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AN ACCELERATED KERNEL-INDEPENDENT FAST MULTIPOLE
METHOD IN ONE DIMENSION∗

P. G. MARTINSSON† AND V. ROKHLIN‡

Abstract. A version of the fast multipole method (FMM) is described for charge distributions
on the line. Previously published schemes of this type relied either on analytical representations of the
potentials to be evaluated (multipoles, Legendre expansions, Taylor series, etc.) or on tailored rep-
resentations that were constructed numerically (using, e.g., the singular value decomposition (SVD),
artificial charges, etc.). The algorithm of this paper belongs to the second category, utilizing the
matrix compression scheme described in [H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin,
SIAM J. Sci. Comput. 26 (2005), pp. 1389–1404]. The resulting scheme exhibits substantial im-
provements in the CPU time requirements. Furthermore, the scheme is applicable to a wide variety
of potentials; in this respect, it is similar to the SVD-based FMMs. The performance of the method
is illustrated with several numerical examples.
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1. Introduction. We consider the problem of rapidly evaluating the sum

(1.1) um =

N∑
n=1

K(xm, xn) qn, for m = 1, . . . , N,

given a set of points (xn)Nn=1 in R, a kernel K that is smooth away from the diagonal,
and a set of real or complex numbers (qn)Nn=1. We refer to the numbers qn as “sources,”
the numbers un as “potentials,” and the points xn as “source locations.”

The sum (1.1) can be straightforwardly evaluated using O(N2) floating point
operations. In many applications, this cost is prohibitively large, and a number of
methods that reduce the cost to O(N) or O(N logκ N) have been developed, [2, 10].
In this paper, we describe an O(N) method that is a development of the fast multipole
method (FMM) [10, 9]. The changes introduced enable the application of the method
to a large class of kernels and makes the method significantly faster than existing
techniques for the case where the sum (1.1) has to be evaluated several times for a
fixed set of locations (xn)Nn=1 (see section 6).

There are two principal differences between the method presented here and the
original FMM of [10]. The first concerns the way sources and potentials are rep-
resented. While the FMM relies on analytic properties of the kernel, the method
presented here relies on a precomputation step that adaptively constructs represen-
tations that are optimized for the given kernel and the given source locations. The
second difference concerns the treatment of the interactions between adjacent subin-
tervals on the finest level of subdivision. While the original FFM evaluates such
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interactions directly, the representations used by the method of this paper enable the
compression of such interactions.

The method presented here is similar to the methods of [8, 15, 25] in that they
all rely on adaptively computed representations, and thus work for a wide range
of kernels. While the methods of [8, 25] rely on the singular value decomposition
(SVD) to compress the kernel and [15] relies on the QR-decomposition, this paper
is based on a technique described in [5, 18, 17] that we refer to as “skeletonization.”
Similar techniques were previously used in [19, 20, 24]. We also note that the method
presented here bears some similarity to the kernel-independent FMM of [26] (which
can in turn be viewed as a development of [1, 16]). However, while the method of
this paper relies only on certain smoothness properties of the kernel, the method of
[26] requires the kernel to satisfy certain Green-type identities (as kernels associated
with fundamental solutions of constant coefficient partial differential operators tend
to do).

This paper is structured as follows: Section 2 lists some results from numerical
linear algebra that will be of use. Section 3 describes the adaptive technique for the
representation of sources and potentials that the current method relies on. Section 4
describes a fast summation scheme based on the same data structures as the original
FMM, but using the representation described in section 3. Section 5 describes an
additional acceleration of the method based on compressing interactions between all
boxes, including adjacent ones. Section 6 reports the results of several numerical
experiments, and section 7 summarizes the results.

Remark 1. This paper deals with the one-dimensional case. Extensions of the
method to higher dimensions are under investigation and will be reported at a later
date.

2. Preliminaries. The fast summation technique described in this paper achieves
acceleration by approximating off-diagonal blocks of the matrix [K(xm, xn)]Nm,n=1 in
(1.1) by low-rank matrices. The particular matrix factorization we use to represent
the low-rank matrix was described in [13] and [5]. The following lemma summarizes
the facts needed for our purposes.

Lemma 1. Let A be an M × N matrix of rank k with columns C1, . . . , CN and
rows R1, . . . , RM , so that

A = [C1, . . . , CN ] =

⎡
⎢⎣

R1

...
RM

⎤
⎥⎦ .

Then

(2.1) A = Acol ◦ proj,

where proj is a k × N matrix that contains the k × k identity as a submatrix, and
where Acol is an M × k matrix consisting of k columns of A,

Acol = [Cn1
, . . . , Cnk

].

Furthermore,

(2.2) A = eval ◦Arow,
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where eval is an M × k matrix that contains the k × k identity as a submatrix, and
where Arow is a k ×N matrix consisting of k rows of A,

Arow =

⎡
⎢⎣

Rm1

...
Rmk

⎤
⎥⎦ .

Moreover, no elements of eval or proj have magnitude larger than 1.
Remark 2. Since the matrix proj contains a k×k identity matrix it can be applied

to a vector using k× (N −k) multiplications and additions. Similarly, the matrix eval
can be applied to a vector using k × (M − k) multiplications and additions.

Remark 3. As a direct consequence of Lemma 1, the condition number of
proj is bounded by

√
1 + k(N − k) and the condition number of eval is bounded

by
√

1 + k(M − k).
Remark 4. For simplicity, Lemma 1 is stated only for the case where the ma-

trix A has exact rank k. Similar factorizations can be constructed for matrices of
approximate rank k; see [5].

Remark 5. Methods for computing the factorizations in Lemma 1 are described
in [5, 13]. The computational cost is typically O(MNk) but can in rare cases be
slightly higher.

3. Representation of functions via tabulation.

3.1. Outline. At the core of the original FMM is a technique for compactly
representing sources and potentials. A source distribution inside a box is represented
by a multipole expansion about the center of the box. From this expansion, the po-
tential caused by the source distribution at distant target points can be evaluated.
For a given accuracy, only a small number of terms in the expansion are needed,
regardless of how many sources made up the original distribution. In the same way
that source distributions are efficiently represented via multipole expansions, poten-
tials are represented by giving the expansion coefficients in an expansion in harmonic
polynomials.

In this section, we describe an alternative technique for representing sources and
potentials. In order to describe the technique, we consider a simple model problem:
Assume that we are given N source locations (yn)Nn=1 in a set b, M target locations
(xm)Mm=1 in a set a, an interaction kernel K(x, y), and that for a given vector of
sources qb = (qn)Nn=1, we wish to determine the vector of potentials ua = (um)Mm=1

given by

(3.1) ua = direct(a, b) qb,

where direct(a, b) is the M ×N matrix with entries K(xm, yn). We demonstrate that
if the matrix direct(a, b) has rank k (to within some precision ε), then it is possible to
choose a subset of k source locations (ynj )

k
j=1 with the property that the potential ua

can be replicated at all source points by placing some “proxy” sources on the points
ynj

. These proxy sources form the representation of the original source distribution.
Similarly, it is possible to choose a subset of k target locations (xmi)

k
i=1 with the

property that if the potential is known at these k points, then it can be interpolated
to all the remaining points. The potentials (umi

)ki=1 form the representation for the
potential ua.

The representation technique described in this section has two principal advan-
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yn xm

b a

Ω

Fig. 1. The computational domain described in section 3.2.

tages over techniques based on analytic methods, such as multipole expansions: (1)
It is cheaper to construct the proxy sources that represent a source distribution than
it is to compute the corresponding multipole expansion (or any other similar rep-
resentation). (2) The operator that maps a representation for a source distribution
to a representation for a potential (sometimes called a “translation operator”) is a
submatrix of the original matrix of interaction direct(a, b). As a result, this operator
need never be separately constructed or stored.

3.2. Notation. We assume that we are given a computational domain Ω, con-
taining a number of source locations. For a given subset b ⊂ Ω, we let (yn)Nn=1 denote
the locations inside b, and we let qb = (qn)Nn=1 denote a set of sources located at
the points (yn)Nn=1. We let a denote the set of all points x that are well-separated
from b, meaning that dist(x, b) ≥ diam(b), where diam(b) = supy,y′∈b |y − y′|. We let

(xm)Mm=1 denote the locations inside a, and let ua = (um)Mm=1 denote the potential
on a induced by the charges qb (so that ua and qb satisfy (3.1)); see Figure 1.

3.3. Construction of the representation. We first consider the task of eval-
uating a potential in a caused by a set of charges in b. To this end, we form the
M × N matrix A = direct(a, b) with entries K(xm, yn), we determine its ε-rank k,
form a k ×N matrix proj(b), and an index vector (nj)

k
j=1 such that, cf. (2.1),

A = Acol ◦ proj(b) + O(ε),

where Acol is the M × k matrix whose jth column is the njth column of A. Then
given any charge distribution qb on b, we form the vector

(3.2) ψb = proj(b) qb ∈ C
k.

The vector ψb has the property that the potential in a, caused by the charge distri-
bution qb, can within precision ε be reconstructed from ψb, since

(3.3) ua = Aqb =
(
Acol ◦ proj(b) + O(ε)

)
qb = Acol ψ

b + O(ε).

We say that ψb is the outgoing representation of qb, and that the points (ynj )
k
j=1 form

the outgoing skeleton of b.
We next consider the task of evaluating a potential in b caused by a charge

distribution in a. To this end, we form the N × M matrix B = direct(b, a) with
entries K(yn, xm), we determine its ε-rank k, and form an N × k matrix eval(b) and
an index vector (ni)

k
i=1 such that

B = eval(b) ◦Brow + O(ε),
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where Brow is the k×M matrix whose ith row is the nith row of B. Then given any
distribution qa of charges on a, we form the vector

(3.4) φb = Brow qa ∈ C
k.

The vector φb has the property that the potential on b can within precision ε be
reconstructed from φb only, since

(3.5) ub = B qa =
(
eval(b) ◦Brow + O(ε)

)
qa = eval(b)φb + O(ε).

We say that φb is the incoming representation of ub, and that the points (yni)
k
i=1 form

the incoming skeleton of b.
Remark 6. The numbers in the vectors ψb and ϕb admit simple heuristic inter-

pretations: Writing out equation (3.3) componentwise, we find that

(3.6) ua
m =

k∑
j=1

K(xm, ynj
)ψb

j + O(ε), m = 1, . . . ,M.

In other words, the numbers ψb
j can be interpreted as charges that replicate the

potential ua when placed at the skeleton points ynj . Analogously, writing out (3.4)
componentwise, we find that

(3.7) φb
i =

M∑
m=1

K(yni
, xm) qam + O(ε) = ub

ni
+ O(ε), i = 1, . . . , k.

In other words, the number φb
i is simply the potential at the point yni .

Remark 7. For many kernels it is possible to prove that when two sets a and b
are separated by some finite distance, there exist basis functions {fj}pj=1 and {gj}pj=1

such that

(3.8) sup
(x,y)∈a×b

|K(x, y) −
p∑

j=1

fj(x)gj(y)| ≤ ε,

where p tends to scale as a small power of | log ε| as ε → 0. When (3.8) holds, the
number p provides an upper bound on the numerical rank of the matrix of interaction
direct(a, b), regardless of the number of target and source points and their locations.
Moreover, when a formula like (3.8) can be constructed using analytical properties of
the kernel, it can be used to accelerate the computation of proj and eval; cf. section
3.6.

Remark 8. In most environments, it is possible to construct the representations
(3.3) and (3.5) in such a manner that the outgoing and the incoming skeletons are
identical; see [5]. This causes only a minor increase in the number p.

3.4. Converting outgoing to incoming representations. In this section, we
construct a matrix that converts the outgoing representation for a set of charges in
one box, to an incoming representation for the potential induced by this set of charges
in a different box.

Given two well-separated boxes a and b in Ω, suppose that we are given the
outgoing representation ψb = (ψj)

kb
j=1 for a charge distribution qb in b, and that we

wish to determine the incoming representation φa for the potential ua induced by qb.
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We let (xm)Mm=1 and (yn)Nn=1 denote the locations in a and b, and we let (xmi
)ka
i=1 and

(ynj
)kb
j=1 denote the corresponding skeletons. Then (3.7) implies that φa

i = ua
mi

+O(ε),

and (3.6) implies that ua
mi

=
∑kb

j=1 K(xmi
, ynj

)ψb
j + O(ε). In other words, letting

oi(a, b) denote the ka × kb matrix with entries K(xmi , ynj ), we find that

(3.9) φa = oi(a, b)ψb + O(ε).

We refer to the matrix oi(a, b) as an outgoing-to-incoming translation operator. This
operator is a submatrix of direct(a, b). One ramification of this fact is that oi(a, b) need
not be explicitly constructed. Since the kernel K(x, y) is known, oi(a, b) is uniquely
defined by the incoming and outgoing skeletons of a and b.

Remark 9. The matrix direct(a, b) is related to the matrices eval(a), oi(a, b), and
proj(b) via the relation

(3.10) direct(a, b) = eval(a) ◦ oi(a, b) ◦ proj(b) + O(ε).

To prove (3.10), we first note that direct(a, b) is defined by the relation

(3.11) ua = direct(a, b) qb.

Moreover, (3.5), (3.9), and (3.2) imply that

ua = eval(a)φa + O(ε),(3.12)

φa = oi(a, b)ψb + O(ε),(3.13)

ψb = proj(b) qb,(3.14)

respectively. Since (3.11) must hold for every qb, the equations (3.11), (3.12), (3.13),
and (3.14) together imply (3.10). (We remark that (3.10) is analogous to (3.1) in
[5].)

3.5. Merging the representations of two boxes. In this section we describe
a procedure for the construction of the outgoing representation of a set b if the outgoing
representations are known for two sets b1 and b2 such that b = b1 ∪ b2.

We let a denote the set of points that are well-separated from b, and for j = 1, 2,
we similarly let aj denote the set of points that are well-separated from bj . It follows
that a ⊆ aj . Typically, a is strictly smaller than aj .

We let ua denote the potential induced on the locations (xm)Mm=1 ⊂ a by two
given charge distributions in b1 and b2 with outgoing representations ψ(1) and ψ(2).
Furthermore, we let y(1) and y(2) be the corresponding outgoing skeletons. (We recall
that y(1) and y(2) are subsets of the original sets of locations in b1 and b2.) Merging

these two pairs of vectors, we form ψ̂ = [ψ(1), ψ(2)] and ŷ = [y(1), y(2)]. Since a is
wholly contained in a1 ∩ a2, (3.6) implies that

(3.15) ua
m =

k1+k2∑
j=1

K(xm, ŷj) ψ̂j + O(ε) for m = 1, . . . ,M,

where k1 and k2 are the lengths of ψ(1) and ψ(2). We rewrite (3.15) as a matrix-
multiplication by introducing the M×(k1+k2) matrix A with entries Amj = K(xm, ŷj),

(3.16) ua = A ψ̂ + O(ε).
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Equation (3.15) says that ψ̂ is a valid outgoing representation for b with an associated
outgoing skeleton ŷ. However, when a contains fewer target locations than a1 ∪ a2

(which is typically the case), this representation is likely to be longer than necessary.
To be precise, the length of an optimal representation equals the ε-rank of the matrix
A in (3.16), which we denote by k. To obtain an optimal representation, we factor A
as in (2.1),

A = Ãcol ◦ Z + O(ε),

where Z is a k × (k1 + k2) matrix, and Ãcol consists of k columns of A. We denote
the indices of these by (ji)

k
i=1. An optimal outgoing representation is then the vector

ψb = Z ψ̂; it is associated with the outgoing skeleton (ŷji)
k
i=1. Letting oo(b, b1) denote

the matrix formed by the first k1 columns of Z and letting the remaining columns
form oo(b, b2), we find that

ψb = oo(b, b1)ψ
(1) + oo(b, b2)ψ

(2).

Analogously, we construct matrices ii(b1, b) and ii(b2, b) that construct the incom-
ing representations φ(1) and φ(2) for b1 and b2 from the incoming representation of b
via the formulas

(3.17) φ(1) = ii(b1, b)φ
b and φ(2) = ii(b2, b)φ

b.

We refer to the matrix oo(b, b1) as an outgoing-to-outgoing translation opera-
tor, while the matrix ii(b1, b) is referred to as an incoming-to-incoming translation
operator.

3.6. Efficient construction of translation operators. The techniques for
constructing translation operators that were given in sections 3.3, 3.4, and 3.5 could
potentially be quite expensive. For instance, when computing the operator proj(b) in
section 3.3, we considered the interaction between the set of locations in b and the set
of all locations in Ω that are well-separated from b. The second set is typically very
large. However, in most instances of practical interest, the process can be accelerated
by replacing this very large set by a small set of predetermined locations in a that
act as proxies for the actual charge locations. This acceleration technique works for
kernels satisfying the following assumption.

Assumption I. Let b denote a subset of a computational domain Ω, and let a
denote the set of points in Ω that are well-separated from b. We assume that for any
positive number ε, there exist interpolation points (zi)

p
i=1 ⊂ a and functions (fi)

p
i=1

such that

(3.18) sup
x∈a

sup
y∈b

|K(x, y) −
p∑

i=1

fi(x)K(zi, y)| ≤ ε.

The number of terms required, p, is assumed to satisfy

p ≤ C| log ε|,

as ε → 0. For nonsymmetric kernels, we also assume that there exist points (wi)
p
i=1 ⊂

a and functions (gi)
p
i=1 such that

(3.19) sup
x∈a

sup
y∈b

|K(y, x) −
p∑

i=1

K(y, wi) gi(x)| ≤ ε.
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Remark 10. It is shown in [17] that Assumption I holds for any kernel that is
separable in the sense described in Remark 7.

Suppose now that the kernel K satisfies Assumption I. Then for for any given
set b ⊂ Ω, one can quite inexpensively construct an outgoing representation that is
valid for evaluating potentials at the points zi. Assumption I then assures us that this
representation is also valid at any other point that is well-separated from b, since the
potential there can be interpolated locally from the potential at the zi’s. Incoming
representations can be constructed analogously.

Remark 11. In general, the cost of constructing the matrix proj(b) and determin-
ing the outgoing skeleton (ynj

)kj=1 is O(kNM), where k is the ε-rank of interaction, N
is the number of points in b, and M is the number of locations that are well-separated
from b. When the kernel K satisfies Assumption I, this cost can be reduced to O(kNp)
with no dependence on M .

3.7. Representations with extended domains of validity. For a given box
b, we have so far constructed outgoing and incoming representations that are valid with
respect to locations in the computational domain that are separated from a box b by at
least the diameter of b. This requirement of a “buffer” zone is a standard feature of fast
summation techniques. However, the particular technique for representing functions
described in section 3.3 can also be used to compress the interaction between adjacent
boxes. The resulting representations are very similar to the ones constructed for
the interactions between separated boxes. However, the expansions are longer, and
should not be used unless necessary. We call such unbuffered representations “rich
representations,” and denote the outgoing and the incoming rich representations by
Ψb and Φb, respectively. The corresponding projection and evaluation operators are
called Proj and Eval (capitalized), respectively, so that for a given box b

Ψb = Proj(b) qb,(3.20)

ub = Eval(b) Φb.(3.21)

The representation Ψb in (3.20) can be used to compute the potential induced by qb

at any location outside b, while the representation Φb may be used to reconstruct any
potential ub induced by a distribution of charges at any of the locations outside b.

Remark 12. In the original FMM and its variants, the existence of a buffer
between source and target boxes was necessary to assure that the classical represen-
tations (multipole series, etc.) are valid and have controlled convergence rates. Here,
we eliminate the need for the buffers by constructing the representations via numerical
techniques (as opposed to using analytic properties of the kernel). Such representa-
tions are possible because they are not required to be valid everywhere in the boxes,
but only at a finite number of source and target points.

Remark 13. If for a given box b, we wish to compute both its rich and its regular
outgoing representations, the most efficient way for doing so is to first compute the
rich representation Ψb, and then compute the regular one, ψb, from it.

In order to construct the matrix that maps Ψb to ψb, we first construct the matrix
A with entries Amj = K(xm, yj), where (yj)

K
j=1 are the points in the rich skeleton

and (xm)Mm=1 is a set of well-separated target points. Letting k denote the ε-rank of
A, we factor A as in (2.1),

A = Acol ◦ proj(b) + O(ε),
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where Acol is the M × k matrix consisting of the columns of A with indices (ji)
k
i=1,

and proj(b) is a k × K matrix. If Ψb is an outgoing representation associated with
the rich outgoing skeleton (yj)

K
j=1, then

ψb = proj(b) Ψb

is a regular outgoing representation for b associated with the outgoing skeleton (yji)
k
i=1.

Analogously, we construct an operator eval(b) that constructs a rich incoming
representation from a regular one:

(3.22) Φb = eval(b)φb.

Other types of translation operators involving rich representations can be constructed,
but are not needed for the purposes of this paper.

4. A kernel-independent fast summation technique.

4.1. Problem formulation. In this section, we consider the problem of evalu-
ating the sum

(4.1) ui =

N∑
j=1

K(xi, xj) qj , i = 1, . . . , N,

given a set of real numbers (xi)
N
i=1, a set of real or complex numbers (qj)

N
j=1, and a

kernel K(x, y). We call the numbers xi “locations,” the numbers qi “charges,” and
the numbers ui “potentials.” The numbers xi are all contained in an interval Ω called
the “computational domain.”

We focus on the situation where the potentials (ui)
N
i=1 are to be evaluated for

a sequence of charge distributions (qi)
N
i=1 associated with a single set of locations

(xi)
N
i=1. In this environment, we spend a moderate amount of computational effort

on optimizing the representations and the various translation operators used for the
given set of locations. Once this has been done, each potential evaluation can be
performed rapidly.

The summation technique presented in this section follows the same template
as earlier versions of the fast multipole method [10, 11, 8, 6]. The only difference
between these methods and the method presented in this section is that a different
representation for potentials and sources is used. In section 5, a further acceleration of
the method is described. This acceleration is obtained by compressing the interactions
between adjacent regions.

4.2. Tree structure. Given a computational domain Ω = [xleft, xright) ⊂ R and
a set of locations (xn)Nn=1 ⊂ Ω, we construct an adaptive partitioning of the domain
into subintervals in such a way that no interval contains more than N0 locations, for
some given (small) integer N0. We do this via a hierarchical subdivision process in
which any interval holding more than N0 points is split into two halves, and then the
process is continued with each half that, in turn, contains more than N0 points. If
a = [xa

left, x
a
right) is an interval resulting from this process, then

xa
left = xleft + (j − 1) 2−l

(
xright − xleft

)
,

xa
right = xleft + j 2−l

(
xright − xleft

)
,
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for some number l = 0, 1, 2, . . . , and some number j = 1, 2, . . . , 2l. The number l is
called the “level” of the box a and denotes how many times Ω has been cut in half to
reach a.

For every box a, we construct the following lists of other boxes:
Lchildren(a): For a nonleaf box a, this is a list of all boxes b that are contained in

a and that are separated from a by one level only. If b ∈ Lchildren(a),
we say that b is a “child” of a and that a is a “parent” of b. For a
leaf box, Lchildren(a) is empty.

Lclose(a): For a leaf-box a, this is a list of all leaf boxes b that are not well-
separated from a. For a nonleaf box, Lclose(a) is empty.

L2(a): The list of all boxes b on the same level as a that are well-separated
from a, but whose parents are not separated from the parent of a.
(This list is known as the “interaction list” in the original FMM.)

4.3. Outgoing and incoming representations. For any box a, we let the
vector of charges inside the box be denoted by qa, and with proj(a) the matrix defined
in section 3.3, we let the vector

(4.2) ψa = proj(a) qa

denote the outgoing representation of a. Similarly, we let ua
far denote the potential on

a caused by all charges that are well-separated from a. An incoming representation
for a is a vector φa such that

(4.3) ua
far = eval(a)φa + O(ε),

where the operator eval(a) is defined in section 3.3.

Remark 14. In the original fast multipole method, the function of the vector ψa

was performed by a vector of multipole coefficients representing qa, and the function
of φa was performed by a vector of expansion coefficients for ua

far in a basis of harmonic
polynomials.

4.4. Hierarchical construction of representations. Both the incoming and
the outgoing representations can be computed recursively. Specifically, if a is any
nonleaf box a, its outgoing representation can be computed from the outgoing repre-
sentations of its children via the formula

(4.4) ψa =
∑

b∈Lchildren(a)

oo(a, b)ψb,

where the matrices oo(a, b) are defined in section 3.5. Similarly, if a is any box other
than the root box, the incoming representation φa (representing the potential ua

far

caused by charges in all boxes that are well-separated from a) can be constructed by
combining the incoming potential of its parent b with the outgoing potentials of all
boxes in the interaction list of a via the formula

(4.5) φa = ii(a, b)φb +
∑

c∈L2(a)

oi(a, c)ψc,

where the list L2(a) is defined in section 4.2, the matrix ii(a, b) is defined in section
3.5, and the matrices oi(a, c) are defined in section 3.4.
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4.5. Precomputation. Given a set of locations (xn)Nn=1 and a kernel function
K(x, y), the precomputation stage consists of the following steps:

1. Divide the computational domain into a tree structure, as described in section
4.2.

2. Construct the lists described in section 4.2.
3. Loop over all leaf boxes. For each box a, construct the regular outgoing

and incoming skeletons. Simultaneously, determine the matrices proj(a) and
eval(a), described in section 3.3.

4. Loop over all nonleaf boxes, going from finer to coarser levels. For each
box a, construct the regular outgoing and incoming skeletons by merging the
skeletons of its children bi. Simultaneously, determine the matrices oo(a, bi)
and ii(bi, a), as described in section 3.5.

5. Loop over all boxes a, then over all elements b in the list L2(a). For each such
pair (a, b), construct the translation operator oi(a, b), as described in section
5.3.

The total cost of the steps described above depends on the kernel and on the
charge distribution. If the kernel satisfies Assumption I in section 3.6, then the com-
putational cost is typically either O(N) or O(N logN), and the amount of storage
required is typically O(N); cf. Remark 15.

4.6. A general fast multipole method. We have now assembled the tools
for computing the sum (4.1) through two passes through the hierarchical tree: one
upwards and one downwards.

1. Sweep over all leaf boxes a. For each box, construct its outgoing representa-
tion from the values of the charges inside it; cf. (4.2):

ψa = proj(a) qa.

2. Sweep over all nonleaf boxes a, going from finer to coarser levels. For each
box a, construct its outgoing representation by merging the outgoing repre-
sentations of its children; cf. (4.4):

ψa =
∑

b∈Lchildren(a)

oo(a, b)ψb.

3. Set φr = 0 for the root box r. Then loop over all boxes (including the root
box), going from coarser to finer levels. For each box a, form its incoming
representation by combining the incoming representation of its parent, box
b, with the contributions from the boxes in L2(a) (its “interaction list”);
cf. (4.5):

φa = ii(a, b)φb +
∑

c∈L2(a)

oi(a, c)ψc.

4. Sweep over all leaf nodes a. For each node, form the potential ua by evaluating
the incoming representation and directly adding the contributions from the
charges inside a and in all boxes that are not well-separated from a; cf. (4.3):

ua = eval(a)φa + direct(a, a) qa +
∑

c∈Lclose(a)

direct(a, c) qc.
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For kernels satisfying Assumption I, the computational cost of the steps described
in this subsection is typically O(N).

Remark 15. It is possible to construct (highly nonuniform) charge distributions
for which the computational cost of the steps described in sections 4.5 and 4.6 exceed
O(N). A discussion of this phenomenon, and a modification to the scheme that makes
it always retain O(N) complexity, can be found in [21].

5. An accelerated kernel-independent FMM.

5.1. Outline. In this section, we again consider the problem of rapidly evaluat-
ing the sum (4.1). We describe a technique for doing so that is similar to the technique
described in section 4, but with the difference that even interactions between adjacent
boxes are compressed. To enable this additional compression, we keep track of four
representations for each leaf box: the regular outgoing and incoming ones described
in section 3.3, and also the rich outgoing and incoming representations described in
section 3.7. The rich representations are used exclusively for the purpose of evaluating
interactions involving at least one leaf box.

The asymptotic cost for the algorithm described in this section scales in the
same way with N as the cost for the algorithm described in section 4.6 (typically,
O(N logN) for precomputation and O(N) for evaluation). However, the constants
involved are smaller.

5.2. Tree structure. The accelerated algorithm uses the same tree structure
that was described in section 4.2. In addition to the lists described in that section,
the accelerated algorithm also uses the following three lists:
L1(a): For a leaf box a, this is a list of the leaf boxes that directly border a. For

a nonleaf box, L1(a) is empty.
L3(a): For a leaf box a, this is a list of all boxes on finer levels than a that are

separated from a but whose parents are not separated from the parent of
a. For a nonleaf box a, L3(a) is empty.

L4(a): The dual of L3. In other words, b ∈ L4(a) if and only if a ∈ L3(b).

5.3. Translation operators. The algorithm described in section 4.6 utilizes
a single type of outgoing-to-incoming translation operator. This operator maps a
regular outgoing representation ψa to a regular incoming representation φb for all pairs
(a, b) such that a ∈ L2(b). This translation operator is also used in the accelerated
algorithm described in this section, we label it oi2(a, b). The accelerated algorithm
requires three additional outgoing-to-incoming translation operators: For each pair
(a, b) such that b ∈ L1(a), the operator oi1(a, b) maps a rich representation to a rich
representation. For each pair (a, b) such that b ∈ L3(a), the operator oi3(a, b) maps a
regular representation to a rich representation. For each pair (a, b) such that b ∈ L4(a),
the operator oi4(a, b) maps a rich representation to a regular representation. Each
matrix oij(a, b) is the restriction of the original matrix of interaction direct(a, b) to
the relevant outgoing and incoming skeletons for a and b, respectively.

5.4. Precomputation. The precomputation for the accelerated algorithm is
very similar to the precomputation described in section 4.5. The difference is that
for all leaf nodes, we compute both the regular and the rich skeletons (and the cor-
responding operators eval and proj). We also determine the additional lists L1, L3,
and L4, as well as the corresponding translation operators oi1, oi3, and oi4.

5.5. Potential evaluations. After the particle locations (xn)Nn=1 and the kernel
K(x, y) have been fixed, and the precomputation described in section 5.4 has been
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completed, the following steps will compute the vector of potentials (un)Nn=1 from a
vector of charges (qn)Nn=1 cf. (4.1)) to within a precision of computations ε:

1. Loop over all leaf boxes. For each box a, compute Ψa and then ψa:

Ψa = Proj(a) qa and then ψa = proj(a) Ψa.

2. Loop over all nonleaf boxes, going from finer levels to coarser. For each box
a, compute ψa by combining the outgoing representations of its children,

ψa =
∑

b∈Lchildren(a)

oo(a, b)ψb.

3. Loop over all leaf boxes. For each box a, add up the contributions from the
boxes in L1(a),

Φa
1 =

∑
b∈L1(a)

oi1(a, b)Ψ
b.

4. Loop over all boxes. For each box a, add up the contributions from the boxes
in L2(a),

φa
2 =

∑
b∈L2(a)

oi2(a, b)ψ
b.

5. Loop over all leaf boxes. For each box a, add up the contributions from the
boxes in L3(a),

Φa
3 =

∑
b∈L3(a)

oi3(a, b)ψ
b.

6. Loop over all boxes. For each box a, add up the contributions from the boxes
in L4(a),

φa
4 =

∑
b∈L4(a)

oi4(a, b)Ψ
b.

7. Set φr = 0 for the root box r. Then loop over all nonleaf boxes (including
the root box) from coarser levels to finer. For each box a, and for each child
b of a, construct the incoming regular representations for b:

φb = φb
2 + φb

4 + ii(b, a)φa.

8. Loop over all leaf boxes. For each box a, construct its rich incoming repre-
sentation by adding the various contributions:

Φa = Φa
1 + Φa

3 + eval(a)φa.

9. Loop over all leaf boxes. For each box a, construct ua by interpolating Φa

and adding the contributions from qa:

ua = Eval(a) Φa + direct(a, a)qa.

Remark 16. The vectors φa
2 , φa

4 , Φa
1 , and Φa

3 are never stored; they are added
directly to either φa or Φa as they are computed.
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6. Numerical examples. The numerical algorithm described in section 5 has
been implemented in FORTRAN 77 and tested on several model problems. In this
section, we summarize the results from tests involving three different kernels.

Example 1. This example involves the evaluation of the sum

(6.1) um =

N∑
n=1
n�=m

(
log |xm − xn|

)
qn for m = 1, . . . , N,

where the points (xn)Nn=1 were drawn from a uniform random distribution on the
interval [0, 1].

Example 2. This example involves the evaluation of the sum

(6.2) um =

N∑
n=1

pk+1(xm)pk(xn) − pk(xm)pk+1(xn)

xm − xn
qn for m = 1, . . . , N,

where pk is the kth Legendre polynomial and the points (xn)Nn=1 are the Gaussian
nodes on the interval [−1, 1]. The sum (6.2) arises in evaluating orthogonal projections
onto the space of order k polynomials in L2([−1, 1]); see [14]. Similar sums are
encountered in the construction of fast algorithms for the harmonic expansions on the
sphere, in the FMM for the Helmholtz and Maxwell equations, etc.; see [4, 22]. In the
numerical examples reported, k was one third of N (rounded to the nearest integer).

Example 3. This example involves the evaluation of the sum

(6.3) um =

N∑
n=1

sin(a(xm − xn))

xm − xn
qn for m = 1, . . . , N,

where (xn)Nn=1 are equispaced nodes in the interval [−1, 1]. Such sums occur frequently
in signal processing and many other areas; see [3, 7, 23]. The parameter a was chosen
so that there were 5 nodes per wavelength, i.e., a = πN/5.

The CPU times required for the accelerated matrix-vector multiplication in the
three examples are given in Figure 2. The experiments were carried out on a 3.2GHz
Pentium IV desktop with 2Gb of RAM. All calculations shown were carried out with a
requested accuracy of ε = 10−10. Detailed CPU time requirements are given in Tables
2, 3, and 4 in the appendix. These tables also report the memory requirements of the
algorithm, as well as the time required for the precomputing step.

For comparison, Figure 2 also reports the CPU times required for uncompressed
matrix-vector multiplies, both for the case where the matrix elements are precomputed
and stored and the case where the matrix elements are computed on the fly. The
break-even points obtained by extrapolating the lines in Figure 2 are given in Table
1. Finally, Figure 2 reports the CPU time requirement for a Fast Fourier Transform
(FFT) of length N (with equispaced nodes). We note that for large problems, the
matrix-vector multiply reported here is about one order of magnitude slower than an
FFT.

In order to investigate the dependence of the CPU time requirement on the re-
quested accuracy, the matrix-vector multiplication in Example 1 was carried out for
ε = 10−3.5, 10−7, and 10−14. The resulting CPU times are reported in Figure 3.
This table also specifies the CPU times required for the precomputational stage. We
remark that no attempt whatsoever was made to optimize this part of the code, and
its CPU time requirements can be reduced dramatically.
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Fig. 2. The CPU times (in seconds) required for evaluating the sums (6.1), (6.2), and (6.3)
versus problem size N . The markers “×,” “+,” and “◦” label the three cases. The dotted lines
mark the times required for uncompressed matrix-vector multiplies, the solid lines mark the times
required for the algorithm of section 5. The times for a matrix-vector multiply with a stored matrix
are marked with “�” and the times for the FFT are marked “�” for an FFTPACK implementation
and “�” for an FFTW implementation.

Table 1

Break-even points extrapolated from Figure 2.

Matrix elements Matrix elements
computed on the fly precomputed

Example 1 11 52
Example 2 20 60
Example 3 14 94

7. Conclusions. This paper describes an FFM for the rapid evaluation of sums
of the form (1.1). In one and two dimensions, the computational complexity of this
method is O(N).

The method does not use any analytic expansions of the kernel; instead, it nu-
merically compresses the kernel in a preprocessing stage whose computational cost is
O(N logN). The combined cost of the precomputation, and a single potential evalua-
tion using the present scheme, is larger than the cost of a single evaluation using some
existing precomputation-free fast summation techniques. However, if the evaluation
is to be performed for a sequence of different charge distributions (on a fixed set of
charge locations), then the current method outperforms most existing methods, with
the important exception of convolutional sums that can be evaluated using the FFT.
Moreover, since the current scheme does not explicitly rely on analytical properties
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Fig. 3. The CPU time required for evaluating the sum in (6.1) with ε = 10−3.5, 10−7, and
10−14, using the algorithm of section 5, plotted against problem size N . The solid lines give the
time for a matrix-vector multiply, while the dotted lines give the time required for precomputation.

of the kernel, it is applicable in many environments in which precomputation-free
methods are not available.

One application that seems particularly well suited for the fast summation tech-
nique of this paper concerns the rapid computation of the SVD of a matrix. A very
fast algorithm for this task based on a divide-and-conquer technique is described in
[12]. A core observation of [12] is that the seemingly expensive task of updating a
unitary matrix can, surprisingly, be accelerated using the FMM. However, the break-
even point of previous versions of the FMM made the algorithm of [12] competitive
only for very large matrices. Research into combining the fast summation technique
of this paper with the algorithm of [12] is currently under way.

Appendix. Computational results. This appendix contains detailed statistics
for the computational experiments summarized in section 6. The numbers upon which
Figure 2 is based can be found in Tables 2, 3, and 4. The numbers upon which Figure
3 is based can be found in Table 5. Table 6 provides the CPU times required for
an uncompressed matrix-vector multiply and a length-N FFT using FFTPACK and
FFTW.

The following numbers are given for each experiment:
N Problem size.
ε Requested accuracy.
Emax Maximum error (see Remark 17).
Erms Root mean square error (see Remark 17).
tpre CPU time required for precomputation.
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Table 2

Computational results for Example 1, with ε = 10−10.

N tpre/N Emax Erms teval/N Mkeep/N Mpre/N tuncomp/N
1000 1.8E-04 2.3E-10 3.0E-11 5.0E-07 9.9E+01 1.4E+03 7.0E-05
2500 2.6E-04 2.5E-10 2.6E-11 6.8E-07 1.0E+02 7.5E+02 1.6E-04
5000 2.5E-04 3.9E-10 3.1E-11 7.0E-07 1.0E+02 4.9E+02 3.1E-04

10000 3.2E-04 2.4E-10 2.9E-11 7.1E-07 1.0E+02 3.3E+02 6.2E-04
25000 3.0E-04 2.4E-10 2.7E-11 7.1E-07 1.1E+02 2.1E+02 1.5E-03
50000 3.6E-04 3.0E-10 2.5E-11 7.1E-07 1.1E+02 1.7E+02 3.1E-03

100000 3.4E-04 2.0E-10 2.4E-11 7.1E-07 1.1E+02 1.4E+02 6.2E-03

Table 3

Computational results for Example 2, with ε = 10−10.

N tpre/N Emax Erms teval/N Mkeep/N Mpre/N tuncomp/N
1000 2.2E-04 1.5E-10 8.9E-13 6.0E-07 1.1E+02 1.3E+03 4.0E-05
2500 2.9E-04 1.6E-09 3.6E-12 7.6E-07 1.1E+02 8.0E+02 9.2E-05
5000 2.6E-04 1.5E-09 1.6E-12 7.6E-07 1.2E+02 5.4E+02 1.8E-04

10000 2.9E-04 2.0E-09 1.0E-12 7.5E-07 1.2E+02 3.7E+02 3.6E-04
25000 3.9E-04 4.6E-09 1.4E-12 7.7E-07 1.1E+02 2.4E+02 9.1E-04
50000 4.3E-04 2.4E-09 5.5E-13 7.7E-07 1.1E+02 1.8E+02 1.9E-03

100000 5.5E-04 6.4E-08 2.5E-12 7.7E-07 1.1E+02 1.5E+02 3.7E-03

teval CPU time required for an accelerated matrix-vector multiply.
Mkeep Amount of memory required to store the compressed operator.
Mpre Amount of memory required for precomputation.
tuncomp CPU time required for an uncompressed matrix-vector multiply.
tmatvec CPU time required for multiplying a stored matrix by a vector.
tfft CPU time required for a length-N (equispaced) FFT using FFTPACK.
tfftw CPU time required for a length-N (equispaced) FFT using FFTW.
All CPU times are given in seconds, and all memory requirements are given in terms
of storage for double precision reals. The memory required for applying the operator
to a vector is not reported since it is far smaller than Mkeep (asymptotically, it is a
couple of reals per node).

Remark 17. We report both the maximum error Emax and the root mean square
error Erms. Letting (un)Nn=1 denote the result of an uncompressed matrix-vector mul-
tiply, and letting (u′

n)Nn=1 denote the result of an accelerated matrix-vector multiply,
we have

(A.1) Emax =
max1≤n≤N |un − u′

n|
(1/N)

∑N
n=1 |un|

and Erms =

√√√√
∑N

n=1(un − u′
n)2∑N

n=1 |un|2
.

In each of the experiments reported, the charges qn were drawn from a uniform random
distribution on [−1, 1].
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Table 4

Computational results for Example 3, with ε = 10−10.

N tpre/N Emax Erms teval/N Mkeep/N Mpre/N tuncomp/N
1000 7.0E-04 9.1E-10 1.6E-10 1.1E-06 1.9E+02 1.4E+03 9.0E-05
2500 8.3E-04 2.6E-09 1.9E-10 1.2E-06 1.9E+02 8.0E+02 2.2E-04
5000 1.1E-03 3.6E-09 3.7E-10 1.3E-06 2.0E+02 5.7E+02 4.3E-04

10000 1.2E-03 4.6E-09 2.0E-10 1.3E-06 2.0E+02 4.2E+02 8.6E-04
25000 1.4E-03 5.8E-09 4.6E-10 1.2E-06 2.0E+02 3.0E+02 2.2E-03
50000 1.4E-03 4.7E-09 1.2E-10 1.2E-06 2.0E+02 2.6E+02 4.3E-03

100000 1.7E-03 2.2E-09 6.8E-11 1.2E-06 2.0E+02 2.3E+02 8.7E-03

Table 5

Computational results for Example 1, with three different values of ε.

ε = 10−3.5 ε = 10−7 ε = 10−14

N Erms teval/N Erms teval/N Erms teval/N
1000 2.1E-04 4.0E-07 5.7E-08 4.0E-07 5.1E-15 7.0E-07
2500 2.4E-04 4.8E-07 6.2E-08 5.6E-07 3.1E-15 8.4E-07
5000 2.3E-04 5.0E-07 8.1E-08 6.0E-07 3.8E-15 8.6E-07

10000 2.2E-04 4.9E-07 1.0E-07 6.1E-07 4.5E-15 8.5E-07
25000 2,2E-04 5.0E-07 1.1E-07 6.0E-07 7.0E-15 8.6E-07
50000 2.1E-04 5.1E-07 1.2E-07 6.1E-07 9.0E-15 8.6E-07

100000 2.0E-04 5.1E-07 1.3E-07 6.1E-07 1.1E-14 8.5E-07

Table 6

CPU times for the FFT and an uncompressed matrix-vector multiply with a stored matrix.

N 1000 2500 5000 10000 25000 50000 100000
tfft/N 5.0E-8 8.0E-8 6.0E-8 6.5E-8 8.4E-8 1.4E-7 1.6E-7

tfftw/N 2.2E-8 3.1E-8 3.0E-8 2.9E-8 3.7E-8 4.4E-8 5.2E-8
tmatvec/N 1.2E-5 3.2E-5 6.4E-5 — — — —
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