

∂A

∂ξ
+

1

4π2

∂2A

∂η2
=

− λ2|a|2(cos(2πη) +
(1 − ξ)2 + 1

2(1 − ξ)
)−2.

(37)

By subtracting the minimum energy potential flux function Amin, (17), from A in (37)

the resulting unknown function will satisfy a zero boundary condition at ξ = 0 (ξ = 0 in

the computational square corresponds to the x-axis in the physical domain). Since there is

periodicity in the η direction for 0 ≤ ξ ≤ 1, it is natural to turn to the Fourier space in

the η variable. We therefore take the Fast Fourier Transform in η of the right hand side of

(37) and solve the resulting transformed ordinary differential equation in ξ using centered

second order finite differences. An accurate boundary condition at ξ = 1 is that the zeroth

Fourier mode of the solution is the same at the last two grid lines, but that all the other

modes vanish at ξ = 1. This procedure is non-iterative and provides a very efficient method

for solving (37).

All computations are done in terms of the (ξ, η) variables. After A is determined using

the Fast Poisson Solver just outlined, the integrals required to determine F0 and HR are

computed using the trapezoid rule over 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1.

3.1.2. Iterative procedure

Again, let us consider the uniform axial current field, (9), as an example for describing

the iterative method used to solve the nonlinear free-boundary problem (for simplicity we

describe it terms of x, y coordinates):

∇2A =

{

−λ2, (x, y) ∈ σ

0, (x, y) /∈ σ
.

where A satisfies (15) and (16) and σ = {(x, y) : A > A0, y > 0}. By boundary condition

(15), A < 0 on y = 0, suggesting that if σ does not intersect that boundary, A0 > 0 and

A > A0 inside σ as we have assumed. The constants λ and A0, as well as the region σ,

are unknown and are to be determined so that F0 and HR assume given prescribed values.

During the nth iterative step, for given λn and A0n, they are computed numerically

F0 =

∫∫

Q dxdy=
√

2λn

∫∫

An>A0n

(An − A0n)1/2 dx dy
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and

HR =

∫∫

AQ dx dy =
√

2 λn

∫∫

An>A0n

An(An − A0n)1/2 dx dy.

The steps are as follows:

1. Make an initial guess for λ, σ, and A0. Set iteration number to n = 1.

2. Call the MATLAB routine fsolve which is a nonlinear equation solver. This routine

will vary λ and A0 until the prescribed values of F0 and HR are reached within a given

tolerance by repeatedly solving the discretized PDE and evaluating the integrals for

F0 and HR over the area A > A0 via the trapezoidal rule. The fast Poisson solver for

(37) solves (9) quickly and accurately. Generally, fsolve will need to solve the PDE 10

to 15 times.

3. Even though F0 and HR will have converged to the desired values, there will be a

discrepancy between the area defined by A > A0 and the area σ since A0 was varied

and σ was kept fixed throughout step 2. The area σ is redefined to be the domain

where A > A0, the iteration number is increased by one, and we go back to step 2 with

this new σ.

4. Steps 2 and 3 are repeated until the set of grid points in σn and σn−1 are identical.

This generally requires anywhere from 10 to more than 50 calls to fsolve.

Only a slight modification of this algorithm is needed to solve the free-boundary problem

for a constant-α field:

∇2A =

{

−α2
0(A − A0), (x, y) ∈ σ

0, (x, y) /∈ σ .
.

For this problem we iteratively solve the linear equation

∇2An =

{

−α2
n(An−1 − A0n), (x, y) ∈ σn−1

0, (x, y) /∈ σn−1

. (38)

where σn = {(x, y) : An > A0n, y > 0} for n ≥ 1. Again the values of αn and A0n are varied

in an inner iterative routine until F0 and HR assume prescribed values to within a certain

tolerance, where now

F0 = αn

∫∫

An>A0n

(An − A0n) dx dy

HR = αn

∫∫

An>A0n

An (An − A0n) dx dy.
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The outer iterations are continued until

||(An − A0n)χσn − (An−1 − A0,n−1)χσn−1
|| < ǫ

for some tolerance ǫ (the value 10−5 is generally used), where ||f || denotes the maximum of

|f(ξ, η)| over the unit square and χσ(ξ, η) = 1 for values of (ξ, η) corresponding to points

(x, y) ∈ σ, but is otherwise zero. Note that by using the previous An−1 on the right hand side

of (38) rather than adding the term α2
nAn to the left hand side of the differential equation,

we are able to use the same Fast Poisson Solver for this problem as before.

The exact cylindrical solutions provide a means for testing the accuracy of the numerical

method. The constant-α solution with R1 = 0.8 and B0 = 1 will provide a specific test

case. For an N × N grid, the numerical methods used to compute the flux and helicity are

accurate with an absolute error of about 6 × 10−5 for N = 300 and 2×10−5 for N = 500.

Since F0 = 2.0902 and HR = 1.5115 in this case, relative accuracy is comparable. To check

the accuracy of the Fast Poisson Solver, the equation

∇2A = −α2
0(Ae − Ae0)χ

can be solved, where Ae is the exact solution (27) and χ is the characteristic function of

the set {Ae − Ae0 > 0}. The error ||A − Ae|| is 2 × 10−4 for N = 300 and 2×10−5 for

N = 500. To test the complete algorithm, taking the characteristic function of the circle

centered at 1.1i and of radius 1 as an initial guess, and using the values of flux and helicity

for the cylindrical solution with R1 = .8 as the prescribed flux and helicity parameters, the

full numerical procedure can be run. With N = 300 it converges to a numerical solution A

satisfying ||A − Ae|| = 2.5 × 10−4.

3.2. Representative Numerical Solutions

In all the numerical solutions described below B0 is taken to be one. Figure 5 shows

representative surface plots of the computed flux functions A for both a uniform axial current

field and a constant-α field. Numerical solutions to the constant-α problem can be found for

all choices of F0 and HR above the dashed curve in Figure 1. Similarly the dashed curve in

Figure 2 indicates the boundary of the parameter domain in the uniform axial current case.

Any solution for parameters above the dashed curve has A0 > 0 and hence the boundary ∂σ

of the cross-section of the corresponding flux rope is entirely in the upper half-plane y > 0.

The parameter domain boundary is obtained by a modification of the general algorithm

described above: A0 is set to zero and only F0 is prescribed, with only λ varying in the inner

iterations and HR determined after the completion of the iterative process.
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Fig. 5.— Surface plots for Au, the uniform axial current field flux function, and for Ac, the

constant-α flux function, for F0 = 2, HR = 1.5.
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We have found only one solution to each free-boundary problem for any given admissible

parameter pair, despite attempts to find multiple solutions by using different initial guesses

for the iterative method.

Let (0, yu) and (0, yc) denote the centroids of the cross-sections for the computed uniform

axial current and constant-α flux ropes respectively. For fixed F0 and HR, we find that

yc < yu. Also both yc and yu are increasing as functions of HR when F0 is held fixed. The

solid curves in Figures 1 and 2 show the parameters for which there are analytic solutions as

described in Section 2.2 and for these parameters the flux ropes have circular cross section

centered at y = 1 on the y-axis. For both the constant-α and the uniform axial current

solutions, the computed flux rope cross-sections are very nearly circular except when A0

is close to 0, i.e. except when the flux and helicity parameters are close to the parameter

domain boundaries shown in Figures 1 and 2. The examples given in Figures 6 and 7 show

that for A0 close to 0 the cross-sections are distinctly non-circular. For parameters below

the solid curve the cross sections are wider in the x direction, while for those above the solid

curve the cross sections are wider in the y direction.

3.3. Energy Computation

Formally the magnetic field (4) has total energy

∫∫

y>0

(|∇A|2 + Q(A)2) dx dy,

however this integral is infinite. To avoid this divergence we consider the energy difference

relative to the minimum energy potential state Amin, (17). We denote by E this energy
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Fig. 6.— Contour plots for both the uniform axial current solution Au and the constant-α

solution Ac for F0 = 0.5, HR = 0.14. The thicker contour indicates the flux tube boundary.

The values of Au and Ac on the flux tube boundaries are Au0 = 0.123 and Ac0 = 0.025.
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difference,

E =

∫∫

y>0

(|∇A|2 − |∇Amin|2 + Q(A)2) dx dy .

Using the identities

|∇A|2 = ∇ · (A∇A) − A∇2A and |∇A2
min| = ∇ · (Amin∇Amin),

the two-dimensional Gauss theorem and (5), we obtain

E = −
∫

y=0

A(
∂A

∂y
− ∂Amin

∂y
)dx +

∫∫

σ

(AQ(A)Q′(A) + Q(A)2) dx dy . (39)

For the uniform axial current case, AQ(A)Q′(A) = λ2A and Q(A)2 = λ22(A−A0) on σ

and 0 elsewhere. For the constant-α case, AQ(A)Q′(A) + Q(A)2 = 2α0QA − α0A0Q. This

leads to the following formulas for the energy difference for the constant-α and uniform axial

current cases:

Ec = I + α0(2HR − A0F0) (40)

Eu = I +

∫∫

σ

λ2(3A − 2A0) dx dy (41)

where I is the line integral

I = −
∫

y=0

A
∂(A − Amin)

∂y
dx. (42)

Numerically, the double integral in (41) can be computed by using the trapezoid rule,

after transforming to an integral over the computational square, with accuracy comparable
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Fig. 7.— Contour plots for F0 = 7, HR = 5. The values of Au and Ac on the tube boundaries

are Au0 = 0.291 and Ac0 = 0.021.
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to that noted above for the computation of F0 and HR. Transforming I to an integral in

terms of the computational variables gives

I = −2π

∫ 1

0

A
∂v

∂ξ

∣

∣

∣

ξ=0
dη.

However, because this integral is improper with a singularity at (ξ, η) = (0, .5) (corresponding

to the point at infinity in the physical domain), the accuracy in applying the trapezoid rule

directly to this integral is found to be 1 to 2 orders of magnitude worse than the accuracy

noted above for the other numerical methods being applied. By making use of the particular

nature of the singularity, a method for evaluating the integral with improved accuracy can

be found as follows. First note that since A = Amin on y = 0, by symmetry (42) can be

written

I =

∫ M

0

log(x2 + 1)
∂v

∂y
dx +

∫ ∞

M

log(x2 + 1)

x2
(x2 ∂v

∂y
)dx,

with v = A − Amin. The first of these two integrals will be approximated by the trapezoid

rule; we give an estimate for the second.

∫ ∞

M

log(x2 + 1)

x2
dx ≤ 2

(log(M) + 1)

M
+

1

3
M−3

and

lim
x→∞

x2 ∂v

∂y
= lim

η→ 1

2

(−ia)
sin2(2πη)

(1 + cos 2πη)

∂v

∂ξ
= −i2a lim

η→ 1

2

∂v

∂ξ
= L

where a is the point on the imaginary axis used in defining the transformation to com-

putational variables. The limiting value of ∂v/∂ξ can be computed by a finite difference

approximation at the grid point nearest 1/2. We can take M large enough that M−3 is

numerically insignificant by letting c be a grid point on the η axis slightly larger than 1

2
,

with M the image of c under the coordinate transformation. We obtain

I ≃ −4π

∫ 1

c

A0

∂(A − Amin)

∂ξ

∣

∣

∣

ξ=0
dη + 2L

(log(M) + 1)

M
. (43)

Again the exact cylindrical constant-α solution with R1 = 0.8 can be used for testing

the accuracy of the numerical method. The value of I for the exact cylindrical solution is

I = 2πB2
0 log 2, so by (40)-(42), Ec = 2πB2

0(1 + log 2 − log R1). For R1 = 0.8 and B0 = 1

this yields Ec = 12.04041. The numerical method gives this value with an error of 1.1×10−4

for N = 300 and 3 × 10−5 for N = 500.

For somewhat larger values of the parameters F0 and HR the accuracy of the energy

computations is somewhat worse than the preceding error estimate indicates. Some idea
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of the accuracy can be obtained by considering the variation in the computed values of

the energy when, for given F0 and HR, different choices are made of the initial guesses

σ0 and λ1 and the parameter a. For example with the values F0 = 3.5, HR = 3 and

N = 300, computed values of the energy vary in the intervals 17.6352 < Ec < 17.6380 and

17.8486 < Eu < 17.8530. This indicates a relative accuracy of about 2 × 10−4. However,

because the values of Eu and Ec are quite close, there is significant loss of precision in

computing the energy drop ∆E = Eu − Ec. For this example ∆E varies over the range

.2106 < ∆E < .2178, so ∆E is accurate to only two significant figures, and the accuracy

in the computation of the relative energy drop ∆E/E is comparable. By increasing the

number of grid points to N = 800, which is done for some of calculations reported in the

next section, the accuracy in computing the relative energy drop is improved to almost 3

significant figures.

3.4. Energy Comparison

For any choice of F0 and HR in the parameter domain indicated in Figure 1, the value of

Ec, the energy of the computed constant-α solution with axial flux F0 and relative magnetic

helicity HR, is less than the value of Eu, the energy of the computed uniform axial current

solution with the same flux and helicity. The first column of Figure 8 shows the computed

energy values Eu and Ec for three different one parameter cross-sections of the parameter

domain: in the first case the axial flux is held fixed, F0 = 1; in the second case helicity

is fixed, HR = 1.8; in the third case parameters are restricted so that Ac0 = .25, where

Ac0 is the value on the boundary ∂σ for the constant-α solution Ac. Each plot in the first

column of Figure 8 actually contains plots of both Eu and Ec, but the values are so close

that it is difficult to distinguish between them. The second column plots the energy drop

∆E = Eu − Ec using a different vertical scale. The third column shows the relative energy

drop ∆E/Ec as a percentage.

Several observations can be made on the basis of these numerical comparisons.

1) The (absolute) energy drop appears to be roughly linear as a function of H for fixed

F0, at least for the range of values shown in the Figure 8. The rate of change ∆(∆E)/∆H

decreases as F0 increases: the rate being about .071 for F0 = 1 and .047 for F0 = 2.

2) The maximum energy drop is about 1.5%. The maximum relative energy drop occurs

when Ac0 = 0, i.e. when the boundary ∂σ of the constant-α flux rope touches the x-axis. The

relative energy drop increases as either HR or F0 approaches the boundary of the parameter

domain.
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Fig. 8.— Comparison of the energy Eu of uniform axial current fields with the energy

Ec of constant-α fields with the same flux and helicity. Three different cross-sections of

the parameter domain are considered: a) with flux fixed, F0 = 1; b) with helicity fixed,

HR = 1.8; and c) with Ac0 fixed, Ac0 = .25. In each case plots are shown of the energy (both

Eu and Ec), the energy drop ∆E = Eu − Ec and the relative energy drop ∆E/Ec.
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3) The relative energy drop is nearly constant for fixed Ac0. For Ac0 = .25, the example

shown in the last row of Figure 8, the relative energy drop varies over the range .0121 <

∆E/Ec < .0123, essentially the same as the variation in answers for a single parameter

choice, as discussed at the end of the preceding section. The percentage energy drop is

about 0.9% for all cases with Ac0 = 1, 1.0% for Ac0 = .75, and 1.1% for Ac0 = .5. For

Ac0 = 0, i.e. on the boundary of the parameter domain, the energy drop varies between

1.38% and 1.52%, a greater variation than for a single parameter pair, with the relative

energy drop decreasing while moving out along the parameter boundary curve.
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Fig. 9.— In both examples the thin dashed curve is the flux rope boundary for the initial,

higher energy state and the solid curve is the flux rope boundary in the relaxed state.

The region inside A = Ac0 implodes as a result of the energy release. There is little or

no contraction at the point closest to the x-axis. Similar behavior is observed in all the

computed cases.

4. Magnetic-Field Relaxation in the Solar Corona

Our numerical free-boundary solutions are direct illustrations of some general hydro-

magnetic concepts used to understand long-lived coronal structures. The comparison of the

initial and final states of a relaxation, linked by the relevant conservation laws, has been

typically indirect or incomplete in the papers published in this area of work. This is be-

cause the nonlinear force-free equations are formidable, even when adopting the simplifying

two-dimensional models treated in this paper.

In this section, we interpret the physics implied by the free-boundary solutions. The

physical properties are described in a unified manner, grouped under several concerns and
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beginning with the extension of the Taylor theory.

4.1. The Original Taylor Theory

The original theory of Taylor (1974) was formulated for a hydromagnetic plasma con-

fined in a perfectly conducting, rigid container. This theory considers the turbulent transition

from a given unstable state to a lower-energy state under the assumption of a tenuous but

extremely high conducting plasma so that the end state is a force-free field. The relaxation

proceeds via spontaneous formation of current sheets that dissipate resistively despite the

high conductivity (Parker 1994). The magnetic reconnection produced by current-sheet dis-

sipation changes the field topology (3; Yamada 2001). This change liberates the magnetic

energy that sustains the turbulent flows and heats the plasma resistively. Let us first recall

the specifics of the original Taylor theory as a step to its extension to the open atmosphere.

For a magnetic field B wholly contained in a simply connected domain V with boundary

wall S, we have the boundary condition

Bn = 0 on S, (44)

where n denotes the outward normal direction at S. The solenoidal condition (2) allows us

to express

B = ∇× A, (45)

in terms of the vector potential A; we will relate this vector to the flux function A later in

the development. The magnetic helicity density is given by

h = A · B, (46)

that integrates to give the total helicity

HT =

∫

V

A ·BdV. (47)

The helicity density h given by equation (46) is dependent on the free gauge of A (Jackson

1965). But, the total helicity HT is independent of that gauge by virtue of boundary condi-

tion (44). This gauge independence renders HT a physically meaningful quantity and as a

topological measure of magnetic twist.

The evolution of the magnetic field is given by the equation

∂B

∂t
= ∇× (v × B − η∇× B) , (48)
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describing Faraday induction due to the plasma velocity v and the diffusion of magnetic field

with a coefficient of resistivity η taken to be a constant here for simplicity. The diffusion

time for a field of scale L is of the order of τD = L2/η. Taking the corona to be a fully

ionized Hydrogen plasma at its million degree temperature, the conductivity based on the

formula of Spitzer (1965) implies a very small resistivity η such that fields of scales of the

order of L ≈ 1 km have diffusion time scales of months, quite irrelevant to time scales of

about 103 s characteristic of energy release in a flare. Hence, the resistive term in equation

(48) is negligible except at locations where thin current-sheets are found.

If η is rigorously zero, the total helicity HT is conserved. Resistive dissipation, i.e., η 6= 0,

destroys magnetic energy and magnetic helicity, an irreversible process. But, under the

high conductivity conditions in the corona, resistive dissipation occurs only in the localized

regions of transient current sheets. The actual resistive heating of a single event of current-

sheet dissipation may not be large, whereas the change in field topology can make available

magnetic energy that drives plasma flows that is otherwise locked under the conditions of

perfect conductivity. The released energy can then be converted into heat by dynamical

processes. For example, in the classical Petchek reconnection process, the plasma is heated

principally not at the small reconnection sites but by the slow hydromagnetic shocks in the

reconnection-generated flow (Kulsrud 1998).

On the other hand, outside of the thin layers of resistive dissipation, the flow is ap-

proximately ideal and field topology as measured by magnetic helicity is conserved. This is

the intuitive basis for the Taylor (1974) theory to postulate that the time scale of resistive

dissipation of the total helicity HT is irrelevantly long compared to that of magnetic energy

release, under conditions of high conductivity. This postulate can be demonstrated in terms

of an inequality between the two time scales (Berger 1984).

For a magnetic field dominated plasma, the end-state of a turbulent relaxation is one

containing a force-free field. Then, taking the total helicity HT to be conserved, the Taylor

theory identifies that force-free field to have the absolute minimum of all the energies of all

the fields sharing that conserved total helicity HT . By the theorem of Woltjer (1958), this

field satisfies equations (1) and (2) with a constant α = α0, subject to (i) boundary condition

(44), and, (ii) the determination of α0 to endow the field with the total helicity HT . The

spatial uniformity of α expresses a spreading of the magnetic twist throughout the magnetic

field.
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4.2. Taylor Relaxation in an Open Atmosphere

Applying the Taylor theory to an atmosphere presents two complications (Low 1996).

In the corona, B threads across the boundary, the base y = 0 in our two-dimensional model

where Bn 6= 0, and the gauge independence of HT fails. This is remedied by the use of

relative helicity HR, formulated to be gauge-independent, in place of the total helicity HT

(Berger & Field 1984); see the instructive calculations of Berger (1985). Our model employs

the total relative helicity HR, using a formula derived by Zhang, Flyer & Low (2006); see

equations (30) and (34). Hereafter, we simply call HR the total helicity for brevity.

The second complication comes from the unboundedness of an atmosphere; see the dis-

cussion in Low (1996). Spreading a conserved, finite quantity HR throughout an unbounded

domain V produces a diminishingly small density of it. Thus, the Taylor end state for V

would, in that limit of vanishingly small helicity density, be no different from the potential

field with no local twist. Such a relaxation would, in principle, take infinite time to establish

because the far reaches of the atmosphere must acquire twist spread out there by induced

magnetic reconnection. Therefore, the Taylor relaxation needs to be modified from this

straightforward interpretation in order to apply it to the entire atmosphere .

Start with some initial state containing a twisted flux rope embedded in an external

untwisted potential field. A Taylor-like relaxation may set in, as the rope field reconnects

within itself and with the untwisted external field to spread magnetic twist outward. This

process may proceed until a point is reached when there is no energy available to fuel further

reconnection under the applicable hydromagnetic constraint. Although the reconfigured flux

rope has eaten into the original external field, the reconnection has stopped at some finite

flux surface outside of which the rest of the field remains untwisted. The conserved total

helicity is the constraint that relates the initial and final states.

4.3. The Approximate Conservation of the Total Axial Flux

For our two-dimensional model, the invariance of the total axial flux F0 is an additional

conservation law which we now justify under the following physical consideration. During a

rapid Taylor relaxation, the dense base y = 0 may be approximated to be rigid and perfectly

conducting. The resistive term with coefficient η is negligible in equation (48) except at

locations where current sheets have formed and are dissipating. In the flux-rope relaxation

we are considering, these sheets form in the immediate neighborhood of the rope, leading

to reconnection between the twisted fields of the rope and the external untwisted fields in

that neighborhood. Let us assume that this growing reconnecting region does not grow to
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include the the boundary y = 0. Then the electric field near that boundary is given by

E = −1

c
v × B (49)

neglecting resistive dissipation. Impose from Maxwell’s equations that the tangential electric

field must always be continuous across a surface. Then noting that the ”rigid” region y < 0

has zero electric field, under the assumption of perfect conductivity, and that Bn 6= 0 in our

model, we obtain the boundary condition

v = 0 at y = 0, (50)

as derived by Roberts (1967).

Integrate equation (48) for the rate of change of the total flux in z direction across an

area S1 bounded by a closed curve C1 in the x − y plane in our model,

d

dt

∫

S1

Bzdxdy =

∮

C1

(v × B− η∇×B) · ds, (51)

with an application of Stokes theorem and introducing ds as the directed path element along

C1. Now, Bz = 0 outside of the time-dependent neighborhood Sr(t) where the relaxing flux-

rope is reconnecting with the untwisted fields. Let F0 be the total axial flux across Sr(t).

Then, we have
dF0

dt
=

∮

C1

(v ×B − η∇× B) · ds, (52)

where C1 is any curve large enough to include Sr(t). Take C1 to run along y = 0 and close

at infinity in y > 0. No disturbance can reach infinity in y > 0 so that we may set v = 0 in

the far reaches of the domain, in addition to neglecting η. We also have boundary condition

(50) and a negligible η at y = 0. Therefore, within these approximations, the total axial flux

F0 is a constant in time.

4.4. Energy Comparison

The basic formulation of the Taylor theory for the open atmosphere y > 0 is now com-

plete. Our model poses the following interesting problem in variational calculus, generalizing

from the minimum-energy theorem of Woltjer (1958). Subject to boundary conditions (15)

and (16) and the contraints of given total helicity HR and total axial flux F0, ask for a state

of extremum total magnetic energy. We take the total magnetic energy to be renormalized

to be the energy in excess of that in the everywhere potential field Bmin satisfying boundary

condition (15), in order to avoid dealing with unbounded total energies.
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Without any further qualification, this variational problem taken in the Woltjer sense

would require the finite total helicity HR and total axial flux F0 to spread throughout the

domain y > 0. This corresponds to the possibility we have dismissed, that is, the helicity

and axial-flux density would tend to zero, and the minimum-energy end state would in this

case be Bmin.

On the other hand, if the spread of total helicity and axial flux is halted at some flux

surface ∂σ, then B must have a minimum energy in σ as well as σ′ treated as two separate

regions, subject to the fixed values in HR and F0. Since the helicity and flux are both zero

in σ′, the minimum-energy field in σ′ is potential subject to boundary conditions (15) and

(16) and the requirement that ∂σ is a flux surface.

The problem for the minimum-energy state in σ then takes the form

δ

∫

σ

(

|∇A|2 + Q2
)

dxdy = 0, (53)

subject to the constraints of fixed values of HR and F0. Since ∂σ is a flux surface A = A0,

this variational problem is subject to the boundary condition

δA|∂σ = 0. (54)

Introducing Lagrangian multipliers Λ1 and Λ2, this variational problem is equivalent to

δ

∫

σ

(

|∇A|2 + Q2 + Λ1AQ + Λ2Q
)

dxdy = 0, (55)

subject to boundary condition (54). The Euler-Lagrangian equations for this problem are

2Q + Λ1A + Λ2 = 0, (56)

∇2A − Λ1Q = 0, (57)

requiring Q(x, y) to vary in space as a linear function of A(x, y). We recover the linear partial

differential equation (7) for a constant α0 = 1√
2
Λ1 force-free field. The constant Lagrangian

multipliers are determined by imposing on the solution to have the specific values of HR and

F0 given.

In the above treatment of the variational problem, we are assuming a fixed domain

σ such that A = A0 on ∂σ, where A0 is known and the solutions in σ and σ′ describe

a continuous B across ∂σ, essentially assuming that the free-boundary problem treated in

Section 3 exists. We have not proven mathematically that the solution exists. The numerical

solutions by direct construction is the basis for assuming that the solution exists. We also

cannot rule out by our variational consideration that for a fixed pair (HR, F0), more than
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one solution B may exist but with different σ-σ′ partition of the domain. If there are more

than one solution, then the one with the lowest energy will be the preferred final state of the

field relaxation.

A more general theory of extremization to exhaust all possibilities of the (σ, σ′) is

formidable, but our numerical solutions of Section 3 suggest that for each prescribed pair

of (HR, F0), the pair of (σ, σ′) found as a free-boundary solution is unique, at least, for the

parametric regime covered by our numerical study. In principle, our iterative procedure

could lead to convergence to other pairs of (σ, σ′) with the same (HR, F0), but none were

encountered.

Our extremization suggests that the constant axial-current, flux-rope solutions is at a

higher energy state than the corresponding one with a constant α having the same (HR, F0).

This indication is borne out by our numerical study in that every pair of comparison fields

with the same (HR, F0) show that the constant-α field is of the lower total magnetic en-

ergy. Each pair of fields thus represent a Taylor relaxation from a higher-energy state to a

minimum-energy state through a re-distribution of both HR and F0.

The very small energy change, less than 2% in each case, was unanticipated. We had

set out in the study to find any pair of initial-final states in order to carry out an energy

comparison. The final state is, of course, to be the minimum energy state, namely, a constant-

α field, in which case any non-constant α field would serve as a higher energy state. In

that consideration, we simply chose the uniform axial-current fields because their governing

equation is reducible to a linear partial differential equation. We have discovered by direct

numerical construction that these uniform axial-current fields are energetically close to the

absolute minimum. Hu (1999) has shown that all the cylindrically symmetric fields of this

class are ideally stable to linear perturbation, so that our result is perhaps not surprising.

The energy of a force-free flux rope depends on how the field is spatially distributed. The

third example of a cylindrically symmetric rope given by equations (35) and (36) illustrate

the point. Table 1 shows the energy Ei of this rope as a function of rope radius R1 to be

compared with the energy Ec of the constant-α field sharing the same F0 and HR. For the

broad range of rope radius in the table, the energy change is large, of the order of 40−60%, in

sharp contrast to the case of the constant axial-current fields. Taylor relaxation is a process

of reconnection to distribute a given amount of flux and twist in a rope evenly subject to

the conservation of these two quantities.
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R1 Ei Ec % decrease

0.3 41.2583 16.6103 60%

0.4 32.5567 14.8033 54%

0.5 27.2910 13.4016 51%

0.6 23.6769 12.2562 48%

0.7 20.9506 11.2880 46%

0.8 18.7309 10.4494 44%

Table 1: The initial energy, Ei, the constant alpha solution, Ec, % decrease for various R1

4.5. Flux-Rope Implosion

Note that the A-values defining the flux surfaces of constant-A intersecting the boundary

y = 0 are fixed during the relaxation, under boundary condition (15). Since A < 0 on that

boundary, the closed fields lying entirely in y > 0 and circulating around the flux rope

have positive A values. These closed fields indicate by Ampere’s law the presence of the

axial current of the flux rope. Denote the flux function values on ∂σ to be A1 and A2,

respectively, before and after relaxation. It follows from these properties that the advance of

∂σ into the initially untwisted external fields as a result of relaxation implies that A1 > A2.

This inequality is satisfied for all the pairs of initial-final states found in our numerical study.

Figures 6 and 7 show two particular cases.

The inequality A1 > A2 is associated with a hydromagnetic implosion first pointed out

by Hudson (2002). The magnetic energy density B2

8π
is also the magnetic pressure. Therefore,

a significant loss of magnetic energy in a volume V implies a reduction of the average magnetic

pressure in that volume. If V does not change, say, in the case of a magnetic field contained

in a rigid container, this reduction of magnetic pressure has the unremarkable effect of a

reduction of that pressure exerted on the rigid container wall; see the example of Zhang

& Low (2003). On the other hand, the liberation of magnetic energy has a remarkable

observable consequence if it takes place within a flux system naturally surounded by other

flux systems in an atmosphere; see the examples in Janse & Low (2007). As a result of the

loss of mean magnetic pressure in that flux system, it would contract as the surrounding

flux systems expand by their superior magnetic pressures. This effect, inherent in Taylor

relaxation taking place in an open atmosphere, is in full evidence in our numerical solutions.

In each pair of initial-final states, in addition to the inequality A1 > A2, the following

features are also found. First note that A = A2 in the initial state lies outside of the flux-rope

boundary ∂σ where A = A1. The untwisted external flux sandwiched between these two
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flux surfaces becomes a part of the flux rope in the final state, which explains why A = A2

on ∂σ in the final state. Another way of looking at this transition is to say that the energy

liberation has taken place within the flux surface A = A2 as this surface evolves from its

initial location to its final location in the two states. The flux within A > A2, including the

flux rope, has lost energy and has also weakened its mean magnetic pressure. We therefore

expect in this transition, the potential field external to A = A2 to expand and compress the

energy liberating region. That is, the curve A = A2 in the initial state must contain, as

whole, the curve A = A2 corresponding to ∂σ in the final state. This is found to be the case

for all field relaxations in our numerical solutions . As shown by the explicit examples in

Figure 9, the curve A = A2 contracts inward in that transition with the possibility of zero

contraction at a common point at the bottom of the two curves.

4.6. The Influence of the Lower Boundary

The above change in the internal rope structure can be understood in relation to the

global force-balance that determines the location of the flux rope before and after relaxation.

The inductive response of the perfectly conducting boundary y = 0 has a central role.

By definition, in a force-free field, the net force exerted by all the other currents in the

system on any piece of local current is zero. There are two aspects to this property: the

one relating to the shape and internal equilibrium of the flux rope and the other relating to

the flux-rope location. Consider a flux rope of a small cross-sectional area σ. Then the two

aspects may be approximately separated (Forbes 1990).

Decompose the equilibrium field B in y > 0 linearly as

B = Bmin + Brope, (58)

where Brope is, by definition, the excess field above the everywhere potential field Bmin

uniquely defined by boundary conditions (15) and (16). The field Bmin can be attributed

to a virtual line current of some intensity I0 = 1

2
cB0 flowing in the z-direction located at

(x, y) = (0,−1). By definition, Brope satisfies the boundary condition

Brope · n = 0 at y = 0, (59)

where n denotes the unit outward normal vector at the boundary. This boundary condition

implies that Brope must be generated by the flux-rope current-density J in y > 0 combined

with a virtual, image current system JI located in y < 0.

Denote by Irope the net axial current in the rope. Then the net axial current in the

JI system is −Irope. For the field configurations in Figures 6 and 7, Irope and I0 are both
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positive by the right hand rule. Therefore, the force-free state of the rope is achieved by a

balance of two two Biot-Savat forces, one that is repulsive between the two opposite currents

±Irope and the other attractive between the rope current Irope and the like-sign current I0

of the background field. Suppose the thin flux rope is located at height y = y0 > 0. Then,

by the Biot-Savat formula for the force between 2 line currents, the above force balance is

expressed by
I2
rope

2y0

=
IropeI0

y0 + 1
. (60)

The rope location is given in terms of the net current Irope by

y0 =
Irope

2I0 − Irope
. (61)

Several implications can be made. The current I0 is fixed by the boundary flux at y = 0.

For a rope in y > 0, we require 2I0 > Irope putting a limit on the net current in the rope.

For Irope too close to or in excess of this limit, the assumption of a thin flux rope would

have broken down. There is also the possibility that for larger values of Irope, the rope is no

longer entirely confined within the domain y > 0. Conceivably reconnection can spread so

far out into the potential field as to pass helicity and axial flux into the part of the external

flux that are connected to y = 0. In this case, the conservation of the axial flux discussed

in Section 4.3 needs to be re-examined. These considerations lie outside the scope of the

present study that is defined by the numerical methods we have developed.

Assuming the thin flux rope approximation within the limit 2I0 > Irope, it is clear

that the larger Irope is, the higher the rope is located in the domain. This is the basic effect

underlying the parametric trends found in our numerical solutions, that the height of the flux

rope increases with independent increases of F0 and HR. An increase of axial flux or helicity

corresponds generally to an increase of the axial current. A Taylor-like relaxation reduces

the free energy of the system and that manifest in a decrease of the presence of current,

subject, of course, to the conservations laws. Hence, the flux rope following a relaxation

and the reduction of current tends to be relocated lower in height as found in the pairs of

initial-final states of our numerical study.

5. Summary and Conclusion

Our numerical study applies the Taylor theory to field relaxation in an open atmo-

sphere, based on a two-dimensional model. The free-boundary solutions posed for a flux

rope relaxing in an interacting external potential field illustrate the topological changes pro-

duced by reconnection. The theory extension dealt with two complications. The first is
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not new, namely, the need to use the relative total helicity of Berger & Field (1984). The

other arises from the resistive reconnection between the rope and its surrounding flux with

physical effects basic to the creation of long-lived structures in the solar corona. The ef-

fects discussed in our analysis have been encountered in various forms in coronal modeling

but a self-consistent demonstration of how they work together had not been possible. This

is because the governing equations of force-free fields, even for a geometrically simplifying

two-dimensional model, are nonlinear.

With no wall to confine a relaxing flux rope, the region of reconnection spreads outward

from the initial flux rope and the question arises whether this spreading would stop. Our

solutions show that the reconnection can, indeed, stop at some outer flux surface within

which the reconnected field attains a minimum-energy, constant-α force-free state of Woltjer

(1958). The energy available for reconnection is constrained by the conservation of total axial

flux and helicity. That energy simply has run out when this final state of minimum energy is

reached. This result provides motivation to numerically simulate the time-dependent Taylor

process using the full set of hydromagnetic equations. The point here is that a postulated

transition consistent with the relevant conservation laws is only a necessary but not sufficient

condition for its reality.

It should also be pointed out that our numerical study has not exhausted all topological

possibilities for a pair of initial-final states in the two-dimensional model. Notably, we have

not explored the possibility of the reconnection spreading to reach the base of the atmosphere.

There is a natural extension of our model to realistic geometry, the one involving a rope of

twisted magnetic field that is anchored at both ends to the coronal base, embedded in an

external global potential field. This three-dimensional model will bring the physical effects

treated in this paper an important step towards the realistic magnetic topologies of coronal

observations.

Our numerical solutions illustrate cleanly the interesting physical effect of hydromag-

netic implosion associated with magnetic-energy release pointed by Hudson (2002) and

treated less completely in some recent studies (Zhang & Low 2003, Janse & Low 2007).

The outward migration of the magnetic boundary of a reconnecting flux rope is complicated

by the compression of the relaxing field as it loses its internal magnetic pressure. This effect

probably operates on all physical scales. It would be interesting to look for its signature in

coronal observations.
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